[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * ClassifierSplitEvaluator.java |
---|
| 19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | |
---|
| 24 | package weka.experiment; |
---|
| 25 | |
---|
| 26 | import weka.classifiers.Classifier; |
---|
| 27 | import weka.classifiers.AbstractClassifier; |
---|
| 28 | import weka.classifiers.Evaluation; |
---|
| 29 | import weka.classifiers.rules.ZeroR; |
---|
| 30 | import weka.core.AdditionalMeasureProducer; |
---|
| 31 | import weka.core.Attribute; |
---|
| 32 | import weka.core.Instance; |
---|
| 33 | import weka.core.Instances; |
---|
| 34 | import weka.core.Option; |
---|
| 35 | import weka.core.OptionHandler; |
---|
| 36 | import weka.core.RevisionHandler; |
---|
| 37 | import weka.core.RevisionUtils; |
---|
| 38 | import weka.core.Summarizable; |
---|
| 39 | import weka.core.Utils; |
---|
| 40 | |
---|
| 41 | import java.io.ByteArrayOutputStream; |
---|
| 42 | import java.io.ObjectOutputStream; |
---|
| 43 | import java.io.ObjectStreamClass; |
---|
| 44 | import java.io.Serializable; |
---|
| 45 | import java.lang.management.ManagementFactory; |
---|
| 46 | import java.lang.management.ThreadMXBean; |
---|
| 47 | import java.util.Enumeration; |
---|
| 48 | import java.util.Vector; |
---|
| 49 | |
---|
| 50 | |
---|
| 51 | /** |
---|
| 52 | <!-- globalinfo-start --> |
---|
| 53 | * A SplitEvaluator that produces results for a classification scheme on a nominal class attribute. |
---|
| 54 | * <p/> |
---|
| 55 | <!-- globalinfo-end --> |
---|
| 56 | * |
---|
| 57 | <!-- options-start --> |
---|
| 58 | * Valid options are: <p/> |
---|
| 59 | * |
---|
| 60 | * <pre> -W <class name> |
---|
| 61 | * The full class name of the classifier. |
---|
| 62 | * eg: weka.classifiers.bayes.NaiveBayes</pre> |
---|
| 63 | * |
---|
| 64 | * <pre> -C <index> |
---|
| 65 | * The index of the class for which IR statistics |
---|
| 66 | * are to be output. (default 1)</pre> |
---|
| 67 | * |
---|
| 68 | * <pre> -I <index> |
---|
| 69 | * The index of an attribute to output in the |
---|
| 70 | * results. This attribute should identify an |
---|
| 71 | * instance in order to know which instances are |
---|
| 72 | * in the test set of a cross validation. if 0 |
---|
| 73 | * no output (default 0).</pre> |
---|
| 74 | * |
---|
| 75 | * <pre> -P |
---|
| 76 | * Add target and prediction columns to the result |
---|
| 77 | * for each fold.</pre> |
---|
| 78 | * |
---|
| 79 | * <pre> |
---|
| 80 | * Options specific to classifier weka.classifiers.rules.ZeroR: |
---|
| 81 | * </pre> |
---|
| 82 | * |
---|
| 83 | * <pre> -D |
---|
| 84 | * If set, classifier is run in debug mode and |
---|
| 85 | * may output additional info to the console</pre> |
---|
| 86 | * |
---|
| 87 | <!-- options-end --> |
---|
| 88 | * |
---|
| 89 | * All options after -- will be passed to the classifier. |
---|
| 90 | * |
---|
| 91 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
---|
| 92 | * @version $Revision: 5987 $ |
---|
| 93 | */ |
---|
| 94 | public class ClassifierSplitEvaluator |
---|
| 95 | implements SplitEvaluator, OptionHandler, AdditionalMeasureProducer, |
---|
| 96 | RevisionHandler { |
---|
| 97 | |
---|
| 98 | /** for serialization */ |
---|
| 99 | static final long serialVersionUID = -8511241602760467265L; |
---|
| 100 | |
---|
| 101 | /** The template classifier */ |
---|
| 102 | protected Classifier m_Template = new ZeroR(); |
---|
| 103 | |
---|
| 104 | /** The classifier used for evaluation */ |
---|
| 105 | protected Classifier m_Classifier; |
---|
| 106 | |
---|
| 107 | /** The names of any additional measures to look for in SplitEvaluators */ |
---|
| 108 | protected String [] m_AdditionalMeasures = null; |
---|
| 109 | |
---|
| 110 | /** Array of booleans corresponding to the measures in m_AdditionalMeasures |
---|
| 111 | indicating which of the AdditionalMeasures the current classifier |
---|
| 112 | can produce */ |
---|
| 113 | protected boolean [] m_doesProduce = null; |
---|
| 114 | |
---|
| 115 | /** The number of additional measures that need to be filled in |
---|
| 116 | after taking into account column constraints imposed by the final |
---|
| 117 | destination for results */ |
---|
| 118 | protected int m_numberAdditionalMeasures = 0; |
---|
| 119 | |
---|
| 120 | /** Holds the statistics for the most recent application of the classifier */ |
---|
| 121 | protected String m_result = null; |
---|
| 122 | |
---|
| 123 | /** The classifier options (if any) */ |
---|
| 124 | protected String m_ClassifierOptions = ""; |
---|
| 125 | |
---|
| 126 | /** The classifier version */ |
---|
| 127 | protected String m_ClassifierVersion = ""; |
---|
| 128 | |
---|
| 129 | /** The length of a key */ |
---|
| 130 | private static final int KEY_SIZE = 3; |
---|
| 131 | |
---|
| 132 | /** The length of a result */ |
---|
| 133 | private static final int RESULT_SIZE = 30; |
---|
| 134 | |
---|
| 135 | /** The number of IR statistics */ |
---|
| 136 | private static final int NUM_IR_STATISTICS = 14; |
---|
| 137 | |
---|
| 138 | /** The number of averaged IR statistics */ |
---|
| 139 | private static final int NUM_WEIGHTED_IR_STATISTICS = 8; |
---|
| 140 | |
---|
| 141 | /** The number of unweighted averaged IR statistics */ |
---|
| 142 | private static final int NUM_UNWEIGHTED_IR_STATISTICS = 2; |
---|
| 143 | |
---|
| 144 | /** Class index for information retrieval statistics (default 0) */ |
---|
| 145 | private int m_IRclass = 0; |
---|
| 146 | |
---|
| 147 | /** Flag for prediction and target columns output.*/ |
---|
| 148 | private boolean m_predTargetColumn = false; |
---|
| 149 | |
---|
| 150 | /** Attribute index of instance identifier (default -1) */ |
---|
| 151 | private int m_attID = -1; |
---|
| 152 | |
---|
| 153 | /** |
---|
| 154 | * No args constructor. |
---|
| 155 | */ |
---|
| 156 | public ClassifierSplitEvaluator() { |
---|
| 157 | |
---|
| 158 | updateOptions(); |
---|
| 159 | } |
---|
| 160 | |
---|
| 161 | /** |
---|
| 162 | * Returns a string describing this split evaluator |
---|
| 163 | * @return a description of the split evaluator suitable for |
---|
| 164 | * displaying in the explorer/experimenter gui |
---|
| 165 | */ |
---|
| 166 | public String globalInfo() { |
---|
| 167 | return " A SplitEvaluator that produces results for a classification " |
---|
| 168 | +"scheme on a nominal class attribute."; |
---|
| 169 | } |
---|
| 170 | |
---|
| 171 | /** |
---|
| 172 | * Returns an enumeration describing the available options.. |
---|
| 173 | * |
---|
| 174 | * @return an enumeration of all the available options. |
---|
| 175 | */ |
---|
| 176 | public Enumeration listOptions() { |
---|
| 177 | |
---|
| 178 | Vector newVector = new Vector(4); |
---|
| 179 | |
---|
| 180 | newVector.addElement(new Option( |
---|
| 181 | "\tThe full class name of the classifier.\n" |
---|
| 182 | +"\teg: weka.classifiers.bayes.NaiveBayes", |
---|
| 183 | "W", 1, |
---|
| 184 | "-W <class name>")); |
---|
| 185 | newVector.addElement(new Option( |
---|
| 186 | "\tThe index of the class for which IR statistics\n" + |
---|
| 187 | "\tare to be output. (default 1)", |
---|
| 188 | "C", 1, |
---|
| 189 | "-C <index>")); |
---|
| 190 | newVector.addElement(new Option( |
---|
| 191 | "\tThe index of an attribute to output in the\n" + |
---|
| 192 | "\tresults. This attribute should identify an\n" + |
---|
| 193 | "\tinstance in order to know which instances are\n" + |
---|
| 194 | "\tin the test set of a cross validation. if 0\n" + |
---|
| 195 | "\tno output (default 0).", |
---|
| 196 | "I", 1, |
---|
| 197 | "-I <index>")); |
---|
| 198 | newVector.addElement(new Option( |
---|
| 199 | "\tAdd target and prediction columns to the result\n" + |
---|
| 200 | "\tfor each fold.", |
---|
| 201 | "P", 0, |
---|
| 202 | "-P")); |
---|
| 203 | |
---|
| 204 | if ((m_Template != null) && |
---|
| 205 | (m_Template instanceof OptionHandler)) { |
---|
| 206 | newVector.addElement(new Option( |
---|
| 207 | "", |
---|
| 208 | "", 0, "\nOptions specific to classifier " |
---|
| 209 | + m_Template.getClass().getName() + ":")); |
---|
| 210 | Enumeration enu = ((OptionHandler)m_Template).listOptions(); |
---|
| 211 | while (enu.hasMoreElements()) { |
---|
| 212 | newVector.addElement(enu.nextElement()); |
---|
| 213 | } |
---|
| 214 | } |
---|
| 215 | return newVector.elements(); |
---|
| 216 | } |
---|
| 217 | |
---|
| 218 | /** |
---|
| 219 | * Parses a given list of options. <p/> |
---|
| 220 | * |
---|
| 221 | <!-- options-start --> |
---|
| 222 | * Valid options are: <p/> |
---|
| 223 | * |
---|
| 224 | * <pre> -W <class name> |
---|
| 225 | * The full class name of the classifier. |
---|
| 226 | * eg: weka.classifiers.bayes.NaiveBayes</pre> |
---|
| 227 | * |
---|
| 228 | * <pre> -C <index> |
---|
| 229 | * The index of the class for which IR statistics |
---|
| 230 | * are to be output. (default 1)</pre> |
---|
| 231 | * |
---|
| 232 | * <pre> -I <index> |
---|
| 233 | * The index of an attribute to output in the |
---|
| 234 | * results. This attribute should identify an |
---|
| 235 | * instance in order to know which instances are |
---|
| 236 | * in the test set of a cross validation. if 0 |
---|
| 237 | * no output (default 0).</pre> |
---|
| 238 | * |
---|
| 239 | * <pre> -P |
---|
| 240 | * Add target and prediction columns to the result |
---|
| 241 | * for each fold.</pre> |
---|
| 242 | * |
---|
| 243 | * <pre> |
---|
| 244 | * Options specific to classifier weka.classifiers.rules.ZeroR: |
---|
| 245 | * </pre> |
---|
| 246 | * |
---|
| 247 | * <pre> -D |
---|
| 248 | * If set, classifier is run in debug mode and |
---|
| 249 | * may output additional info to the console</pre> |
---|
| 250 | * |
---|
| 251 | <!-- options-end --> |
---|
| 252 | * |
---|
| 253 | * All options after -- will be passed to the classifier. |
---|
| 254 | * |
---|
| 255 | * @param options the list of options as an array of strings |
---|
| 256 | * @throws Exception if an option is not supported |
---|
| 257 | */ |
---|
| 258 | public void setOptions(String[] options) throws Exception { |
---|
| 259 | |
---|
| 260 | String cName = Utils.getOption('W', options); |
---|
| 261 | if (cName.length() == 0) { |
---|
| 262 | throw new Exception("A classifier must be specified with" |
---|
| 263 | + " the -W option."); |
---|
| 264 | } |
---|
| 265 | // Do it first without options, so if an exception is thrown during |
---|
| 266 | // the option setting, listOptions will contain options for the actual |
---|
| 267 | // Classifier. |
---|
| 268 | setClassifier(AbstractClassifier.forName(cName, null)); |
---|
| 269 | if (getClassifier() instanceof OptionHandler) { |
---|
| 270 | ((OptionHandler) getClassifier()) |
---|
| 271 | .setOptions(Utils.partitionOptions(options)); |
---|
| 272 | updateOptions(); |
---|
| 273 | } |
---|
| 274 | |
---|
| 275 | String indexName = Utils.getOption('C', options); |
---|
| 276 | if (indexName.length() != 0) { |
---|
| 277 | m_IRclass = (new Integer(indexName)).intValue() - 1; |
---|
| 278 | } else { |
---|
| 279 | m_IRclass = 0; |
---|
| 280 | } |
---|
| 281 | |
---|
| 282 | String attID = Utils.getOption('I', options); |
---|
| 283 | if (attID.length() != 0) { |
---|
| 284 | m_attID = (new Integer(attID)).intValue() - 1; |
---|
| 285 | } else { |
---|
| 286 | m_attID = -1; |
---|
| 287 | } |
---|
| 288 | |
---|
| 289 | m_predTargetColumn = Utils.getFlag('P', options); |
---|
| 290 | } |
---|
| 291 | |
---|
| 292 | /** |
---|
| 293 | * Gets the current settings of the Classifier. |
---|
| 294 | * |
---|
| 295 | * @return an array of strings suitable for passing to setOptions |
---|
| 296 | */ |
---|
| 297 | public String [] getOptions() { |
---|
| 298 | |
---|
| 299 | String [] classifierOptions = new String [0]; |
---|
| 300 | if ((m_Template != null) && |
---|
| 301 | (m_Template instanceof OptionHandler)) { |
---|
| 302 | classifierOptions = ((OptionHandler)m_Template).getOptions(); |
---|
| 303 | } |
---|
| 304 | |
---|
| 305 | String [] options = new String [classifierOptions.length + 8]; |
---|
| 306 | int current = 0; |
---|
| 307 | |
---|
| 308 | if (getClassifier() != null) { |
---|
| 309 | options[current++] = "-W"; |
---|
| 310 | options[current++] = getClassifier().getClass().getName(); |
---|
| 311 | } |
---|
| 312 | options[current++] = "-I"; |
---|
| 313 | options[current++] = "" + (m_attID + 1); |
---|
| 314 | |
---|
| 315 | if (getPredTargetColumn()) options[current++] = "-P"; |
---|
| 316 | |
---|
| 317 | options[current++] = "-C"; |
---|
| 318 | options[current++] = "" + (m_IRclass + 1); |
---|
| 319 | options[current++] = "--"; |
---|
| 320 | |
---|
| 321 | System.arraycopy(classifierOptions, 0, options, current, |
---|
| 322 | classifierOptions.length); |
---|
| 323 | current += classifierOptions.length; |
---|
| 324 | while (current < options.length) { |
---|
| 325 | options[current++] = ""; |
---|
| 326 | } |
---|
| 327 | return options; |
---|
| 328 | } |
---|
| 329 | |
---|
| 330 | /** |
---|
| 331 | * Set a list of method names for additional measures to look for |
---|
| 332 | * in Classifiers. This could contain many measures (of which only a |
---|
| 333 | * subset may be produceable by the current Classifier) if an experiment |
---|
| 334 | * is the type that iterates over a set of properties. |
---|
| 335 | * @param additionalMeasures a list of method names |
---|
| 336 | */ |
---|
| 337 | public void setAdditionalMeasures(String [] additionalMeasures) { |
---|
| 338 | // System.err.println("ClassifierSplitEvaluator: setting additional measures"); |
---|
| 339 | m_AdditionalMeasures = additionalMeasures; |
---|
| 340 | |
---|
| 341 | // determine which (if any) of the additional measures this classifier |
---|
| 342 | // can produce |
---|
| 343 | if (m_AdditionalMeasures != null && m_AdditionalMeasures.length > 0) { |
---|
| 344 | m_doesProduce = new boolean [m_AdditionalMeasures.length]; |
---|
| 345 | |
---|
| 346 | if (m_Template instanceof AdditionalMeasureProducer) { |
---|
| 347 | Enumeration en = ((AdditionalMeasureProducer)m_Template). |
---|
| 348 | enumerateMeasures(); |
---|
| 349 | while (en.hasMoreElements()) { |
---|
| 350 | String mname = (String)en.nextElement(); |
---|
| 351 | for (int j=0;j<m_AdditionalMeasures.length;j++) { |
---|
| 352 | if (mname.compareToIgnoreCase(m_AdditionalMeasures[j]) == 0) { |
---|
| 353 | m_doesProduce[j] = true; |
---|
| 354 | } |
---|
| 355 | } |
---|
| 356 | } |
---|
| 357 | } |
---|
| 358 | } else { |
---|
| 359 | m_doesProduce = null; |
---|
| 360 | } |
---|
| 361 | } |
---|
| 362 | |
---|
| 363 | /** |
---|
| 364 | * Returns an enumeration of any additional measure names that might be |
---|
| 365 | * in the classifier |
---|
| 366 | * @return an enumeration of the measure names |
---|
| 367 | */ |
---|
| 368 | public Enumeration enumerateMeasures() { |
---|
| 369 | Vector newVector = new Vector(); |
---|
| 370 | if (m_Template instanceof AdditionalMeasureProducer) { |
---|
| 371 | Enumeration en = ((AdditionalMeasureProducer)m_Template). |
---|
| 372 | enumerateMeasures(); |
---|
| 373 | while (en.hasMoreElements()) { |
---|
| 374 | String mname = (String)en.nextElement(); |
---|
| 375 | newVector.addElement(mname); |
---|
| 376 | } |
---|
| 377 | } |
---|
| 378 | return newVector.elements(); |
---|
| 379 | } |
---|
| 380 | |
---|
| 381 | /** |
---|
| 382 | * Returns the value of the named measure |
---|
| 383 | * @param additionalMeasureName the name of the measure to query for its value |
---|
| 384 | * @return the value of the named measure |
---|
| 385 | * @throws IllegalArgumentException if the named measure is not supported |
---|
| 386 | */ |
---|
| 387 | public double getMeasure(String additionalMeasureName) { |
---|
| 388 | if (m_Template instanceof AdditionalMeasureProducer) { |
---|
| 389 | if (m_Classifier == null) { |
---|
| 390 | throw new IllegalArgumentException("ClassifierSplitEvaluator: " + |
---|
| 391 | "Can't return result for measure, " + |
---|
| 392 | "classifier has not been built yet."); |
---|
| 393 | } |
---|
| 394 | return ((AdditionalMeasureProducer)m_Classifier). |
---|
| 395 | getMeasure(additionalMeasureName); |
---|
| 396 | } else { |
---|
| 397 | throw new IllegalArgumentException("ClassifierSplitEvaluator: " |
---|
| 398 | +"Can't return value for : "+additionalMeasureName |
---|
| 399 | +". "+m_Template.getClass().getName()+" " |
---|
| 400 | +"is not an AdditionalMeasureProducer"); |
---|
| 401 | } |
---|
| 402 | } |
---|
| 403 | |
---|
| 404 | /** |
---|
| 405 | * Gets the data types of each of the key columns produced for a single run. |
---|
| 406 | * The number of key fields must be constant |
---|
| 407 | * for a given SplitEvaluator. |
---|
| 408 | * |
---|
| 409 | * @return an array containing objects of the type of each key column. The |
---|
| 410 | * objects should be Strings, or Doubles. |
---|
| 411 | */ |
---|
| 412 | public Object [] getKeyTypes() { |
---|
| 413 | |
---|
| 414 | Object [] keyTypes = new Object[KEY_SIZE]; |
---|
| 415 | keyTypes[0] = ""; |
---|
| 416 | keyTypes[1] = ""; |
---|
| 417 | keyTypes[2] = ""; |
---|
| 418 | return keyTypes; |
---|
| 419 | } |
---|
| 420 | |
---|
| 421 | /** |
---|
| 422 | * Gets the names of each of the key columns produced for a single run. |
---|
| 423 | * The number of key fields must be constant |
---|
| 424 | * for a given SplitEvaluator. |
---|
| 425 | * |
---|
| 426 | * @return an array containing the name of each key column |
---|
| 427 | */ |
---|
| 428 | public String [] getKeyNames() { |
---|
| 429 | |
---|
| 430 | String [] keyNames = new String[KEY_SIZE]; |
---|
| 431 | keyNames[0] = "Scheme"; |
---|
| 432 | keyNames[1] = "Scheme_options"; |
---|
| 433 | keyNames[2] = "Scheme_version_ID"; |
---|
| 434 | return keyNames; |
---|
| 435 | } |
---|
| 436 | |
---|
| 437 | /** |
---|
| 438 | * Gets the key describing the current SplitEvaluator. For example |
---|
| 439 | * This may contain the name of the classifier used for classifier |
---|
| 440 | * predictive evaluation. The number of key fields must be constant |
---|
| 441 | * for a given SplitEvaluator. |
---|
| 442 | * |
---|
| 443 | * @return an array of objects containing the key. |
---|
| 444 | */ |
---|
| 445 | public Object [] getKey(){ |
---|
| 446 | |
---|
| 447 | Object [] key = new Object[KEY_SIZE]; |
---|
| 448 | key[0] = m_Template.getClass().getName(); |
---|
| 449 | key[1] = m_ClassifierOptions; |
---|
| 450 | key[2] = m_ClassifierVersion; |
---|
| 451 | return key; |
---|
| 452 | } |
---|
| 453 | |
---|
| 454 | /** |
---|
| 455 | * Gets the data types of each of the result columns produced for a |
---|
| 456 | * single run. The number of result fields must be constant |
---|
| 457 | * for a given SplitEvaluator. |
---|
| 458 | * |
---|
| 459 | * @return an array containing objects of the type of each result column. |
---|
| 460 | * The objects should be Strings, or Doubles. |
---|
| 461 | */ |
---|
| 462 | public Object [] getResultTypes() { |
---|
| 463 | int addm = (m_AdditionalMeasures != null) |
---|
| 464 | ? m_AdditionalMeasures.length |
---|
| 465 | : 0; |
---|
| 466 | int overall_length = RESULT_SIZE+addm; |
---|
| 467 | overall_length += NUM_IR_STATISTICS; |
---|
| 468 | overall_length += NUM_WEIGHTED_IR_STATISTICS; |
---|
| 469 | overall_length += NUM_UNWEIGHTED_IR_STATISTICS; |
---|
| 470 | if (getAttributeID() >= 0) overall_length += 1; |
---|
| 471 | if (getPredTargetColumn()) overall_length += 2; |
---|
| 472 | Object [] resultTypes = new Object[overall_length]; |
---|
| 473 | Double doub = new Double(0); |
---|
| 474 | int current = 0; |
---|
| 475 | resultTypes[current++] = doub; |
---|
| 476 | resultTypes[current++] = doub; |
---|
| 477 | |
---|
| 478 | resultTypes[current++] = doub; |
---|
| 479 | resultTypes[current++] = doub; |
---|
| 480 | resultTypes[current++] = doub; |
---|
| 481 | resultTypes[current++] = doub; |
---|
| 482 | resultTypes[current++] = doub; |
---|
| 483 | resultTypes[current++] = doub; |
---|
| 484 | |
---|
| 485 | resultTypes[current++] = doub; |
---|
| 486 | resultTypes[current++] = doub; |
---|
| 487 | resultTypes[current++] = doub; |
---|
| 488 | resultTypes[current++] = doub; |
---|
| 489 | |
---|
| 490 | resultTypes[current++] = doub; |
---|
| 491 | resultTypes[current++] = doub; |
---|
| 492 | resultTypes[current++] = doub; |
---|
| 493 | resultTypes[current++] = doub; |
---|
| 494 | resultTypes[current++] = doub; |
---|
| 495 | resultTypes[current++] = doub; |
---|
| 496 | |
---|
| 497 | resultTypes[current++] = doub; |
---|
| 498 | resultTypes[current++] = doub; |
---|
| 499 | resultTypes[current++] = doub; |
---|
| 500 | resultTypes[current++] = doub; |
---|
| 501 | |
---|
| 502 | // IR stats |
---|
| 503 | resultTypes[current++] = doub; |
---|
| 504 | resultTypes[current++] = doub; |
---|
| 505 | resultTypes[current++] = doub; |
---|
| 506 | resultTypes[current++] = doub; |
---|
| 507 | resultTypes[current++] = doub; |
---|
| 508 | resultTypes[current++] = doub; |
---|
| 509 | resultTypes[current++] = doub; |
---|
| 510 | resultTypes[current++] = doub; |
---|
| 511 | resultTypes[current++] = doub; |
---|
| 512 | resultTypes[current++] = doub; |
---|
| 513 | resultTypes[current++] = doub; |
---|
| 514 | resultTypes[current++] = doub; |
---|
| 515 | |
---|
| 516 | // Unweighted IR stats |
---|
| 517 | resultTypes[current++] = doub; |
---|
| 518 | resultTypes[current++] = doub; |
---|
| 519 | |
---|
| 520 | // Weighted IR stats |
---|
| 521 | resultTypes[current++] = doub; |
---|
| 522 | resultTypes[current++] = doub; |
---|
| 523 | resultTypes[current++] = doub; |
---|
| 524 | resultTypes[current++] = doub; |
---|
| 525 | resultTypes[current++] = doub; |
---|
| 526 | resultTypes[current++] = doub; |
---|
| 527 | resultTypes[current++] = doub; |
---|
| 528 | resultTypes[current++] = doub; |
---|
| 529 | |
---|
| 530 | // Timing stats |
---|
| 531 | resultTypes[current++] = doub; |
---|
| 532 | resultTypes[current++] = doub; |
---|
| 533 | resultTypes[current++] = doub; |
---|
| 534 | resultTypes[current++] = doub; |
---|
| 535 | |
---|
| 536 | // sizes |
---|
| 537 | resultTypes[current++] = doub; |
---|
| 538 | resultTypes[current++] = doub; |
---|
| 539 | resultTypes[current++] = doub; |
---|
| 540 | |
---|
| 541 | // Prediction interval statistics |
---|
| 542 | resultTypes[current++] = doub; |
---|
| 543 | resultTypes[current++] = doub; |
---|
| 544 | |
---|
| 545 | // ID/Targets/Predictions |
---|
| 546 | if (getAttributeID() >= 0) resultTypes[current++] = ""; |
---|
| 547 | if (getPredTargetColumn()){ |
---|
| 548 | resultTypes[current++] = ""; |
---|
| 549 | resultTypes[current++] = ""; |
---|
| 550 | } |
---|
| 551 | |
---|
| 552 | // Classifier defined extras |
---|
| 553 | resultTypes[current++] = ""; |
---|
| 554 | |
---|
| 555 | // add any additional measures |
---|
| 556 | for (int i=0;i<addm;i++) { |
---|
| 557 | resultTypes[current++] = doub; |
---|
| 558 | } |
---|
| 559 | if (current != overall_length) { |
---|
| 560 | throw new Error("ResultTypes didn't fit RESULT_SIZE"); |
---|
| 561 | } |
---|
| 562 | return resultTypes; |
---|
| 563 | } |
---|
| 564 | |
---|
| 565 | /** |
---|
| 566 | * Gets the names of each of the result columns produced for a single run. |
---|
| 567 | * The number of result fields must be constant |
---|
| 568 | * for a given SplitEvaluator. |
---|
| 569 | * |
---|
| 570 | * @return an array containing the name of each result column |
---|
| 571 | */ |
---|
| 572 | public String [] getResultNames() { |
---|
| 573 | int addm = (m_AdditionalMeasures != null) |
---|
| 574 | ? m_AdditionalMeasures.length |
---|
| 575 | : 0; |
---|
| 576 | int overall_length = RESULT_SIZE+addm; |
---|
| 577 | overall_length += NUM_IR_STATISTICS; |
---|
| 578 | overall_length += NUM_WEIGHTED_IR_STATISTICS; |
---|
| 579 | overall_length += NUM_UNWEIGHTED_IR_STATISTICS; |
---|
| 580 | if (getAttributeID() >= 0) overall_length += 1; |
---|
| 581 | if (getPredTargetColumn()) overall_length += 2; |
---|
| 582 | |
---|
| 583 | String [] resultNames = new String[overall_length]; |
---|
| 584 | int current = 0; |
---|
| 585 | resultNames[current++] = "Number_of_training_instances"; |
---|
| 586 | resultNames[current++] = "Number_of_testing_instances"; |
---|
| 587 | |
---|
| 588 | // Basic performance stats - right vs wrong |
---|
| 589 | resultNames[current++] = "Number_correct"; |
---|
| 590 | resultNames[current++] = "Number_incorrect"; |
---|
| 591 | resultNames[current++] = "Number_unclassified"; |
---|
| 592 | resultNames[current++] = "Percent_correct"; |
---|
| 593 | resultNames[current++] = "Percent_incorrect"; |
---|
| 594 | resultNames[current++] = "Percent_unclassified"; |
---|
| 595 | resultNames[current++] = "Kappa_statistic"; |
---|
| 596 | |
---|
| 597 | // Sensitive stats - certainty of predictions |
---|
| 598 | resultNames[current++] = "Mean_absolute_error"; |
---|
| 599 | resultNames[current++] = "Root_mean_squared_error"; |
---|
| 600 | resultNames[current++] = "Relative_absolute_error"; |
---|
| 601 | resultNames[current++] = "Root_relative_squared_error"; |
---|
| 602 | |
---|
| 603 | // SF stats |
---|
| 604 | resultNames[current++] = "SF_prior_entropy"; |
---|
| 605 | resultNames[current++] = "SF_scheme_entropy"; |
---|
| 606 | resultNames[current++] = "SF_entropy_gain"; |
---|
| 607 | resultNames[current++] = "SF_mean_prior_entropy"; |
---|
| 608 | resultNames[current++] = "SF_mean_scheme_entropy"; |
---|
| 609 | resultNames[current++] = "SF_mean_entropy_gain"; |
---|
| 610 | |
---|
| 611 | // K&B stats |
---|
| 612 | resultNames[current++] = "KB_information"; |
---|
| 613 | resultNames[current++] = "KB_mean_information"; |
---|
| 614 | resultNames[current++] = "KB_relative_information"; |
---|
| 615 | |
---|
| 616 | // IR stats |
---|
| 617 | resultNames[current++] = "True_positive_rate"; |
---|
| 618 | resultNames[current++] = "Num_true_positives"; |
---|
| 619 | resultNames[current++] = "False_positive_rate"; |
---|
| 620 | resultNames[current++] = "Num_false_positives"; |
---|
| 621 | resultNames[current++] = "True_negative_rate"; |
---|
| 622 | resultNames[current++] = "Num_true_negatives"; |
---|
| 623 | resultNames[current++] = "False_negative_rate"; |
---|
| 624 | resultNames[current++] = "Num_false_negatives"; |
---|
| 625 | resultNames[current++] = "IR_precision"; |
---|
| 626 | resultNames[current++] = "IR_recall"; |
---|
| 627 | resultNames[current++] = "F_measure"; |
---|
| 628 | resultNames[current++] = "Area_under_ROC"; |
---|
| 629 | |
---|
| 630 | // Weighted IR stats |
---|
| 631 | resultNames[current++] = "Weighted_avg_true_positive_rate"; |
---|
| 632 | resultNames[current++] = "Weighted_avg_false_positive_rate"; |
---|
| 633 | resultNames[current++] = "Weighted_avg_true_negative_rate"; |
---|
| 634 | resultNames[current++] = "Weighted_avg_false_negative_rate"; |
---|
| 635 | resultNames[current++] = "Weighted_avg_IR_precision"; |
---|
| 636 | resultNames[current++] = "Weighted_avg_IR_recall"; |
---|
| 637 | resultNames[current++] = "Weighted_avg_F_measure"; |
---|
| 638 | resultNames[current++] = "Weighted_avg_area_under_ROC"; |
---|
| 639 | |
---|
| 640 | // Unweighted IR stats |
---|
| 641 | resultNames[current++] = "Unweighted_macro_avg_F_measure"; |
---|
| 642 | resultNames[current++] = "Unweighted_micro_avg_F_measure"; |
---|
| 643 | |
---|
| 644 | // Timing stats |
---|
| 645 | resultNames[current++] = "Elapsed_Time_training"; |
---|
| 646 | resultNames[current++] = "Elapsed_Time_testing"; |
---|
| 647 | resultNames[current++] = "UserCPU_Time_training"; |
---|
| 648 | resultNames[current++] = "UserCPU_Time_testing"; |
---|
| 649 | |
---|
| 650 | // sizes |
---|
| 651 | resultNames[current++] = "Serialized_Model_Size"; |
---|
| 652 | resultNames[current++] = "Serialized_Train_Set_Size"; |
---|
| 653 | resultNames[current++] = "Serialized_Test_Set_Size"; |
---|
| 654 | |
---|
| 655 | // Prediction interval statistics |
---|
| 656 | resultNames[current++] = "Coverage_of_Test_Cases_By_Regions"; |
---|
| 657 | resultNames[current++] = "Size_of_Predicted_Regions"; |
---|
| 658 | |
---|
| 659 | // ID/Targets/Predictions |
---|
| 660 | if (getAttributeID() >= 0) resultNames[current++] = "Instance_ID"; |
---|
| 661 | if (getPredTargetColumn()){ |
---|
| 662 | resultNames[current++] = "Targets"; |
---|
| 663 | resultNames[current++] = "Predictions"; |
---|
| 664 | } |
---|
| 665 | |
---|
| 666 | // Classifier defined extras |
---|
| 667 | resultNames[current++] = "Summary"; |
---|
| 668 | // add any additional measures |
---|
| 669 | for (int i=0;i<addm;i++) { |
---|
| 670 | resultNames[current++] = m_AdditionalMeasures[i]; |
---|
| 671 | } |
---|
| 672 | if (current != overall_length) { |
---|
| 673 | throw new Error("ResultNames didn't fit RESULT_SIZE"); |
---|
| 674 | } |
---|
| 675 | return resultNames; |
---|
| 676 | } |
---|
| 677 | |
---|
| 678 | /** |
---|
| 679 | * Gets the results for the supplied train and test datasets. Now performs |
---|
| 680 | * a deep copy of the classifier before it is built and evaluated (just in case |
---|
| 681 | * the classifier is not initialized properly in buildClassifier()). |
---|
| 682 | * |
---|
| 683 | * @param train the training Instances. |
---|
| 684 | * @param test the testing Instances. |
---|
| 685 | * @return the results stored in an array. The objects stored in |
---|
| 686 | * the array may be Strings, Doubles, or null (for the missing value). |
---|
| 687 | * @throws Exception if a problem occurs while getting the results |
---|
| 688 | */ |
---|
| 689 | public Object [] getResult(Instances train, Instances test) |
---|
| 690 | throws Exception { |
---|
| 691 | |
---|
| 692 | if (train.classAttribute().type() != Attribute.NOMINAL) { |
---|
| 693 | throw new Exception("Class attribute is not nominal!"); |
---|
| 694 | } |
---|
| 695 | if (m_Template == null) { |
---|
| 696 | throw new Exception("No classifier has been specified"); |
---|
| 697 | } |
---|
| 698 | int addm = (m_AdditionalMeasures != null) ? m_AdditionalMeasures.length : 0; |
---|
| 699 | int overall_length = RESULT_SIZE+addm; |
---|
| 700 | overall_length += NUM_IR_STATISTICS; |
---|
| 701 | overall_length += NUM_WEIGHTED_IR_STATISTICS; |
---|
| 702 | overall_length += NUM_UNWEIGHTED_IR_STATISTICS; |
---|
| 703 | if (getAttributeID() >= 0) overall_length += 1; |
---|
| 704 | if (getPredTargetColumn()) overall_length += 2; |
---|
| 705 | |
---|
| 706 | ThreadMXBean thMonitor = ManagementFactory.getThreadMXBean(); |
---|
| 707 | boolean canMeasureCPUTime = thMonitor.isThreadCpuTimeSupported(); |
---|
| 708 | if(!thMonitor.isThreadCpuTimeEnabled()) |
---|
| 709 | thMonitor.setThreadCpuTimeEnabled(true); |
---|
| 710 | |
---|
| 711 | Object [] result = new Object[overall_length]; |
---|
| 712 | Evaluation eval = new Evaluation(train); |
---|
| 713 | m_Classifier = AbstractClassifier.makeCopy(m_Template); |
---|
| 714 | double [] predictions; |
---|
| 715 | long thID = Thread.currentThread().getId(); |
---|
| 716 | long CPUStartTime=-1, trainCPUTimeElapsed=-1, testCPUTimeElapsed=-1, |
---|
| 717 | trainTimeStart, trainTimeElapsed, testTimeStart, testTimeElapsed; |
---|
| 718 | |
---|
| 719 | //training classifier |
---|
| 720 | trainTimeStart = System.currentTimeMillis(); |
---|
| 721 | if(canMeasureCPUTime) |
---|
| 722 | CPUStartTime = thMonitor.getThreadUserTime(thID); |
---|
| 723 | m_Classifier.buildClassifier(train); |
---|
| 724 | if(canMeasureCPUTime) |
---|
| 725 | trainCPUTimeElapsed = thMonitor.getThreadUserTime(thID) - CPUStartTime; |
---|
| 726 | trainTimeElapsed = System.currentTimeMillis() - trainTimeStart; |
---|
| 727 | |
---|
| 728 | //testing classifier |
---|
| 729 | testTimeStart = System.currentTimeMillis(); |
---|
| 730 | if(canMeasureCPUTime) |
---|
| 731 | CPUStartTime = thMonitor.getThreadUserTime(thID); |
---|
| 732 | predictions = eval.evaluateModel(m_Classifier, test); |
---|
| 733 | if(canMeasureCPUTime) |
---|
| 734 | testCPUTimeElapsed = thMonitor.getThreadUserTime(thID) - CPUStartTime; |
---|
| 735 | testTimeElapsed = System.currentTimeMillis() - testTimeStart; |
---|
| 736 | thMonitor = null; |
---|
| 737 | |
---|
| 738 | m_result = eval.toSummaryString(); |
---|
| 739 | // The results stored are all per instance -- can be multiplied by the |
---|
| 740 | // number of instances to get absolute numbers |
---|
| 741 | int current = 0; |
---|
| 742 | result[current++] = new Double(train.numInstances()); |
---|
| 743 | result[current++] = new Double(eval.numInstances()); |
---|
| 744 | result[current++] = new Double(eval.correct()); |
---|
| 745 | result[current++] = new Double(eval.incorrect()); |
---|
| 746 | result[current++] = new Double(eval.unclassified()); |
---|
| 747 | result[current++] = new Double(eval.pctCorrect()); |
---|
| 748 | result[current++] = new Double(eval.pctIncorrect()); |
---|
| 749 | result[current++] = new Double(eval.pctUnclassified()); |
---|
| 750 | result[current++] = new Double(eval.kappa()); |
---|
| 751 | |
---|
| 752 | result[current++] = new Double(eval.meanAbsoluteError()); |
---|
| 753 | result[current++] = new Double(eval.rootMeanSquaredError()); |
---|
| 754 | result[current++] = new Double(eval.relativeAbsoluteError()); |
---|
| 755 | result[current++] = new Double(eval.rootRelativeSquaredError()); |
---|
| 756 | |
---|
| 757 | result[current++] = new Double(eval.SFPriorEntropy()); |
---|
| 758 | result[current++] = new Double(eval.SFSchemeEntropy()); |
---|
| 759 | result[current++] = new Double(eval.SFEntropyGain()); |
---|
| 760 | result[current++] = new Double(eval.SFMeanPriorEntropy()); |
---|
| 761 | result[current++] = new Double(eval.SFMeanSchemeEntropy()); |
---|
| 762 | result[current++] = new Double(eval.SFMeanEntropyGain()); |
---|
| 763 | |
---|
| 764 | // K&B stats |
---|
| 765 | result[current++] = new Double(eval.KBInformation()); |
---|
| 766 | result[current++] = new Double(eval.KBMeanInformation()); |
---|
| 767 | result[current++] = new Double(eval.KBRelativeInformation()); |
---|
| 768 | |
---|
| 769 | // IR stats |
---|
| 770 | result[current++] = new Double(eval.truePositiveRate(m_IRclass)); |
---|
| 771 | result[current++] = new Double(eval.numTruePositives(m_IRclass)); |
---|
| 772 | result[current++] = new Double(eval.falsePositiveRate(m_IRclass)); |
---|
| 773 | result[current++] = new Double(eval.numFalsePositives(m_IRclass)); |
---|
| 774 | result[current++] = new Double(eval.trueNegativeRate(m_IRclass)); |
---|
| 775 | result[current++] = new Double(eval.numTrueNegatives(m_IRclass)); |
---|
| 776 | result[current++] = new Double(eval.falseNegativeRate(m_IRclass)); |
---|
| 777 | result[current++] = new Double(eval.numFalseNegatives(m_IRclass)); |
---|
| 778 | result[current++] = new Double(eval.precision(m_IRclass)); |
---|
| 779 | result[current++] = new Double(eval.recall(m_IRclass)); |
---|
| 780 | result[current++] = new Double(eval.fMeasure(m_IRclass)); |
---|
| 781 | result[current++] = new Double(eval.areaUnderROC(m_IRclass)); |
---|
| 782 | |
---|
| 783 | // Weighted IR stats |
---|
| 784 | result[current++] = new Double(eval.weightedTruePositiveRate()); |
---|
| 785 | result[current++] = new Double(eval.weightedFalsePositiveRate()); |
---|
| 786 | result[current++] = new Double(eval.weightedTrueNegativeRate()); |
---|
| 787 | result[current++] = new Double(eval.weightedFalseNegativeRate()); |
---|
| 788 | result[current++] = new Double(eval.weightedPrecision()); |
---|
| 789 | result[current++] = new Double(eval.weightedRecall()); |
---|
| 790 | result[current++] = new Double(eval.weightedFMeasure()); |
---|
| 791 | result[current++] = new Double(eval.weightedAreaUnderROC()); |
---|
| 792 | |
---|
| 793 | // Unweighted IR stats |
---|
| 794 | result[current++] = new Double(eval.unweightedMacroFmeasure()); |
---|
| 795 | result[current++] = new Double(eval.unweightedMicroFmeasure()); |
---|
| 796 | |
---|
| 797 | // Timing stats |
---|
| 798 | result[current++] = new Double(trainTimeElapsed / 1000.0); |
---|
| 799 | result[current++] = new Double(testTimeElapsed / 1000.0); |
---|
| 800 | if(canMeasureCPUTime) { |
---|
| 801 | result[current++] = new Double((trainCPUTimeElapsed/1000000.0) / 1000.0); |
---|
| 802 | result[current++] = new Double((testCPUTimeElapsed /1000000.0) / 1000.0); |
---|
| 803 | } |
---|
| 804 | else { |
---|
| 805 | result[current++] = new Double(Utils.missingValue()); |
---|
| 806 | result[current++] = new Double(Utils.missingValue()); |
---|
| 807 | } |
---|
| 808 | |
---|
| 809 | // sizes |
---|
| 810 | ByteArrayOutputStream bastream = new ByteArrayOutputStream(); |
---|
| 811 | ObjectOutputStream oostream = new ObjectOutputStream(bastream); |
---|
| 812 | oostream.writeObject(m_Classifier); |
---|
| 813 | result[current++] = new Double(bastream.size()); |
---|
| 814 | bastream = new ByteArrayOutputStream(); |
---|
| 815 | oostream = new ObjectOutputStream(bastream); |
---|
| 816 | oostream.writeObject(train); |
---|
| 817 | result[current++] = new Double(bastream.size()); |
---|
| 818 | bastream = new ByteArrayOutputStream(); |
---|
| 819 | oostream = new ObjectOutputStream(bastream); |
---|
| 820 | oostream.writeObject(test); |
---|
| 821 | result[current++] = new Double(bastream.size()); |
---|
| 822 | |
---|
| 823 | // Prediction interval statistics |
---|
| 824 | result[current++] = new Double(eval.coverageOfTestCasesByPredictedRegions()); |
---|
| 825 | result[current++] = new Double(eval.sizeOfPredictedRegions()); |
---|
| 826 | |
---|
| 827 | // IDs |
---|
| 828 | if (getAttributeID() >= 0){ |
---|
| 829 | String idsString = ""; |
---|
| 830 | if (test.attribute(m_attID).isNumeric()){ |
---|
| 831 | if (test.numInstances() > 0) |
---|
| 832 | idsString += test.instance(0).value(m_attID); |
---|
| 833 | for(int i=1;i<test.numInstances();i++){ |
---|
| 834 | idsString += "|" + test.instance(i).value(m_attID); |
---|
| 835 | } |
---|
| 836 | } else { |
---|
| 837 | if (test.numInstances() > 0) |
---|
| 838 | idsString += test.instance(0).stringValue(m_attID); |
---|
| 839 | for(int i=1;i<test.numInstances();i++){ |
---|
| 840 | idsString += "|" + test.instance(i).stringValue(m_attID); |
---|
| 841 | } |
---|
| 842 | } |
---|
| 843 | result[current++] = idsString; |
---|
| 844 | } |
---|
| 845 | |
---|
| 846 | if (getPredTargetColumn()){ |
---|
| 847 | if (test.classAttribute().isNumeric()){ |
---|
| 848 | // Targets |
---|
| 849 | if (test.numInstances() > 0){ |
---|
| 850 | String targetsString = ""; |
---|
| 851 | targetsString += test.instance(0).value(test.classIndex()); |
---|
| 852 | for(int i=1;i<test.numInstances();i++){ |
---|
| 853 | targetsString += "|" + test.instance(i).value(test.classIndex()); |
---|
| 854 | } |
---|
| 855 | result[current++] = targetsString; |
---|
| 856 | } |
---|
| 857 | |
---|
| 858 | // Predictions |
---|
| 859 | if (predictions.length > 0){ |
---|
| 860 | String predictionsString = ""; |
---|
| 861 | predictionsString += predictions[0]; |
---|
| 862 | for(int i=1;i<predictions.length;i++){ |
---|
| 863 | predictionsString += "|" + predictions[i]; |
---|
| 864 | } |
---|
| 865 | result[current++] = predictionsString; |
---|
| 866 | } |
---|
| 867 | } else { |
---|
| 868 | // Targets |
---|
| 869 | if (test.numInstances() > 0){ |
---|
| 870 | String targetsString = ""; |
---|
| 871 | targetsString += test.instance(0).stringValue(test.classIndex()); |
---|
| 872 | for(int i=1;i<test.numInstances();i++){ |
---|
| 873 | targetsString += "|" + test.instance(i).stringValue(test.classIndex()); |
---|
| 874 | } |
---|
| 875 | result[current++] = targetsString; |
---|
| 876 | } |
---|
| 877 | |
---|
| 878 | // Predictions |
---|
| 879 | if (predictions.length > 0){ |
---|
| 880 | String predictionsString = ""; |
---|
| 881 | predictionsString += test.classAttribute().value((int) predictions[0]); |
---|
| 882 | for(int i=1;i<predictions.length;i++){ |
---|
| 883 | predictionsString += "|" + test.classAttribute().value((int) predictions[i]); |
---|
| 884 | } |
---|
| 885 | result[current++] = predictionsString; |
---|
| 886 | } |
---|
| 887 | } |
---|
| 888 | } |
---|
| 889 | |
---|
| 890 | if (m_Classifier instanceof Summarizable) { |
---|
| 891 | result[current++] = ((Summarizable)m_Classifier).toSummaryString(); |
---|
| 892 | } else { |
---|
| 893 | result[current++] = null; |
---|
| 894 | } |
---|
| 895 | |
---|
| 896 | for (int i=0;i<addm;i++) { |
---|
| 897 | if (m_doesProduce[i]) { |
---|
| 898 | try { |
---|
| 899 | double dv = ((AdditionalMeasureProducer)m_Classifier). |
---|
| 900 | getMeasure(m_AdditionalMeasures[i]); |
---|
| 901 | if (!Utils.isMissingValue(dv)) { |
---|
| 902 | Double value = new Double(dv); |
---|
| 903 | result[current++] = value; |
---|
| 904 | } else { |
---|
| 905 | result[current++] = null; |
---|
| 906 | } |
---|
| 907 | } catch (Exception ex) { |
---|
| 908 | System.err.println(ex); |
---|
| 909 | } |
---|
| 910 | } else { |
---|
| 911 | result[current++] = null; |
---|
| 912 | } |
---|
| 913 | } |
---|
| 914 | |
---|
| 915 | if (current != overall_length) { |
---|
| 916 | throw new Error("Results didn't fit RESULT_SIZE"); |
---|
| 917 | } |
---|
| 918 | return result; |
---|
| 919 | } |
---|
| 920 | |
---|
| 921 | /** |
---|
| 922 | * Returns the tip text for this property |
---|
| 923 | * @return tip text for this property suitable for |
---|
| 924 | * displaying in the explorer/experimenter gui |
---|
| 925 | */ |
---|
| 926 | public String classifierTipText() { |
---|
| 927 | return "The classifier to use."; |
---|
| 928 | } |
---|
| 929 | |
---|
| 930 | /** |
---|
| 931 | * Get the value of Classifier. |
---|
| 932 | * |
---|
| 933 | * @return Value of Classifier. |
---|
| 934 | */ |
---|
| 935 | public Classifier getClassifier() { |
---|
| 936 | |
---|
| 937 | return m_Template; |
---|
| 938 | } |
---|
| 939 | |
---|
| 940 | /** |
---|
| 941 | * Sets the classifier. |
---|
| 942 | * |
---|
| 943 | * @param newClassifier the new classifier to use. |
---|
| 944 | */ |
---|
| 945 | public void setClassifier(Classifier newClassifier) { |
---|
| 946 | |
---|
| 947 | m_Template = newClassifier; |
---|
| 948 | updateOptions(); |
---|
| 949 | } |
---|
| 950 | |
---|
| 951 | /** |
---|
| 952 | * Get the value of ClassForIRStatistics. |
---|
| 953 | * @return Value of ClassForIRStatistics. |
---|
| 954 | */ |
---|
| 955 | public int getClassForIRStatistics() { |
---|
| 956 | return m_IRclass; |
---|
| 957 | } |
---|
| 958 | |
---|
| 959 | /** |
---|
| 960 | * Set the value of ClassForIRStatistics. |
---|
| 961 | * @param v Value to assign to ClassForIRStatistics. |
---|
| 962 | */ |
---|
| 963 | public void setClassForIRStatistics(int v) { |
---|
| 964 | m_IRclass = v; |
---|
| 965 | } |
---|
| 966 | |
---|
| 967 | /** |
---|
| 968 | * Get the index of Attibute Identifying the instances |
---|
| 969 | * @return index of outputed Attribute. |
---|
| 970 | */ |
---|
| 971 | public int getAttributeID() { |
---|
| 972 | return m_attID; |
---|
| 973 | } |
---|
| 974 | |
---|
| 975 | /** |
---|
| 976 | * Set the index of Attibute Identifying the instances |
---|
| 977 | * @param v index the attribute to output |
---|
| 978 | */ |
---|
| 979 | public void setAttributeID(int v) { |
---|
| 980 | m_attID = v; |
---|
| 981 | } |
---|
| 982 | |
---|
| 983 | /** |
---|
| 984 | *@return true if the prediction and target columns must be outputed. |
---|
| 985 | */ |
---|
| 986 | public boolean getPredTargetColumn(){ |
---|
| 987 | return m_predTargetColumn; |
---|
| 988 | } |
---|
| 989 | |
---|
| 990 | /** |
---|
| 991 | * Set the flag for prediction and target output. |
---|
| 992 | *@param v true if the 2 columns have to be outputed. false otherwise. |
---|
| 993 | */ |
---|
| 994 | public void setPredTargetColumn(boolean v){ |
---|
| 995 | m_predTargetColumn = v; |
---|
| 996 | } |
---|
| 997 | |
---|
| 998 | /** |
---|
| 999 | * Updates the options that the current classifier is using. |
---|
| 1000 | */ |
---|
| 1001 | protected void updateOptions() { |
---|
| 1002 | |
---|
| 1003 | if (m_Template instanceof OptionHandler) { |
---|
| 1004 | m_ClassifierOptions = Utils.joinOptions(((OptionHandler)m_Template) |
---|
| 1005 | .getOptions()); |
---|
| 1006 | } else { |
---|
| 1007 | m_ClassifierOptions = ""; |
---|
| 1008 | } |
---|
| 1009 | if (m_Template instanceof Serializable) { |
---|
| 1010 | ObjectStreamClass obs = ObjectStreamClass.lookup(m_Template |
---|
| 1011 | .getClass()); |
---|
| 1012 | m_ClassifierVersion = "" + obs.getSerialVersionUID(); |
---|
| 1013 | } else { |
---|
| 1014 | m_ClassifierVersion = ""; |
---|
| 1015 | } |
---|
| 1016 | } |
---|
| 1017 | |
---|
| 1018 | /** |
---|
| 1019 | * Set the Classifier to use, given it's class name. A new classifier will be |
---|
| 1020 | * instantiated. |
---|
| 1021 | * |
---|
| 1022 | * @param newClassifierName the Classifier class name. |
---|
| 1023 | * @throws Exception if the class name is invalid. |
---|
| 1024 | */ |
---|
| 1025 | public void setClassifierName(String newClassifierName) throws Exception { |
---|
| 1026 | |
---|
| 1027 | try { |
---|
| 1028 | setClassifier((Classifier)Class.forName(newClassifierName) |
---|
| 1029 | .newInstance()); |
---|
| 1030 | } catch (Exception ex) { |
---|
| 1031 | throw new Exception("Can't find Classifier with class name: " |
---|
| 1032 | + newClassifierName); |
---|
| 1033 | } |
---|
| 1034 | } |
---|
| 1035 | |
---|
| 1036 | /** |
---|
| 1037 | * Gets the raw output from the classifier |
---|
| 1038 | * @return the raw output from th,0e classifier |
---|
| 1039 | */ |
---|
| 1040 | public String getRawResultOutput() { |
---|
| 1041 | StringBuffer result = new StringBuffer(); |
---|
| 1042 | |
---|
| 1043 | if (m_Classifier == null) { |
---|
| 1044 | return "<null> classifier"; |
---|
| 1045 | } |
---|
| 1046 | result.append(toString()); |
---|
| 1047 | result.append("Classifier model: \n"+m_Classifier.toString()+'\n'); |
---|
| 1048 | |
---|
| 1049 | // append the performance statistics |
---|
| 1050 | if (m_result != null) { |
---|
| 1051 | result.append(m_result); |
---|
| 1052 | |
---|
| 1053 | if (m_doesProduce != null) { |
---|
| 1054 | for (int i=0;i<m_doesProduce.length;i++) { |
---|
| 1055 | if (m_doesProduce[i]) { |
---|
| 1056 | try { |
---|
| 1057 | double dv = ((AdditionalMeasureProducer)m_Classifier). |
---|
| 1058 | getMeasure(m_AdditionalMeasures[i]); |
---|
| 1059 | if (!Utils.isMissingValue(dv)) { |
---|
| 1060 | Double value = new Double(dv); |
---|
| 1061 | result.append(m_AdditionalMeasures[i]+" : "+value+'\n'); |
---|
| 1062 | } else { |
---|
| 1063 | result.append(m_AdditionalMeasures[i]+" : "+'?'+'\n'); |
---|
| 1064 | } |
---|
| 1065 | } catch (Exception ex) { |
---|
| 1066 | System.err.println(ex); |
---|
| 1067 | } |
---|
| 1068 | } |
---|
| 1069 | } |
---|
| 1070 | } |
---|
| 1071 | } |
---|
| 1072 | return result.toString(); |
---|
| 1073 | } |
---|
| 1074 | |
---|
| 1075 | /** |
---|
| 1076 | * Returns a text description of the split evaluator. |
---|
| 1077 | * |
---|
| 1078 | * @return a text description of the split evaluator. |
---|
| 1079 | */ |
---|
| 1080 | public String toString() { |
---|
| 1081 | |
---|
| 1082 | String result = "ClassifierSplitEvaluator: "; |
---|
| 1083 | if (m_Template == null) { |
---|
| 1084 | return result + "<null> classifier"; |
---|
| 1085 | } |
---|
| 1086 | return result + m_Template.getClass().getName() + " " |
---|
| 1087 | + m_ClassifierOptions + "(version " + m_ClassifierVersion + ")"; |
---|
| 1088 | } |
---|
| 1089 | |
---|
| 1090 | /** |
---|
| 1091 | * Returns the revision string. |
---|
| 1092 | * |
---|
| 1093 | * @return the revision |
---|
| 1094 | */ |
---|
| 1095 | public String getRevision() { |
---|
| 1096 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
| 1097 | } |
---|
| 1098 | } // ClassifierSplitEvaluator |
---|