1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * AveragingResultProducer.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | |
---|
24 | package weka.experiment; |
---|
25 | |
---|
26 | import weka.core.AdditionalMeasureProducer; |
---|
27 | import weka.core.FastVector; |
---|
28 | import weka.core.Instances; |
---|
29 | import weka.core.Option; |
---|
30 | import weka.core.OptionHandler; |
---|
31 | import weka.core.RevisionHandler; |
---|
32 | import weka.core.RevisionUtils; |
---|
33 | import weka.core.Utils; |
---|
34 | |
---|
35 | import java.util.Enumeration; |
---|
36 | import java.util.Hashtable; |
---|
37 | import java.util.Vector; |
---|
38 | |
---|
39 | /** |
---|
40 | <!-- globalinfo-start --> |
---|
41 | * Takes the results from a ResultProducer and submits the average to the result listener. Normally used with a CrossValidationResultProducer to perform n x m fold cross validation. For non-numeric result fields, the first value is used. |
---|
42 | * <p/> |
---|
43 | <!-- globalinfo-end --> |
---|
44 | * |
---|
45 | <!-- options-start --> |
---|
46 | * Valid options are: <p/> |
---|
47 | * |
---|
48 | * <pre> -F <field name> |
---|
49 | * The name of the field to average over. |
---|
50 | * (default "Fold")</pre> |
---|
51 | * |
---|
52 | * <pre> -X <num results> |
---|
53 | * The number of results expected per average. |
---|
54 | * (default 10)</pre> |
---|
55 | * |
---|
56 | * <pre> -S |
---|
57 | * Calculate standard deviations. |
---|
58 | * (default only averages)</pre> |
---|
59 | * |
---|
60 | * <pre> -W <class name> |
---|
61 | * The full class name of a ResultProducer. |
---|
62 | * eg: weka.experiment.CrossValidationResultProducer</pre> |
---|
63 | * |
---|
64 | * <pre> |
---|
65 | * Options specific to result producer weka.experiment.CrossValidationResultProducer: |
---|
66 | * </pre> |
---|
67 | * |
---|
68 | * <pre> -X <number of folds> |
---|
69 | * The number of folds to use for the cross-validation. |
---|
70 | * (default 10)</pre> |
---|
71 | * |
---|
72 | * <pre> -D |
---|
73 | * Save raw split evaluator output.</pre> |
---|
74 | * |
---|
75 | * <pre> -O <file/directory name/path> |
---|
76 | * The filename where raw output will be stored. |
---|
77 | * If a directory name is specified then then individual |
---|
78 | * outputs will be gzipped, otherwise all output will be |
---|
79 | * zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip)</pre> |
---|
80 | * |
---|
81 | * <pre> -W <class name> |
---|
82 | * The full class name of a SplitEvaluator. |
---|
83 | * eg: weka.experiment.ClassifierSplitEvaluator</pre> |
---|
84 | * |
---|
85 | * <pre> |
---|
86 | * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator: |
---|
87 | * </pre> |
---|
88 | * |
---|
89 | * <pre> -W <class name> |
---|
90 | * The full class name of the classifier. |
---|
91 | * eg: weka.classifiers.bayes.NaiveBayes</pre> |
---|
92 | * |
---|
93 | * <pre> -C <index> |
---|
94 | * The index of the class for which IR statistics |
---|
95 | * are to be output. (default 1)</pre> |
---|
96 | * |
---|
97 | * <pre> -I <index> |
---|
98 | * The index of an attribute to output in the |
---|
99 | * results. This attribute should identify an |
---|
100 | * instance in order to know which instances are |
---|
101 | * in the test set of a cross validation. if 0 |
---|
102 | * no output (default 0).</pre> |
---|
103 | * |
---|
104 | * <pre> -P |
---|
105 | * Add target and prediction columns to the result |
---|
106 | * for each fold.</pre> |
---|
107 | * |
---|
108 | * <pre> |
---|
109 | * Options specific to classifier weka.classifiers.rules.ZeroR: |
---|
110 | * </pre> |
---|
111 | * |
---|
112 | * <pre> -D |
---|
113 | * If set, classifier is run in debug mode and |
---|
114 | * may output additional info to the console</pre> |
---|
115 | * |
---|
116 | <!-- options-end --> |
---|
117 | * |
---|
118 | * All options after -- will be passed to the result producer. |
---|
119 | * |
---|
120 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
---|
121 | * @version $Revision: 1.18 $ |
---|
122 | */ |
---|
123 | public class AveragingResultProducer |
---|
124 | implements ResultListener, ResultProducer, OptionHandler, |
---|
125 | AdditionalMeasureProducer, RevisionHandler { |
---|
126 | |
---|
127 | /** for serialization */ |
---|
128 | static final long serialVersionUID = 2551284958501991352L; |
---|
129 | |
---|
130 | /** The dataset of interest */ |
---|
131 | protected Instances m_Instances; |
---|
132 | |
---|
133 | /** The ResultListener to send results to */ |
---|
134 | protected ResultListener m_ResultListener = new CSVResultListener(); |
---|
135 | |
---|
136 | /** The ResultProducer used to generate results */ |
---|
137 | protected ResultProducer m_ResultProducer |
---|
138 | = new CrossValidationResultProducer(); |
---|
139 | |
---|
140 | /** The names of any additional measures to look for in SplitEvaluators */ |
---|
141 | protected String [] m_AdditionalMeasures = null; |
---|
142 | |
---|
143 | /** The number of results expected to average over for each run */ |
---|
144 | protected int m_ExpectedResultsPerAverage = 10; |
---|
145 | |
---|
146 | /** True if standard deviation fields should be produced */ |
---|
147 | protected boolean m_CalculateStdDevs; |
---|
148 | |
---|
149 | /** |
---|
150 | * The name of the field that will contain the number of results |
---|
151 | * averaged over. |
---|
152 | */ |
---|
153 | protected String m_CountFieldName = "Num_" + CrossValidationResultProducer |
---|
154 | .FOLD_FIELD_NAME; |
---|
155 | |
---|
156 | /** The name of the key field to average over */ |
---|
157 | protected String m_KeyFieldName = CrossValidationResultProducer |
---|
158 | .FOLD_FIELD_NAME; |
---|
159 | |
---|
160 | /** The index of the field to average over in the resultproducers key */ |
---|
161 | protected int m_KeyIndex = -1; |
---|
162 | |
---|
163 | /** Collects the keys from a single run */ |
---|
164 | protected FastVector m_Keys = new FastVector(); |
---|
165 | |
---|
166 | /** Collects the results from a single run */ |
---|
167 | protected FastVector m_Results = new FastVector(); |
---|
168 | |
---|
169 | /** |
---|
170 | * Returns a string describing this result producer |
---|
171 | * @return a description of the result producer suitable for |
---|
172 | * displaying in the explorer/experimenter gui |
---|
173 | */ |
---|
174 | public String globalInfo() { |
---|
175 | return "Takes the results from a ResultProducer " |
---|
176 | +"and submits the average to the result listener. Normally used with " |
---|
177 | +"a CrossValidationResultProducer to perform n x m fold cross " |
---|
178 | +"validation. For non-numeric result fields, the first value is used."; |
---|
179 | } |
---|
180 | |
---|
181 | /** |
---|
182 | * Scans through the key field names of the result producer to find |
---|
183 | * the index of the key field to average over. Sets the value of |
---|
184 | * m_KeyIndex to the index, or -1 if no matching key field was found. |
---|
185 | * |
---|
186 | * @return the index of the key field to average over |
---|
187 | */ |
---|
188 | protected int findKeyIndex() { |
---|
189 | |
---|
190 | m_KeyIndex = -1; |
---|
191 | try { |
---|
192 | if (m_ResultProducer != null) { |
---|
193 | String [] keyNames = m_ResultProducer.getKeyNames(); |
---|
194 | for (int i = 0; i < keyNames.length; i++) { |
---|
195 | if (keyNames[i].equals(m_KeyFieldName)) { |
---|
196 | m_KeyIndex = i; |
---|
197 | break; |
---|
198 | } |
---|
199 | } |
---|
200 | } |
---|
201 | } catch (Exception ex) { |
---|
202 | } |
---|
203 | return m_KeyIndex; |
---|
204 | } |
---|
205 | |
---|
206 | /** |
---|
207 | * Determines if there are any constraints (imposed by the |
---|
208 | * destination) on the result columns to be produced by |
---|
209 | * resultProducers. Null should be returned if there are NO |
---|
210 | * constraints, otherwise a list of column names should be |
---|
211 | * returned as an array of Strings. |
---|
212 | * @param rp the ResultProducer to which the constraints will apply |
---|
213 | * @return an array of column names to which resutltProducer's |
---|
214 | * results will be restricted. |
---|
215 | * @throws Exception if constraints can't be determined |
---|
216 | */ |
---|
217 | public String [] determineColumnConstraints(ResultProducer rp) |
---|
218 | throws Exception { |
---|
219 | return null; |
---|
220 | } |
---|
221 | |
---|
222 | /** |
---|
223 | * Simulates a run to collect the keys the sub-resultproducer could |
---|
224 | * generate. Does some checking on the keys and determines the |
---|
225 | * template key. |
---|
226 | * |
---|
227 | * @param run the run number |
---|
228 | * @return a template key (null for the field being averaged) |
---|
229 | * @throws Exception if an error occurs |
---|
230 | */ |
---|
231 | protected Object [] determineTemplate(int run) throws Exception { |
---|
232 | |
---|
233 | if (m_Instances == null) { |
---|
234 | throw new Exception("No Instances set"); |
---|
235 | } |
---|
236 | m_ResultProducer.setInstances(m_Instances); |
---|
237 | |
---|
238 | // Clear the collected results |
---|
239 | m_Keys.removeAllElements(); |
---|
240 | m_Results.removeAllElements(); |
---|
241 | |
---|
242 | m_ResultProducer.doRunKeys(run); |
---|
243 | checkForMultipleDifferences(); |
---|
244 | |
---|
245 | Object [] template = (Object [])((Object [])m_Keys.elementAt(0)).clone(); |
---|
246 | template[m_KeyIndex] = null; |
---|
247 | // Check for duplicate keys |
---|
248 | checkForDuplicateKeys(template); |
---|
249 | |
---|
250 | return template; |
---|
251 | } |
---|
252 | |
---|
253 | /** |
---|
254 | * Gets the keys for a specified run number. Different run |
---|
255 | * numbers correspond to different randomizations of the data. Keys |
---|
256 | * produced should be sent to the current ResultListener |
---|
257 | * |
---|
258 | * @param run the run number to get keys for. |
---|
259 | * @throws Exception if a problem occurs while getting the keys |
---|
260 | */ |
---|
261 | public void doRunKeys(int run) throws Exception { |
---|
262 | |
---|
263 | // Generate the template |
---|
264 | Object [] template = determineTemplate(run); |
---|
265 | String [] newKey = new String [template.length - 1]; |
---|
266 | System.arraycopy(template, 0, newKey, 0, m_KeyIndex); |
---|
267 | System.arraycopy(template, m_KeyIndex + 1, |
---|
268 | newKey, m_KeyIndex, |
---|
269 | template.length - m_KeyIndex - 1); |
---|
270 | m_ResultListener.acceptResult(this, newKey, null); |
---|
271 | } |
---|
272 | |
---|
273 | /** |
---|
274 | * Gets the results for a specified run number. Different run |
---|
275 | * numbers correspond to different randomizations of the data. Results |
---|
276 | * produced should be sent to the current ResultListener |
---|
277 | * |
---|
278 | * @param run the run number to get results for. |
---|
279 | * @throws Exception if a problem occurs while getting the results |
---|
280 | */ |
---|
281 | public void doRun(int run) throws Exception { |
---|
282 | |
---|
283 | // Generate the key and ask whether the result is required |
---|
284 | Object [] template = determineTemplate(run); |
---|
285 | String [] newKey = new String [template.length - 1]; |
---|
286 | System.arraycopy(template, 0, newKey, 0, m_KeyIndex); |
---|
287 | System.arraycopy(template, m_KeyIndex + 1, |
---|
288 | newKey, m_KeyIndex, |
---|
289 | template.length - m_KeyIndex - 1); |
---|
290 | |
---|
291 | if (m_ResultListener.isResultRequired(this, newKey)) { |
---|
292 | // Clear the collected keys |
---|
293 | m_Keys.removeAllElements(); |
---|
294 | m_Results.removeAllElements(); |
---|
295 | |
---|
296 | m_ResultProducer.doRun(run); |
---|
297 | |
---|
298 | // Average the results collected |
---|
299 | //System.err.println("Number of results collected: " + m_Keys.size()); |
---|
300 | |
---|
301 | // Check that the keys only differ on the selected key field |
---|
302 | checkForMultipleDifferences(); |
---|
303 | |
---|
304 | template = (Object [])((Object [])m_Keys.elementAt(0)).clone(); |
---|
305 | template[m_KeyIndex] = null; |
---|
306 | // Check for duplicate keys |
---|
307 | checkForDuplicateKeys(template); |
---|
308 | // Calculate the average and submit it if necessary |
---|
309 | doAverageResult(template); |
---|
310 | } |
---|
311 | } |
---|
312 | |
---|
313 | |
---|
314 | /** |
---|
315 | * Compares a key to a template to see whether they match. Null |
---|
316 | * fields in the template are ignored in the matching. |
---|
317 | * |
---|
318 | * @param template the template to match against |
---|
319 | * @param test the key to test |
---|
320 | * @return true if the test key matches the template on all non-null template |
---|
321 | * fields |
---|
322 | */ |
---|
323 | protected boolean matchesTemplate(Object [] template, Object [] test) { |
---|
324 | |
---|
325 | if (template.length != test.length) { |
---|
326 | return false; |
---|
327 | } |
---|
328 | for (int i = 0; i < test.length; i++) { |
---|
329 | if ((template[i] != null) && (!template[i].equals(test[i]))) { |
---|
330 | return false; |
---|
331 | } |
---|
332 | } |
---|
333 | return true; |
---|
334 | } |
---|
335 | |
---|
336 | /** |
---|
337 | * Asks the resultlistener whether an average result is required, and |
---|
338 | * if so, calculates it. |
---|
339 | * |
---|
340 | * @param template the template to match keys against when calculating the |
---|
341 | * average |
---|
342 | * @throws Exception if an error occurs |
---|
343 | */ |
---|
344 | protected void doAverageResult(Object [] template) throws Exception { |
---|
345 | |
---|
346 | // Generate the key and ask whether the result is required |
---|
347 | String [] newKey = new String [template.length - 1]; |
---|
348 | System.arraycopy(template, 0, newKey, 0, m_KeyIndex); |
---|
349 | System.arraycopy(template, m_KeyIndex + 1, |
---|
350 | newKey, m_KeyIndex, |
---|
351 | template.length - m_KeyIndex - 1); |
---|
352 | if (m_ResultListener.isResultRequired(this, newKey)) { |
---|
353 | Object [] resultTypes = m_ResultProducer.getResultTypes(); |
---|
354 | Stats [] stats = new Stats [resultTypes.length]; |
---|
355 | for (int i = 0; i < stats.length; i++) { |
---|
356 | stats[i] = new Stats(); |
---|
357 | } |
---|
358 | Object [] result = getResultTypes(); |
---|
359 | int numMatches = 0; |
---|
360 | for (int i = 0; i < m_Keys.size(); i++) { |
---|
361 | Object [] currentKey = (Object [])m_Keys.elementAt(i); |
---|
362 | // Skip non-matching keys |
---|
363 | if (!matchesTemplate(template, currentKey)) { |
---|
364 | continue; |
---|
365 | } |
---|
366 | // Add the results to the stats accumulator |
---|
367 | Object [] currentResult = (Object [])m_Results.elementAt(i); |
---|
368 | numMatches++; |
---|
369 | for (int j = 0; j < resultTypes.length; j++) { |
---|
370 | if (resultTypes[j] instanceof Double) { |
---|
371 | if (currentResult[j] == null) { |
---|
372 | |
---|
373 | // set the stats object for this result to null--- |
---|
374 | // more than likely this is an additional measure field |
---|
375 | // not supported by the low level split evaluator |
---|
376 | if (stats[j] != null) { |
---|
377 | stats[j] = null; |
---|
378 | } |
---|
379 | |
---|
380 | /* throw new Exception("Null numeric result field found:\n" |
---|
381 | + DatabaseUtils.arrayToString(currentKey) |
---|
382 | + " -- " |
---|
383 | + DatabaseUtils |
---|
384 | .arrayToString(currentResult)); */ |
---|
385 | } |
---|
386 | if (stats[j] != null) { |
---|
387 | double currentVal = ((Double)currentResult[j]).doubleValue(); |
---|
388 | stats[j].add(currentVal); |
---|
389 | } |
---|
390 | } |
---|
391 | } |
---|
392 | } |
---|
393 | if (numMatches != m_ExpectedResultsPerAverage) { |
---|
394 | throw new Exception("Expected " + m_ExpectedResultsPerAverage |
---|
395 | + " results matching key \"" |
---|
396 | + DatabaseUtils.arrayToString(template) |
---|
397 | + "\" but got " |
---|
398 | + numMatches); |
---|
399 | } |
---|
400 | result[0] = new Double(numMatches); |
---|
401 | Object [] currentResult = (Object [])m_Results.elementAt(0); |
---|
402 | int k = 1; |
---|
403 | for (int j = 0; j < resultTypes.length; j++) { |
---|
404 | if (resultTypes[j] instanceof Double) { |
---|
405 | if (stats[j] != null) { |
---|
406 | stats[j].calculateDerived(); |
---|
407 | result[k++] = new Double(stats[j].mean); |
---|
408 | } else { |
---|
409 | result[k++] = null; |
---|
410 | } |
---|
411 | if (getCalculateStdDevs()) { |
---|
412 | if (stats[j] != null) { |
---|
413 | result[k++] = new Double(stats[j].stdDev); |
---|
414 | } else { |
---|
415 | result[k++] = null; |
---|
416 | } |
---|
417 | } |
---|
418 | } else { |
---|
419 | result[k++] = currentResult[j]; |
---|
420 | } |
---|
421 | } |
---|
422 | m_ResultListener.acceptResult(this, newKey, result); |
---|
423 | } |
---|
424 | } |
---|
425 | |
---|
426 | /** |
---|
427 | * Checks whether any duplicate results (with respect to a key template) |
---|
428 | * were received. |
---|
429 | * |
---|
430 | * @param template the template key. |
---|
431 | * @throws Exception if duplicate results are detected |
---|
432 | */ |
---|
433 | protected void checkForDuplicateKeys(Object [] template) throws Exception { |
---|
434 | |
---|
435 | Hashtable hash = new Hashtable(); |
---|
436 | int numMatches = 0; |
---|
437 | for (int i = 0; i < m_Keys.size(); i++) { |
---|
438 | Object [] current = (Object [])m_Keys.elementAt(i); |
---|
439 | // Skip non-matching keys |
---|
440 | if (!matchesTemplate(template, current)) { |
---|
441 | continue; |
---|
442 | } |
---|
443 | if (hash.containsKey(current[m_KeyIndex])) { |
---|
444 | throw new Exception("Duplicate result received:" |
---|
445 | + DatabaseUtils.arrayToString(current)); |
---|
446 | } |
---|
447 | numMatches++; |
---|
448 | hash.put(current[m_KeyIndex], current[m_KeyIndex]); |
---|
449 | } |
---|
450 | if (numMatches != m_ExpectedResultsPerAverage) { |
---|
451 | throw new Exception("Expected " + m_ExpectedResultsPerAverage |
---|
452 | + " results matching key \"" |
---|
453 | + DatabaseUtils.arrayToString(template) |
---|
454 | + "\" but got " |
---|
455 | + numMatches); |
---|
456 | } |
---|
457 | } |
---|
458 | |
---|
459 | /** |
---|
460 | * Checks that the keys for a run only differ in one key field. If they |
---|
461 | * differ in more than one field, a more sophisticated averager will submit |
---|
462 | * multiple results - for now an exception is thrown. Currently assumes that |
---|
463 | * the most differences will be shown between the first and last |
---|
464 | * result received. |
---|
465 | * |
---|
466 | * @throws Exception if the keys differ on fields other than the |
---|
467 | * key averaging field |
---|
468 | */ |
---|
469 | protected void checkForMultipleDifferences() throws Exception { |
---|
470 | |
---|
471 | Object [] firstKey = (Object [])m_Keys.elementAt(0); |
---|
472 | Object [] lastKey = (Object [])m_Keys.elementAt(m_Keys.size() - 1); |
---|
473 | /* |
---|
474 | System.err.println("First key:" + DatabaseUtils.arrayToString(firstKey)); |
---|
475 | System.err.println("Last key :" + DatabaseUtils.arrayToString(lastKey)); |
---|
476 | */ |
---|
477 | for (int i = 0; i < firstKey.length; i++) { |
---|
478 | if ((i != m_KeyIndex) && !firstKey[i].equals(lastKey[i])) { |
---|
479 | throw new Exception("Keys differ on fields other than \"" |
---|
480 | + m_KeyFieldName |
---|
481 | + "\" -- time to implement multiple averaging"); |
---|
482 | } |
---|
483 | } |
---|
484 | } |
---|
485 | |
---|
486 | /** |
---|
487 | * Prepare for the results to be received. |
---|
488 | * |
---|
489 | * @param rp the ResultProducer that will generate the results |
---|
490 | * @throws Exception if an error occurs during preprocessing. |
---|
491 | */ |
---|
492 | public void preProcess(ResultProducer rp) throws Exception { |
---|
493 | |
---|
494 | if (m_ResultListener == null) { |
---|
495 | throw new Exception("No ResultListener set"); |
---|
496 | } |
---|
497 | m_ResultListener.preProcess(this); |
---|
498 | } |
---|
499 | |
---|
500 | /** |
---|
501 | * Prepare to generate results. The ResultProducer should call |
---|
502 | * preProcess(this) on the ResultListener it is to send results to. |
---|
503 | * |
---|
504 | * @throws Exception if an error occurs during preprocessing. |
---|
505 | */ |
---|
506 | public void preProcess() throws Exception { |
---|
507 | |
---|
508 | if (m_ResultProducer == null) { |
---|
509 | throw new Exception("No ResultProducer set"); |
---|
510 | } |
---|
511 | // Tell the resultproducer to send results to us |
---|
512 | m_ResultProducer.setResultListener(this); |
---|
513 | findKeyIndex(); |
---|
514 | if (m_KeyIndex == -1) { |
---|
515 | throw new Exception("No key field called " + m_KeyFieldName |
---|
516 | + " produced by " |
---|
517 | + m_ResultProducer.getClass().getName()); |
---|
518 | } |
---|
519 | m_ResultProducer.preProcess(); |
---|
520 | } |
---|
521 | |
---|
522 | /** |
---|
523 | * When this method is called, it indicates that no more results |
---|
524 | * will be sent that need to be grouped together in any way. |
---|
525 | * |
---|
526 | * @param rp the ResultProducer that generated the results |
---|
527 | * @throws Exception if an error occurs |
---|
528 | */ |
---|
529 | public void postProcess(ResultProducer rp) throws Exception { |
---|
530 | |
---|
531 | m_ResultListener.postProcess(this); |
---|
532 | } |
---|
533 | |
---|
534 | /** |
---|
535 | * When this method is called, it indicates that no more requests to |
---|
536 | * generate results for the current experiment will be sent. The |
---|
537 | * ResultProducer should call preProcess(this) on the |
---|
538 | * ResultListener it is to send results to. |
---|
539 | * |
---|
540 | * @throws Exception if an error occurs |
---|
541 | */ |
---|
542 | public void postProcess() throws Exception { |
---|
543 | |
---|
544 | m_ResultProducer.postProcess(); |
---|
545 | } |
---|
546 | |
---|
547 | /** |
---|
548 | * Accepts results from a ResultProducer. |
---|
549 | * |
---|
550 | * @param rp the ResultProducer that generated the results |
---|
551 | * @param key an array of Objects (Strings or Doubles) that uniquely |
---|
552 | * identify a result for a given ResultProducer with given compatibilityState |
---|
553 | * @param result the results stored in an array. The objects stored in |
---|
554 | * the array may be Strings, Doubles, or null (for the missing value). |
---|
555 | * @throws Exception if the result could not be accepted. |
---|
556 | */ |
---|
557 | public void acceptResult(ResultProducer rp, Object [] key, Object [] result) |
---|
558 | throws Exception { |
---|
559 | |
---|
560 | if (m_ResultProducer != rp) { |
---|
561 | throw new Error("Unrecognized ResultProducer sending results!!"); |
---|
562 | } |
---|
563 | m_Keys.addElement(key); |
---|
564 | m_Results.addElement(result); |
---|
565 | } |
---|
566 | |
---|
567 | /** |
---|
568 | * Determines whether the results for a specified key must be |
---|
569 | * generated. |
---|
570 | * |
---|
571 | * @param rp the ResultProducer wanting to generate the results |
---|
572 | * @param key an array of Objects (Strings or Doubles) that uniquely |
---|
573 | * identify a result for a given ResultProducer with given compatibilityState |
---|
574 | * @return true if the result should be generated |
---|
575 | * @throws Exception if it could not be determined if the result |
---|
576 | * is needed. |
---|
577 | */ |
---|
578 | public boolean isResultRequired(ResultProducer rp, Object [] key) |
---|
579 | throws Exception { |
---|
580 | |
---|
581 | if (m_ResultProducer != rp) { |
---|
582 | throw new Error("Unrecognized ResultProducer sending results!!"); |
---|
583 | } |
---|
584 | return true; |
---|
585 | } |
---|
586 | |
---|
587 | /** |
---|
588 | * Gets the names of each of the columns produced for a single run. |
---|
589 | * |
---|
590 | * @return an array containing the name of each column |
---|
591 | * @throws Exception if key names cannot be generated |
---|
592 | */ |
---|
593 | public String [] getKeyNames() throws Exception { |
---|
594 | |
---|
595 | if (m_KeyIndex == -1) { |
---|
596 | throw new Exception("No key field called " + m_KeyFieldName |
---|
597 | + " produced by " |
---|
598 | + m_ResultProducer.getClass().getName()); |
---|
599 | } |
---|
600 | String [] keyNames = m_ResultProducer.getKeyNames(); |
---|
601 | String [] newKeyNames = new String [keyNames.length - 1]; |
---|
602 | System.arraycopy(keyNames, 0, newKeyNames, 0, m_KeyIndex); |
---|
603 | System.arraycopy(keyNames, m_KeyIndex + 1, |
---|
604 | newKeyNames, m_KeyIndex, |
---|
605 | keyNames.length - m_KeyIndex - 1); |
---|
606 | return newKeyNames; |
---|
607 | } |
---|
608 | |
---|
609 | /** |
---|
610 | * Gets the data types of each of the columns produced for a single run. |
---|
611 | * This method should really be static. |
---|
612 | * |
---|
613 | * @return an array containing objects of the type of each column. The |
---|
614 | * objects should be Strings, or Doubles. |
---|
615 | * @throws Exception if the key types could not be determined (perhaps |
---|
616 | * because of a problem from a nested sub-resultproducer) |
---|
617 | */ |
---|
618 | public Object [] getKeyTypes() throws Exception { |
---|
619 | |
---|
620 | if (m_KeyIndex == -1) { |
---|
621 | throw new Exception("No key field called " + m_KeyFieldName |
---|
622 | + " produced by " |
---|
623 | + m_ResultProducer.getClass().getName()); |
---|
624 | } |
---|
625 | Object [] keyTypes = m_ResultProducer.getKeyTypes(); |
---|
626 | // Find and remove the key field that is being averaged over |
---|
627 | Object [] newKeyTypes = new String [keyTypes.length - 1]; |
---|
628 | System.arraycopy(keyTypes, 0, newKeyTypes, 0, m_KeyIndex); |
---|
629 | System.arraycopy(keyTypes, m_KeyIndex + 1, |
---|
630 | newKeyTypes, m_KeyIndex, |
---|
631 | keyTypes.length - m_KeyIndex - 1); |
---|
632 | return newKeyTypes; |
---|
633 | } |
---|
634 | |
---|
635 | /** |
---|
636 | * Gets the names of each of the columns produced for a single run. |
---|
637 | * A new result field is added for the number of results used to |
---|
638 | * produce each average. |
---|
639 | * If only averages are being produced the names are not altered, if |
---|
640 | * standard deviations are produced then "Dev_" and "Avg_" are prepended |
---|
641 | * to each result deviation and average field respectively. |
---|
642 | * |
---|
643 | * @return an array containing the name of each column |
---|
644 | * @throws Exception if the result names could not be determined (perhaps |
---|
645 | * because of a problem from a nested sub-resultproducer) |
---|
646 | */ |
---|
647 | public String [] getResultNames() throws Exception { |
---|
648 | |
---|
649 | String [] resultNames = m_ResultProducer.getResultNames(); |
---|
650 | // Add in the names of our extra Result fields |
---|
651 | if (getCalculateStdDevs()) { |
---|
652 | Object [] resultTypes = m_ResultProducer.getResultTypes(); |
---|
653 | int numNumeric = 0; |
---|
654 | for (int i = 0; i < resultTypes.length; i++) { |
---|
655 | if (resultTypes[i] instanceof Double) { |
---|
656 | numNumeric++; |
---|
657 | } |
---|
658 | } |
---|
659 | String [] newResultNames = new String [resultNames.length + |
---|
660 | 1 + numNumeric]; |
---|
661 | newResultNames[0] = m_CountFieldName; |
---|
662 | int j = 1; |
---|
663 | for (int i = 0; i < resultNames.length; i++) { |
---|
664 | newResultNames[j++] = "Avg_" + resultNames[i]; |
---|
665 | if (resultTypes[i] instanceof Double) { |
---|
666 | newResultNames[j++] = "Dev_" + resultNames[i]; |
---|
667 | } |
---|
668 | } |
---|
669 | return newResultNames; |
---|
670 | } else { |
---|
671 | String [] newResultNames = new String [resultNames.length + 1]; |
---|
672 | newResultNames[0] = m_CountFieldName; |
---|
673 | System.arraycopy(resultNames, 0, newResultNames, 1, resultNames.length); |
---|
674 | return newResultNames; |
---|
675 | } |
---|
676 | } |
---|
677 | |
---|
678 | /** |
---|
679 | * Gets the data types of each of the columns produced for a single run. |
---|
680 | * |
---|
681 | * @return an array containing objects of the type of each column. The |
---|
682 | * objects should be Strings, or Doubles. |
---|
683 | * @throws Exception if the result types could not be determined (perhaps |
---|
684 | * because of a problem from a nested sub-resultproducer) |
---|
685 | */ |
---|
686 | public Object [] getResultTypes() throws Exception { |
---|
687 | |
---|
688 | Object [] resultTypes = m_ResultProducer.getResultTypes(); |
---|
689 | // Add in the types of our extra Result fields |
---|
690 | if (getCalculateStdDevs()) { |
---|
691 | int numNumeric = 0; |
---|
692 | for (int i = 0; i < resultTypes.length; i++) { |
---|
693 | if (resultTypes[i] instanceof Double) { |
---|
694 | numNumeric++; |
---|
695 | } |
---|
696 | } |
---|
697 | Object [] newResultTypes = new Object [resultTypes.length + |
---|
698 | 1 + numNumeric]; |
---|
699 | newResultTypes[0] = new Double(0); |
---|
700 | int j = 1; |
---|
701 | for (int i = 0; i < resultTypes.length; i++) { |
---|
702 | newResultTypes[j++] = resultTypes[i]; |
---|
703 | if (resultTypes[i] instanceof Double) { |
---|
704 | newResultTypes[j++] = new Double(0); |
---|
705 | } |
---|
706 | } |
---|
707 | return newResultTypes; |
---|
708 | } else { |
---|
709 | Object [] newResultTypes = new Object [resultTypes.length + 1]; |
---|
710 | newResultTypes[0] = new Double(0); |
---|
711 | System.arraycopy(resultTypes, 0, newResultTypes, 1, resultTypes.length); |
---|
712 | return newResultTypes; |
---|
713 | } |
---|
714 | } |
---|
715 | |
---|
716 | /** |
---|
717 | * Gets a description of the internal settings of the result |
---|
718 | * producer, sufficient for distinguishing a ResultProducer |
---|
719 | * instance from another with different settings (ignoring |
---|
720 | * those settings set through this interface). For example, |
---|
721 | * a cross-validation ResultProducer may have a setting for the |
---|
722 | * number of folds. For a given state, the results produced should |
---|
723 | * be compatible. Typically if a ResultProducer is an OptionHandler, |
---|
724 | * this string will represent the command line arguments required |
---|
725 | * to set the ResultProducer to that state. |
---|
726 | * |
---|
727 | * @return the description of the ResultProducer state, or null |
---|
728 | * if no state is defined |
---|
729 | */ |
---|
730 | public String getCompatibilityState() { |
---|
731 | |
---|
732 | String result = // "-F " + Utils.quote(getKeyFieldName()) |
---|
733 | " -X " + getExpectedResultsPerAverage() + " "; |
---|
734 | if (getCalculateStdDevs()) { |
---|
735 | result += "-S "; |
---|
736 | } |
---|
737 | if (m_ResultProducer == null) { |
---|
738 | result += "<null ResultProducer>"; |
---|
739 | } else { |
---|
740 | result += "-W " + m_ResultProducer.getClass().getName(); |
---|
741 | } |
---|
742 | result += " -- " + m_ResultProducer.getCompatibilityState(); |
---|
743 | return result.trim(); |
---|
744 | } |
---|
745 | |
---|
746 | |
---|
747 | /** |
---|
748 | * Returns an enumeration describing the available options.. |
---|
749 | * |
---|
750 | * @return an enumeration of all the available options. |
---|
751 | */ |
---|
752 | public Enumeration listOptions() { |
---|
753 | |
---|
754 | Vector newVector = new Vector(2); |
---|
755 | |
---|
756 | newVector.addElement(new Option( |
---|
757 | "\tThe name of the field to average over.\n" |
---|
758 | +"\t(default \"Fold\")", |
---|
759 | "F", 1, |
---|
760 | "-F <field name>")); |
---|
761 | newVector.addElement(new Option( |
---|
762 | "\tThe number of results expected per average.\n" |
---|
763 | +"\t(default 10)", |
---|
764 | "X", 1, |
---|
765 | "-X <num results>")); |
---|
766 | newVector.addElement(new Option( |
---|
767 | "\tCalculate standard deviations.\n" |
---|
768 | +"\t(default only averages)", |
---|
769 | "S", 0, |
---|
770 | "-S")); |
---|
771 | newVector.addElement(new Option( |
---|
772 | "\tThe full class name of a ResultProducer.\n" |
---|
773 | +"\teg: weka.experiment.CrossValidationResultProducer", |
---|
774 | "W", 1, |
---|
775 | "-W <class name>")); |
---|
776 | |
---|
777 | if ((m_ResultProducer != null) && |
---|
778 | (m_ResultProducer instanceof OptionHandler)) { |
---|
779 | newVector.addElement(new Option( |
---|
780 | "", |
---|
781 | "", 0, "\nOptions specific to result producer " |
---|
782 | + m_ResultProducer.getClass().getName() + ":")); |
---|
783 | Enumeration enu = ((OptionHandler)m_ResultProducer).listOptions(); |
---|
784 | while (enu.hasMoreElements()) { |
---|
785 | newVector.addElement(enu.nextElement()); |
---|
786 | } |
---|
787 | } |
---|
788 | return newVector.elements(); |
---|
789 | } |
---|
790 | |
---|
791 | /** |
---|
792 | * Parses a given list of options. <p/> |
---|
793 | * |
---|
794 | <!-- options-start --> |
---|
795 | * Valid options are: <p/> |
---|
796 | * |
---|
797 | * <pre> -F <field name> |
---|
798 | * The name of the field to average over. |
---|
799 | * (default "Fold")</pre> |
---|
800 | * |
---|
801 | * <pre> -X <num results> |
---|
802 | * The number of results expected per average. |
---|
803 | * (default 10)</pre> |
---|
804 | * |
---|
805 | * <pre> -S |
---|
806 | * Calculate standard deviations. |
---|
807 | * (default only averages)</pre> |
---|
808 | * |
---|
809 | * <pre> -W <class name> |
---|
810 | * The full class name of a ResultProducer. |
---|
811 | * eg: weka.experiment.CrossValidationResultProducer</pre> |
---|
812 | * |
---|
813 | * <pre> |
---|
814 | * Options specific to result producer weka.experiment.CrossValidationResultProducer: |
---|
815 | * </pre> |
---|
816 | * |
---|
817 | * <pre> -X <number of folds> |
---|
818 | * The number of folds to use for the cross-validation. |
---|
819 | * (default 10)</pre> |
---|
820 | * |
---|
821 | * <pre> -D |
---|
822 | * Save raw split evaluator output.</pre> |
---|
823 | * |
---|
824 | * <pre> -O <file/directory name/path> |
---|
825 | * The filename where raw output will be stored. |
---|
826 | * If a directory name is specified then then individual |
---|
827 | * outputs will be gzipped, otherwise all output will be |
---|
828 | * zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip)</pre> |
---|
829 | * |
---|
830 | * <pre> -W <class name> |
---|
831 | * The full class name of a SplitEvaluator. |
---|
832 | * eg: weka.experiment.ClassifierSplitEvaluator</pre> |
---|
833 | * |
---|
834 | * <pre> |
---|
835 | * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator: |
---|
836 | * </pre> |
---|
837 | * |
---|
838 | * <pre> -W <class name> |
---|
839 | * The full class name of the classifier. |
---|
840 | * eg: weka.classifiers.bayes.NaiveBayes</pre> |
---|
841 | * |
---|
842 | * <pre> -C <index> |
---|
843 | * The index of the class for which IR statistics |
---|
844 | * are to be output. (default 1)</pre> |
---|
845 | * |
---|
846 | * <pre> -I <index> |
---|
847 | * The index of an attribute to output in the |
---|
848 | * results. This attribute should identify an |
---|
849 | * instance in order to know which instances are |
---|
850 | * in the test set of a cross validation. if 0 |
---|
851 | * no output (default 0).</pre> |
---|
852 | * |
---|
853 | * <pre> -P |
---|
854 | * Add target and prediction columns to the result |
---|
855 | * for each fold.</pre> |
---|
856 | * |
---|
857 | * <pre> |
---|
858 | * Options specific to classifier weka.classifiers.rules.ZeroR: |
---|
859 | * </pre> |
---|
860 | * |
---|
861 | * <pre> -D |
---|
862 | * If set, classifier is run in debug mode and |
---|
863 | * may output additional info to the console</pre> |
---|
864 | * |
---|
865 | <!-- options-end --> |
---|
866 | * |
---|
867 | * All options after -- will be passed to the result producer. |
---|
868 | * |
---|
869 | * @param options the list of options as an array of strings |
---|
870 | * @throws Exception if an option is not supported |
---|
871 | */ |
---|
872 | public void setOptions(String[] options) throws Exception { |
---|
873 | |
---|
874 | String keyFieldName = Utils.getOption('F', options); |
---|
875 | if (keyFieldName.length() != 0) { |
---|
876 | setKeyFieldName(keyFieldName); |
---|
877 | } else { |
---|
878 | setKeyFieldName(CrossValidationResultProducer.FOLD_FIELD_NAME); |
---|
879 | } |
---|
880 | |
---|
881 | String numResults = Utils.getOption('X', options); |
---|
882 | if (numResults.length() != 0) { |
---|
883 | setExpectedResultsPerAverage(Integer.parseInt(numResults)); |
---|
884 | } else { |
---|
885 | setExpectedResultsPerAverage(10); |
---|
886 | } |
---|
887 | |
---|
888 | setCalculateStdDevs(Utils.getFlag('S', options)); |
---|
889 | |
---|
890 | String rpName = Utils.getOption('W', options); |
---|
891 | if (rpName.length() == 0) { |
---|
892 | throw new Exception("A ResultProducer must be specified with" |
---|
893 | + " the -W option."); |
---|
894 | } |
---|
895 | // Do it first without options, so if an exception is thrown during |
---|
896 | // the option setting, listOptions will contain options for the actual |
---|
897 | // RP. |
---|
898 | setResultProducer((ResultProducer)Utils.forName( |
---|
899 | ResultProducer.class, |
---|
900 | rpName, |
---|
901 | null)); |
---|
902 | if (getResultProducer() instanceof OptionHandler) { |
---|
903 | ((OptionHandler) getResultProducer()) |
---|
904 | .setOptions(Utils.partitionOptions(options)); |
---|
905 | } |
---|
906 | } |
---|
907 | |
---|
908 | /** |
---|
909 | * Gets the current settings of the result producer. |
---|
910 | * |
---|
911 | * @return an array of strings suitable for passing to setOptions |
---|
912 | */ |
---|
913 | public String [] getOptions() { |
---|
914 | |
---|
915 | String [] seOptions = new String [0]; |
---|
916 | if ((m_ResultProducer != null) && |
---|
917 | (m_ResultProducer instanceof OptionHandler)) { |
---|
918 | seOptions = ((OptionHandler)m_ResultProducer).getOptions(); |
---|
919 | } |
---|
920 | |
---|
921 | String [] options = new String [seOptions.length + 8]; |
---|
922 | int current = 0; |
---|
923 | |
---|
924 | options[current++] = "-F"; |
---|
925 | options[current++] = "" + getKeyFieldName(); |
---|
926 | options[current++] = "-X"; |
---|
927 | options[current++] = "" + getExpectedResultsPerAverage(); |
---|
928 | if (getCalculateStdDevs()) { |
---|
929 | options[current++] = "-S"; |
---|
930 | } |
---|
931 | if (getResultProducer() != null) { |
---|
932 | options[current++] = "-W"; |
---|
933 | options[current++] = getResultProducer().getClass().getName(); |
---|
934 | } |
---|
935 | options[current++] = "--"; |
---|
936 | |
---|
937 | System.arraycopy(seOptions, 0, options, current, |
---|
938 | seOptions.length); |
---|
939 | current += seOptions.length; |
---|
940 | while (current < options.length) { |
---|
941 | options[current++] = ""; |
---|
942 | } |
---|
943 | return options; |
---|
944 | } |
---|
945 | |
---|
946 | /** |
---|
947 | * Set a list of method names for additional measures to look for |
---|
948 | * in SplitEvaluators. This could contain many measures (of which only a |
---|
949 | * subset may be produceable by the current resultProducer) if an experiment |
---|
950 | * is the type that iterates over a set of properties. |
---|
951 | * @param additionalMeasures an array of measure names, null if none |
---|
952 | */ |
---|
953 | public void setAdditionalMeasures(String [] additionalMeasures) { |
---|
954 | m_AdditionalMeasures = additionalMeasures; |
---|
955 | |
---|
956 | if (m_ResultProducer != null) { |
---|
957 | System.err.println("AveragingResultProducer: setting additional " |
---|
958 | +"measures for " |
---|
959 | +"ResultProducer"); |
---|
960 | m_ResultProducer.setAdditionalMeasures(m_AdditionalMeasures); |
---|
961 | } |
---|
962 | } |
---|
963 | |
---|
964 | /** |
---|
965 | * Returns an enumeration of any additional measure names that might be |
---|
966 | * in the result producer |
---|
967 | * @return an enumeration of the measure names |
---|
968 | */ |
---|
969 | public Enumeration enumerateMeasures() { |
---|
970 | Vector newVector = new Vector(); |
---|
971 | if (m_ResultProducer instanceof AdditionalMeasureProducer) { |
---|
972 | Enumeration en = ((AdditionalMeasureProducer)m_ResultProducer). |
---|
973 | enumerateMeasures(); |
---|
974 | while (en.hasMoreElements()) { |
---|
975 | String mname = (String)en.nextElement(); |
---|
976 | newVector.addElement(mname); |
---|
977 | } |
---|
978 | } |
---|
979 | return newVector.elements(); |
---|
980 | } |
---|
981 | |
---|
982 | /** |
---|
983 | * Returns the value of the named measure |
---|
984 | * @param additionalMeasureName the name of the measure to query for its value |
---|
985 | * @return the value of the named measure |
---|
986 | * @throws IllegalArgumentException if the named measure is not supported |
---|
987 | */ |
---|
988 | public double getMeasure(String additionalMeasureName) { |
---|
989 | if (m_ResultProducer instanceof AdditionalMeasureProducer) { |
---|
990 | return ((AdditionalMeasureProducer)m_ResultProducer). |
---|
991 | getMeasure(additionalMeasureName); |
---|
992 | } else { |
---|
993 | throw new IllegalArgumentException("AveragingResultProducer: " |
---|
994 | +"Can't return value for : "+additionalMeasureName |
---|
995 | +". "+m_ResultProducer.getClass().getName()+" " |
---|
996 | +"is not an AdditionalMeasureProducer"); |
---|
997 | } |
---|
998 | } |
---|
999 | |
---|
1000 | /** |
---|
1001 | * Sets the dataset that results will be obtained for. |
---|
1002 | * |
---|
1003 | * @param instances a value of type 'Instances'. |
---|
1004 | */ |
---|
1005 | public void setInstances(Instances instances) { |
---|
1006 | |
---|
1007 | m_Instances = instances; |
---|
1008 | } |
---|
1009 | |
---|
1010 | /** |
---|
1011 | * Returns the tip text for this property |
---|
1012 | * @return tip text for this property suitable for |
---|
1013 | * displaying in the explorer/experimenter gui |
---|
1014 | */ |
---|
1015 | public String calculateStdDevsTipText() { |
---|
1016 | return "Record standard deviations for each run."; |
---|
1017 | } |
---|
1018 | |
---|
1019 | /** |
---|
1020 | * Get the value of CalculateStdDevs. |
---|
1021 | * |
---|
1022 | * @return Value of CalculateStdDevs. |
---|
1023 | */ |
---|
1024 | public boolean getCalculateStdDevs() { |
---|
1025 | |
---|
1026 | return m_CalculateStdDevs; |
---|
1027 | } |
---|
1028 | |
---|
1029 | /** |
---|
1030 | * Set the value of CalculateStdDevs. |
---|
1031 | * |
---|
1032 | * @param newCalculateStdDevs Value to assign to CalculateStdDevs. |
---|
1033 | */ |
---|
1034 | public void setCalculateStdDevs(boolean newCalculateStdDevs) { |
---|
1035 | |
---|
1036 | m_CalculateStdDevs = newCalculateStdDevs; |
---|
1037 | } |
---|
1038 | |
---|
1039 | /** |
---|
1040 | * Returns the tip text for this property |
---|
1041 | * @return tip text for this property suitable for |
---|
1042 | * displaying in the explorer/experimenter gui |
---|
1043 | */ |
---|
1044 | public String expectedResultsPerAverageTipText() { |
---|
1045 | return "Set the expected number of results to average per run. " |
---|
1046 | +"For example if a CrossValidationResultProducer is being used " |
---|
1047 | +"(with the number of folds set to 10), then the expected number " |
---|
1048 | +"of results per run is 10."; |
---|
1049 | } |
---|
1050 | |
---|
1051 | /** |
---|
1052 | * Get the value of ExpectedResultsPerAverage. |
---|
1053 | * |
---|
1054 | * @return Value of ExpectedResultsPerAverage. |
---|
1055 | */ |
---|
1056 | public int getExpectedResultsPerAverage() { |
---|
1057 | |
---|
1058 | return m_ExpectedResultsPerAverage; |
---|
1059 | } |
---|
1060 | |
---|
1061 | /** |
---|
1062 | * Set the value of ExpectedResultsPerAverage. |
---|
1063 | * |
---|
1064 | * @param newExpectedResultsPerAverage Value to assign to |
---|
1065 | * ExpectedResultsPerAverage. |
---|
1066 | */ |
---|
1067 | public void setExpectedResultsPerAverage(int newExpectedResultsPerAverage) { |
---|
1068 | |
---|
1069 | m_ExpectedResultsPerAverage = newExpectedResultsPerAverage; |
---|
1070 | } |
---|
1071 | |
---|
1072 | /** |
---|
1073 | * Returns the tip text for this property |
---|
1074 | * @return tip text for this property suitable for |
---|
1075 | * displaying in the explorer/experimenter gui |
---|
1076 | */ |
---|
1077 | public String keyFieldNameTipText() { |
---|
1078 | return "Set the field name that will be unique for a run."; |
---|
1079 | } |
---|
1080 | |
---|
1081 | /** |
---|
1082 | * Get the value of KeyFieldName. |
---|
1083 | * |
---|
1084 | * @return Value of KeyFieldName. |
---|
1085 | */ |
---|
1086 | public String getKeyFieldName() { |
---|
1087 | |
---|
1088 | return m_KeyFieldName; |
---|
1089 | } |
---|
1090 | |
---|
1091 | /** |
---|
1092 | * Set the value of KeyFieldName. |
---|
1093 | * |
---|
1094 | * @param newKeyFieldName Value to assign to KeyFieldName. |
---|
1095 | */ |
---|
1096 | public void setKeyFieldName(String newKeyFieldName) { |
---|
1097 | |
---|
1098 | m_KeyFieldName = newKeyFieldName; |
---|
1099 | m_CountFieldName = "Num_" + m_KeyFieldName; |
---|
1100 | findKeyIndex(); |
---|
1101 | } |
---|
1102 | |
---|
1103 | /** |
---|
1104 | * Sets the object to send results of each run to. |
---|
1105 | * |
---|
1106 | * @param listener a value of type 'ResultListener' |
---|
1107 | */ |
---|
1108 | public void setResultListener(ResultListener listener) { |
---|
1109 | |
---|
1110 | m_ResultListener = listener; |
---|
1111 | } |
---|
1112 | |
---|
1113 | /** |
---|
1114 | * Returns the tip text for this property |
---|
1115 | * @return tip text for this property suitable for |
---|
1116 | * displaying in the explorer/experimenter gui |
---|
1117 | */ |
---|
1118 | public String resultProducerTipText() { |
---|
1119 | return "Set the resultProducer for which results are to be averaged."; |
---|
1120 | } |
---|
1121 | |
---|
1122 | /** |
---|
1123 | * Get the ResultProducer. |
---|
1124 | * |
---|
1125 | * @return the ResultProducer. |
---|
1126 | */ |
---|
1127 | public ResultProducer getResultProducer() { |
---|
1128 | |
---|
1129 | return m_ResultProducer; |
---|
1130 | } |
---|
1131 | |
---|
1132 | /** |
---|
1133 | * Set the ResultProducer. |
---|
1134 | * |
---|
1135 | * @param newResultProducer new ResultProducer to use. |
---|
1136 | */ |
---|
1137 | public void setResultProducer(ResultProducer newResultProducer) { |
---|
1138 | |
---|
1139 | m_ResultProducer = newResultProducer; |
---|
1140 | m_ResultProducer.setResultListener(this); |
---|
1141 | findKeyIndex(); |
---|
1142 | } |
---|
1143 | |
---|
1144 | /** |
---|
1145 | * Gets a text descrption of the result producer. |
---|
1146 | * |
---|
1147 | * @return a text description of the result producer. |
---|
1148 | */ |
---|
1149 | public String toString() { |
---|
1150 | |
---|
1151 | String result = "AveragingResultProducer: "; |
---|
1152 | result += getCompatibilityState(); |
---|
1153 | if (m_Instances == null) { |
---|
1154 | result += ": <null Instances>"; |
---|
1155 | } else { |
---|
1156 | result += ": " + Utils.backQuoteChars(m_Instances.relationName()); |
---|
1157 | } |
---|
1158 | return result; |
---|
1159 | } |
---|
1160 | |
---|
1161 | /** |
---|
1162 | * Returns the revision string. |
---|
1163 | * |
---|
1164 | * @return the revision |
---|
1165 | */ |
---|
1166 | public String getRevision() { |
---|
1167 | return RevisionUtils.extract("$Revision: 1.18 $"); |
---|
1168 | } |
---|
1169 | } // AveragingResultProducer |
---|