[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * AveragingResultProducer.java |
---|
| 19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | |
---|
| 24 | package weka.experiment; |
---|
| 25 | |
---|
| 26 | import weka.core.AdditionalMeasureProducer; |
---|
| 27 | import weka.core.FastVector; |
---|
| 28 | import weka.core.Instances; |
---|
| 29 | import weka.core.Option; |
---|
| 30 | import weka.core.OptionHandler; |
---|
| 31 | import weka.core.RevisionHandler; |
---|
| 32 | import weka.core.RevisionUtils; |
---|
| 33 | import weka.core.Utils; |
---|
| 34 | |
---|
| 35 | import java.util.Enumeration; |
---|
| 36 | import java.util.Hashtable; |
---|
| 37 | import java.util.Vector; |
---|
| 38 | |
---|
| 39 | /** |
---|
| 40 | <!-- globalinfo-start --> |
---|
| 41 | * Takes the results from a ResultProducer and submits the average to the result listener. Normally used with a CrossValidationResultProducer to perform n x m fold cross validation. For non-numeric result fields, the first value is used. |
---|
| 42 | * <p/> |
---|
| 43 | <!-- globalinfo-end --> |
---|
| 44 | * |
---|
| 45 | <!-- options-start --> |
---|
| 46 | * Valid options are: <p/> |
---|
| 47 | * |
---|
| 48 | * <pre> -F <field name> |
---|
| 49 | * The name of the field to average over. |
---|
| 50 | * (default "Fold")</pre> |
---|
| 51 | * |
---|
| 52 | * <pre> -X <num results> |
---|
| 53 | * The number of results expected per average. |
---|
| 54 | * (default 10)</pre> |
---|
| 55 | * |
---|
| 56 | * <pre> -S |
---|
| 57 | * Calculate standard deviations. |
---|
| 58 | * (default only averages)</pre> |
---|
| 59 | * |
---|
| 60 | * <pre> -W <class name> |
---|
| 61 | * The full class name of a ResultProducer. |
---|
| 62 | * eg: weka.experiment.CrossValidationResultProducer</pre> |
---|
| 63 | * |
---|
| 64 | * <pre> |
---|
| 65 | * Options specific to result producer weka.experiment.CrossValidationResultProducer: |
---|
| 66 | * </pre> |
---|
| 67 | * |
---|
| 68 | * <pre> -X <number of folds> |
---|
| 69 | * The number of folds to use for the cross-validation. |
---|
| 70 | * (default 10)</pre> |
---|
| 71 | * |
---|
| 72 | * <pre> -D |
---|
| 73 | * Save raw split evaluator output.</pre> |
---|
| 74 | * |
---|
| 75 | * <pre> -O <file/directory name/path> |
---|
| 76 | * The filename where raw output will be stored. |
---|
| 77 | * If a directory name is specified then then individual |
---|
| 78 | * outputs will be gzipped, otherwise all output will be |
---|
| 79 | * zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip)</pre> |
---|
| 80 | * |
---|
| 81 | * <pre> -W <class name> |
---|
| 82 | * The full class name of a SplitEvaluator. |
---|
| 83 | * eg: weka.experiment.ClassifierSplitEvaluator</pre> |
---|
| 84 | * |
---|
| 85 | * <pre> |
---|
| 86 | * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator: |
---|
| 87 | * </pre> |
---|
| 88 | * |
---|
| 89 | * <pre> -W <class name> |
---|
| 90 | * The full class name of the classifier. |
---|
| 91 | * eg: weka.classifiers.bayes.NaiveBayes</pre> |
---|
| 92 | * |
---|
| 93 | * <pre> -C <index> |
---|
| 94 | * The index of the class for which IR statistics |
---|
| 95 | * are to be output. (default 1)</pre> |
---|
| 96 | * |
---|
| 97 | * <pre> -I <index> |
---|
| 98 | * The index of an attribute to output in the |
---|
| 99 | * results. This attribute should identify an |
---|
| 100 | * instance in order to know which instances are |
---|
| 101 | * in the test set of a cross validation. if 0 |
---|
| 102 | * no output (default 0).</pre> |
---|
| 103 | * |
---|
| 104 | * <pre> -P |
---|
| 105 | * Add target and prediction columns to the result |
---|
| 106 | * for each fold.</pre> |
---|
| 107 | * |
---|
| 108 | * <pre> |
---|
| 109 | * Options specific to classifier weka.classifiers.rules.ZeroR: |
---|
| 110 | * </pre> |
---|
| 111 | * |
---|
| 112 | * <pre> -D |
---|
| 113 | * If set, classifier is run in debug mode and |
---|
| 114 | * may output additional info to the console</pre> |
---|
| 115 | * |
---|
| 116 | <!-- options-end --> |
---|
| 117 | * |
---|
| 118 | * All options after -- will be passed to the result producer. |
---|
| 119 | * |
---|
| 120 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
---|
| 121 | * @version $Revision: 1.18 $ |
---|
| 122 | */ |
---|
| 123 | public class AveragingResultProducer |
---|
| 124 | implements ResultListener, ResultProducer, OptionHandler, |
---|
| 125 | AdditionalMeasureProducer, RevisionHandler { |
---|
| 126 | |
---|
| 127 | /** for serialization */ |
---|
| 128 | static final long serialVersionUID = 2551284958501991352L; |
---|
| 129 | |
---|
| 130 | /** The dataset of interest */ |
---|
| 131 | protected Instances m_Instances; |
---|
| 132 | |
---|
| 133 | /** The ResultListener to send results to */ |
---|
| 134 | protected ResultListener m_ResultListener = new CSVResultListener(); |
---|
| 135 | |
---|
| 136 | /** The ResultProducer used to generate results */ |
---|
| 137 | protected ResultProducer m_ResultProducer |
---|
| 138 | = new CrossValidationResultProducer(); |
---|
| 139 | |
---|
| 140 | /** The names of any additional measures to look for in SplitEvaluators */ |
---|
| 141 | protected String [] m_AdditionalMeasures = null; |
---|
| 142 | |
---|
| 143 | /** The number of results expected to average over for each run */ |
---|
| 144 | protected int m_ExpectedResultsPerAverage = 10; |
---|
| 145 | |
---|
| 146 | /** True if standard deviation fields should be produced */ |
---|
| 147 | protected boolean m_CalculateStdDevs; |
---|
| 148 | |
---|
| 149 | /** |
---|
| 150 | * The name of the field that will contain the number of results |
---|
| 151 | * averaged over. |
---|
| 152 | */ |
---|
| 153 | protected String m_CountFieldName = "Num_" + CrossValidationResultProducer |
---|
| 154 | .FOLD_FIELD_NAME; |
---|
| 155 | |
---|
| 156 | /** The name of the key field to average over */ |
---|
| 157 | protected String m_KeyFieldName = CrossValidationResultProducer |
---|
| 158 | .FOLD_FIELD_NAME; |
---|
| 159 | |
---|
| 160 | /** The index of the field to average over in the resultproducers key */ |
---|
| 161 | protected int m_KeyIndex = -1; |
---|
| 162 | |
---|
| 163 | /** Collects the keys from a single run */ |
---|
| 164 | protected FastVector m_Keys = new FastVector(); |
---|
| 165 | |
---|
| 166 | /** Collects the results from a single run */ |
---|
| 167 | protected FastVector m_Results = new FastVector(); |
---|
| 168 | |
---|
| 169 | /** |
---|
| 170 | * Returns a string describing this result producer |
---|
| 171 | * @return a description of the result producer suitable for |
---|
| 172 | * displaying in the explorer/experimenter gui |
---|
| 173 | */ |
---|
| 174 | public String globalInfo() { |
---|
| 175 | return "Takes the results from a ResultProducer " |
---|
| 176 | +"and submits the average to the result listener. Normally used with " |
---|
| 177 | +"a CrossValidationResultProducer to perform n x m fold cross " |
---|
| 178 | +"validation. For non-numeric result fields, the first value is used."; |
---|
| 179 | } |
---|
| 180 | |
---|
| 181 | /** |
---|
| 182 | * Scans through the key field names of the result producer to find |
---|
| 183 | * the index of the key field to average over. Sets the value of |
---|
| 184 | * m_KeyIndex to the index, or -1 if no matching key field was found. |
---|
| 185 | * |
---|
| 186 | * @return the index of the key field to average over |
---|
| 187 | */ |
---|
| 188 | protected int findKeyIndex() { |
---|
| 189 | |
---|
| 190 | m_KeyIndex = -1; |
---|
| 191 | try { |
---|
| 192 | if (m_ResultProducer != null) { |
---|
| 193 | String [] keyNames = m_ResultProducer.getKeyNames(); |
---|
| 194 | for (int i = 0; i < keyNames.length; i++) { |
---|
| 195 | if (keyNames[i].equals(m_KeyFieldName)) { |
---|
| 196 | m_KeyIndex = i; |
---|
| 197 | break; |
---|
| 198 | } |
---|
| 199 | } |
---|
| 200 | } |
---|
| 201 | } catch (Exception ex) { |
---|
| 202 | } |
---|
| 203 | return m_KeyIndex; |
---|
| 204 | } |
---|
| 205 | |
---|
| 206 | /** |
---|
| 207 | * Determines if there are any constraints (imposed by the |
---|
| 208 | * destination) on the result columns to be produced by |
---|
| 209 | * resultProducers. Null should be returned if there are NO |
---|
| 210 | * constraints, otherwise a list of column names should be |
---|
| 211 | * returned as an array of Strings. |
---|
| 212 | * @param rp the ResultProducer to which the constraints will apply |
---|
| 213 | * @return an array of column names to which resutltProducer's |
---|
| 214 | * results will be restricted. |
---|
| 215 | * @throws Exception if constraints can't be determined |
---|
| 216 | */ |
---|
| 217 | public String [] determineColumnConstraints(ResultProducer rp) |
---|
| 218 | throws Exception { |
---|
| 219 | return null; |
---|
| 220 | } |
---|
| 221 | |
---|
| 222 | /** |
---|
| 223 | * Simulates a run to collect the keys the sub-resultproducer could |
---|
| 224 | * generate. Does some checking on the keys and determines the |
---|
| 225 | * template key. |
---|
| 226 | * |
---|
| 227 | * @param run the run number |
---|
| 228 | * @return a template key (null for the field being averaged) |
---|
| 229 | * @throws Exception if an error occurs |
---|
| 230 | */ |
---|
| 231 | protected Object [] determineTemplate(int run) throws Exception { |
---|
| 232 | |
---|
| 233 | if (m_Instances == null) { |
---|
| 234 | throw new Exception("No Instances set"); |
---|
| 235 | } |
---|
| 236 | m_ResultProducer.setInstances(m_Instances); |
---|
| 237 | |
---|
| 238 | // Clear the collected results |
---|
| 239 | m_Keys.removeAllElements(); |
---|
| 240 | m_Results.removeAllElements(); |
---|
| 241 | |
---|
| 242 | m_ResultProducer.doRunKeys(run); |
---|
| 243 | checkForMultipleDifferences(); |
---|
| 244 | |
---|
| 245 | Object [] template = (Object [])((Object [])m_Keys.elementAt(0)).clone(); |
---|
| 246 | template[m_KeyIndex] = null; |
---|
| 247 | // Check for duplicate keys |
---|
| 248 | checkForDuplicateKeys(template); |
---|
| 249 | |
---|
| 250 | return template; |
---|
| 251 | } |
---|
| 252 | |
---|
| 253 | /** |
---|
| 254 | * Gets the keys for a specified run number. Different run |
---|
| 255 | * numbers correspond to different randomizations of the data. Keys |
---|
| 256 | * produced should be sent to the current ResultListener |
---|
| 257 | * |
---|
| 258 | * @param run the run number to get keys for. |
---|
| 259 | * @throws Exception if a problem occurs while getting the keys |
---|
| 260 | */ |
---|
| 261 | public void doRunKeys(int run) throws Exception { |
---|
| 262 | |
---|
| 263 | // Generate the template |
---|
| 264 | Object [] template = determineTemplate(run); |
---|
| 265 | String [] newKey = new String [template.length - 1]; |
---|
| 266 | System.arraycopy(template, 0, newKey, 0, m_KeyIndex); |
---|
| 267 | System.arraycopy(template, m_KeyIndex + 1, |
---|
| 268 | newKey, m_KeyIndex, |
---|
| 269 | template.length - m_KeyIndex - 1); |
---|
| 270 | m_ResultListener.acceptResult(this, newKey, null); |
---|
| 271 | } |
---|
| 272 | |
---|
| 273 | /** |
---|
| 274 | * Gets the results for a specified run number. Different run |
---|
| 275 | * numbers correspond to different randomizations of the data. Results |
---|
| 276 | * produced should be sent to the current ResultListener |
---|
| 277 | * |
---|
| 278 | * @param run the run number to get results for. |
---|
| 279 | * @throws Exception if a problem occurs while getting the results |
---|
| 280 | */ |
---|
| 281 | public void doRun(int run) throws Exception { |
---|
| 282 | |
---|
| 283 | // Generate the key and ask whether the result is required |
---|
| 284 | Object [] template = determineTemplate(run); |
---|
| 285 | String [] newKey = new String [template.length - 1]; |
---|
| 286 | System.arraycopy(template, 0, newKey, 0, m_KeyIndex); |
---|
| 287 | System.arraycopy(template, m_KeyIndex + 1, |
---|
| 288 | newKey, m_KeyIndex, |
---|
| 289 | template.length - m_KeyIndex - 1); |
---|
| 290 | |
---|
| 291 | if (m_ResultListener.isResultRequired(this, newKey)) { |
---|
| 292 | // Clear the collected keys |
---|
| 293 | m_Keys.removeAllElements(); |
---|
| 294 | m_Results.removeAllElements(); |
---|
| 295 | |
---|
| 296 | m_ResultProducer.doRun(run); |
---|
| 297 | |
---|
| 298 | // Average the results collected |
---|
| 299 | //System.err.println("Number of results collected: " + m_Keys.size()); |
---|
| 300 | |
---|
| 301 | // Check that the keys only differ on the selected key field |
---|
| 302 | checkForMultipleDifferences(); |
---|
| 303 | |
---|
| 304 | template = (Object [])((Object [])m_Keys.elementAt(0)).clone(); |
---|
| 305 | template[m_KeyIndex] = null; |
---|
| 306 | // Check for duplicate keys |
---|
| 307 | checkForDuplicateKeys(template); |
---|
| 308 | // Calculate the average and submit it if necessary |
---|
| 309 | doAverageResult(template); |
---|
| 310 | } |
---|
| 311 | } |
---|
| 312 | |
---|
| 313 | |
---|
| 314 | /** |
---|
| 315 | * Compares a key to a template to see whether they match. Null |
---|
| 316 | * fields in the template are ignored in the matching. |
---|
| 317 | * |
---|
| 318 | * @param template the template to match against |
---|
| 319 | * @param test the key to test |
---|
| 320 | * @return true if the test key matches the template on all non-null template |
---|
| 321 | * fields |
---|
| 322 | */ |
---|
| 323 | protected boolean matchesTemplate(Object [] template, Object [] test) { |
---|
| 324 | |
---|
| 325 | if (template.length != test.length) { |
---|
| 326 | return false; |
---|
| 327 | } |
---|
| 328 | for (int i = 0; i < test.length; i++) { |
---|
| 329 | if ((template[i] != null) && (!template[i].equals(test[i]))) { |
---|
| 330 | return false; |
---|
| 331 | } |
---|
| 332 | } |
---|
| 333 | return true; |
---|
| 334 | } |
---|
| 335 | |
---|
| 336 | /** |
---|
| 337 | * Asks the resultlistener whether an average result is required, and |
---|
| 338 | * if so, calculates it. |
---|
| 339 | * |
---|
| 340 | * @param template the template to match keys against when calculating the |
---|
| 341 | * average |
---|
| 342 | * @throws Exception if an error occurs |
---|
| 343 | */ |
---|
| 344 | protected void doAverageResult(Object [] template) throws Exception { |
---|
| 345 | |
---|
| 346 | // Generate the key and ask whether the result is required |
---|
| 347 | String [] newKey = new String [template.length - 1]; |
---|
| 348 | System.arraycopy(template, 0, newKey, 0, m_KeyIndex); |
---|
| 349 | System.arraycopy(template, m_KeyIndex + 1, |
---|
| 350 | newKey, m_KeyIndex, |
---|
| 351 | template.length - m_KeyIndex - 1); |
---|
| 352 | if (m_ResultListener.isResultRequired(this, newKey)) { |
---|
| 353 | Object [] resultTypes = m_ResultProducer.getResultTypes(); |
---|
| 354 | Stats [] stats = new Stats [resultTypes.length]; |
---|
| 355 | for (int i = 0; i < stats.length; i++) { |
---|
| 356 | stats[i] = new Stats(); |
---|
| 357 | } |
---|
| 358 | Object [] result = getResultTypes(); |
---|
| 359 | int numMatches = 0; |
---|
| 360 | for (int i = 0; i < m_Keys.size(); i++) { |
---|
| 361 | Object [] currentKey = (Object [])m_Keys.elementAt(i); |
---|
| 362 | // Skip non-matching keys |
---|
| 363 | if (!matchesTemplate(template, currentKey)) { |
---|
| 364 | continue; |
---|
| 365 | } |
---|
| 366 | // Add the results to the stats accumulator |
---|
| 367 | Object [] currentResult = (Object [])m_Results.elementAt(i); |
---|
| 368 | numMatches++; |
---|
| 369 | for (int j = 0; j < resultTypes.length; j++) { |
---|
| 370 | if (resultTypes[j] instanceof Double) { |
---|
| 371 | if (currentResult[j] == null) { |
---|
| 372 | |
---|
| 373 | // set the stats object for this result to null--- |
---|
| 374 | // more than likely this is an additional measure field |
---|
| 375 | // not supported by the low level split evaluator |
---|
| 376 | if (stats[j] != null) { |
---|
| 377 | stats[j] = null; |
---|
| 378 | } |
---|
| 379 | |
---|
| 380 | /* throw new Exception("Null numeric result field found:\n" |
---|
| 381 | + DatabaseUtils.arrayToString(currentKey) |
---|
| 382 | + " -- " |
---|
| 383 | + DatabaseUtils |
---|
| 384 | .arrayToString(currentResult)); */ |
---|
| 385 | } |
---|
| 386 | if (stats[j] != null) { |
---|
| 387 | double currentVal = ((Double)currentResult[j]).doubleValue(); |
---|
| 388 | stats[j].add(currentVal); |
---|
| 389 | } |
---|
| 390 | } |
---|
| 391 | } |
---|
| 392 | } |
---|
| 393 | if (numMatches != m_ExpectedResultsPerAverage) { |
---|
| 394 | throw new Exception("Expected " + m_ExpectedResultsPerAverage |
---|
| 395 | + " results matching key \"" |
---|
| 396 | + DatabaseUtils.arrayToString(template) |
---|
| 397 | + "\" but got " |
---|
| 398 | + numMatches); |
---|
| 399 | } |
---|
| 400 | result[0] = new Double(numMatches); |
---|
| 401 | Object [] currentResult = (Object [])m_Results.elementAt(0); |
---|
| 402 | int k = 1; |
---|
| 403 | for (int j = 0; j < resultTypes.length; j++) { |
---|
| 404 | if (resultTypes[j] instanceof Double) { |
---|
| 405 | if (stats[j] != null) { |
---|
| 406 | stats[j].calculateDerived(); |
---|
| 407 | result[k++] = new Double(stats[j].mean); |
---|
| 408 | } else { |
---|
| 409 | result[k++] = null; |
---|
| 410 | } |
---|
| 411 | if (getCalculateStdDevs()) { |
---|
| 412 | if (stats[j] != null) { |
---|
| 413 | result[k++] = new Double(stats[j].stdDev); |
---|
| 414 | } else { |
---|
| 415 | result[k++] = null; |
---|
| 416 | } |
---|
| 417 | } |
---|
| 418 | } else { |
---|
| 419 | result[k++] = currentResult[j]; |
---|
| 420 | } |
---|
| 421 | } |
---|
| 422 | m_ResultListener.acceptResult(this, newKey, result); |
---|
| 423 | } |
---|
| 424 | } |
---|
| 425 | |
---|
| 426 | /** |
---|
| 427 | * Checks whether any duplicate results (with respect to a key template) |
---|
| 428 | * were received. |
---|
| 429 | * |
---|
| 430 | * @param template the template key. |
---|
| 431 | * @throws Exception if duplicate results are detected |
---|
| 432 | */ |
---|
| 433 | protected void checkForDuplicateKeys(Object [] template) throws Exception { |
---|
| 434 | |
---|
| 435 | Hashtable hash = new Hashtable(); |
---|
| 436 | int numMatches = 0; |
---|
| 437 | for (int i = 0; i < m_Keys.size(); i++) { |
---|
| 438 | Object [] current = (Object [])m_Keys.elementAt(i); |
---|
| 439 | // Skip non-matching keys |
---|
| 440 | if (!matchesTemplate(template, current)) { |
---|
| 441 | continue; |
---|
| 442 | } |
---|
| 443 | if (hash.containsKey(current[m_KeyIndex])) { |
---|
| 444 | throw new Exception("Duplicate result received:" |
---|
| 445 | + DatabaseUtils.arrayToString(current)); |
---|
| 446 | } |
---|
| 447 | numMatches++; |
---|
| 448 | hash.put(current[m_KeyIndex], current[m_KeyIndex]); |
---|
| 449 | } |
---|
| 450 | if (numMatches != m_ExpectedResultsPerAverage) { |
---|
| 451 | throw new Exception("Expected " + m_ExpectedResultsPerAverage |
---|
| 452 | + " results matching key \"" |
---|
| 453 | + DatabaseUtils.arrayToString(template) |
---|
| 454 | + "\" but got " |
---|
| 455 | + numMatches); |
---|
| 456 | } |
---|
| 457 | } |
---|
| 458 | |
---|
| 459 | /** |
---|
| 460 | * Checks that the keys for a run only differ in one key field. If they |
---|
| 461 | * differ in more than one field, a more sophisticated averager will submit |
---|
| 462 | * multiple results - for now an exception is thrown. Currently assumes that |
---|
| 463 | * the most differences will be shown between the first and last |
---|
| 464 | * result received. |
---|
| 465 | * |
---|
| 466 | * @throws Exception if the keys differ on fields other than the |
---|
| 467 | * key averaging field |
---|
| 468 | */ |
---|
| 469 | protected void checkForMultipleDifferences() throws Exception { |
---|
| 470 | |
---|
| 471 | Object [] firstKey = (Object [])m_Keys.elementAt(0); |
---|
| 472 | Object [] lastKey = (Object [])m_Keys.elementAt(m_Keys.size() - 1); |
---|
| 473 | /* |
---|
| 474 | System.err.println("First key:" + DatabaseUtils.arrayToString(firstKey)); |
---|
| 475 | System.err.println("Last key :" + DatabaseUtils.arrayToString(lastKey)); |
---|
| 476 | */ |
---|
| 477 | for (int i = 0; i < firstKey.length; i++) { |
---|
| 478 | if ((i != m_KeyIndex) && !firstKey[i].equals(lastKey[i])) { |
---|
| 479 | throw new Exception("Keys differ on fields other than \"" |
---|
| 480 | + m_KeyFieldName |
---|
| 481 | + "\" -- time to implement multiple averaging"); |
---|
| 482 | } |
---|
| 483 | } |
---|
| 484 | } |
---|
| 485 | |
---|
| 486 | /** |
---|
| 487 | * Prepare for the results to be received. |
---|
| 488 | * |
---|
| 489 | * @param rp the ResultProducer that will generate the results |
---|
| 490 | * @throws Exception if an error occurs during preprocessing. |
---|
| 491 | */ |
---|
| 492 | public void preProcess(ResultProducer rp) throws Exception { |
---|
| 493 | |
---|
| 494 | if (m_ResultListener == null) { |
---|
| 495 | throw new Exception("No ResultListener set"); |
---|
| 496 | } |
---|
| 497 | m_ResultListener.preProcess(this); |
---|
| 498 | } |
---|
| 499 | |
---|
| 500 | /** |
---|
| 501 | * Prepare to generate results. The ResultProducer should call |
---|
| 502 | * preProcess(this) on the ResultListener it is to send results to. |
---|
| 503 | * |
---|
| 504 | * @throws Exception if an error occurs during preprocessing. |
---|
| 505 | */ |
---|
| 506 | public void preProcess() throws Exception { |
---|
| 507 | |
---|
| 508 | if (m_ResultProducer == null) { |
---|
| 509 | throw new Exception("No ResultProducer set"); |
---|
| 510 | } |
---|
| 511 | // Tell the resultproducer to send results to us |
---|
| 512 | m_ResultProducer.setResultListener(this); |
---|
| 513 | findKeyIndex(); |
---|
| 514 | if (m_KeyIndex == -1) { |
---|
| 515 | throw new Exception("No key field called " + m_KeyFieldName |
---|
| 516 | + " produced by " |
---|
| 517 | + m_ResultProducer.getClass().getName()); |
---|
| 518 | } |
---|
| 519 | m_ResultProducer.preProcess(); |
---|
| 520 | } |
---|
| 521 | |
---|
| 522 | /** |
---|
| 523 | * When this method is called, it indicates that no more results |
---|
| 524 | * will be sent that need to be grouped together in any way. |
---|
| 525 | * |
---|
| 526 | * @param rp the ResultProducer that generated the results |
---|
| 527 | * @throws Exception if an error occurs |
---|
| 528 | */ |
---|
| 529 | public void postProcess(ResultProducer rp) throws Exception { |
---|
| 530 | |
---|
| 531 | m_ResultListener.postProcess(this); |
---|
| 532 | } |
---|
| 533 | |
---|
| 534 | /** |
---|
| 535 | * When this method is called, it indicates that no more requests to |
---|
| 536 | * generate results for the current experiment will be sent. The |
---|
| 537 | * ResultProducer should call preProcess(this) on the |
---|
| 538 | * ResultListener it is to send results to. |
---|
| 539 | * |
---|
| 540 | * @throws Exception if an error occurs |
---|
| 541 | */ |
---|
| 542 | public void postProcess() throws Exception { |
---|
| 543 | |
---|
| 544 | m_ResultProducer.postProcess(); |
---|
| 545 | } |
---|
| 546 | |
---|
| 547 | /** |
---|
| 548 | * Accepts results from a ResultProducer. |
---|
| 549 | * |
---|
| 550 | * @param rp the ResultProducer that generated the results |
---|
| 551 | * @param key an array of Objects (Strings or Doubles) that uniquely |
---|
| 552 | * identify a result for a given ResultProducer with given compatibilityState |
---|
| 553 | * @param result the results stored in an array. The objects stored in |
---|
| 554 | * the array may be Strings, Doubles, or null (for the missing value). |
---|
| 555 | * @throws Exception if the result could not be accepted. |
---|
| 556 | */ |
---|
| 557 | public void acceptResult(ResultProducer rp, Object [] key, Object [] result) |
---|
| 558 | throws Exception { |
---|
| 559 | |
---|
| 560 | if (m_ResultProducer != rp) { |
---|
| 561 | throw new Error("Unrecognized ResultProducer sending results!!"); |
---|
| 562 | } |
---|
| 563 | m_Keys.addElement(key); |
---|
| 564 | m_Results.addElement(result); |
---|
| 565 | } |
---|
| 566 | |
---|
| 567 | /** |
---|
| 568 | * Determines whether the results for a specified key must be |
---|
| 569 | * generated. |
---|
| 570 | * |
---|
| 571 | * @param rp the ResultProducer wanting to generate the results |
---|
| 572 | * @param key an array of Objects (Strings or Doubles) that uniquely |
---|
| 573 | * identify a result for a given ResultProducer with given compatibilityState |
---|
| 574 | * @return true if the result should be generated |
---|
| 575 | * @throws Exception if it could not be determined if the result |
---|
| 576 | * is needed. |
---|
| 577 | */ |
---|
| 578 | public boolean isResultRequired(ResultProducer rp, Object [] key) |
---|
| 579 | throws Exception { |
---|
| 580 | |
---|
| 581 | if (m_ResultProducer != rp) { |
---|
| 582 | throw new Error("Unrecognized ResultProducer sending results!!"); |
---|
| 583 | } |
---|
| 584 | return true; |
---|
| 585 | } |
---|
| 586 | |
---|
| 587 | /** |
---|
| 588 | * Gets the names of each of the columns produced for a single run. |
---|
| 589 | * |
---|
| 590 | * @return an array containing the name of each column |
---|
| 591 | * @throws Exception if key names cannot be generated |
---|
| 592 | */ |
---|
| 593 | public String [] getKeyNames() throws Exception { |
---|
| 594 | |
---|
| 595 | if (m_KeyIndex == -1) { |
---|
| 596 | throw new Exception("No key field called " + m_KeyFieldName |
---|
| 597 | + " produced by " |
---|
| 598 | + m_ResultProducer.getClass().getName()); |
---|
| 599 | } |
---|
| 600 | String [] keyNames = m_ResultProducer.getKeyNames(); |
---|
| 601 | String [] newKeyNames = new String [keyNames.length - 1]; |
---|
| 602 | System.arraycopy(keyNames, 0, newKeyNames, 0, m_KeyIndex); |
---|
| 603 | System.arraycopy(keyNames, m_KeyIndex + 1, |
---|
| 604 | newKeyNames, m_KeyIndex, |
---|
| 605 | keyNames.length - m_KeyIndex - 1); |
---|
| 606 | return newKeyNames; |
---|
| 607 | } |
---|
| 608 | |
---|
| 609 | /** |
---|
| 610 | * Gets the data types of each of the columns produced for a single run. |
---|
| 611 | * This method should really be static. |
---|
| 612 | * |
---|
| 613 | * @return an array containing objects of the type of each column. The |
---|
| 614 | * objects should be Strings, or Doubles. |
---|
| 615 | * @throws Exception if the key types could not be determined (perhaps |
---|
| 616 | * because of a problem from a nested sub-resultproducer) |
---|
| 617 | */ |
---|
| 618 | public Object [] getKeyTypes() throws Exception { |
---|
| 619 | |
---|
| 620 | if (m_KeyIndex == -1) { |
---|
| 621 | throw new Exception("No key field called " + m_KeyFieldName |
---|
| 622 | + " produced by " |
---|
| 623 | + m_ResultProducer.getClass().getName()); |
---|
| 624 | } |
---|
| 625 | Object [] keyTypes = m_ResultProducer.getKeyTypes(); |
---|
| 626 | // Find and remove the key field that is being averaged over |
---|
| 627 | Object [] newKeyTypes = new String [keyTypes.length - 1]; |
---|
| 628 | System.arraycopy(keyTypes, 0, newKeyTypes, 0, m_KeyIndex); |
---|
| 629 | System.arraycopy(keyTypes, m_KeyIndex + 1, |
---|
| 630 | newKeyTypes, m_KeyIndex, |
---|
| 631 | keyTypes.length - m_KeyIndex - 1); |
---|
| 632 | return newKeyTypes; |
---|
| 633 | } |
---|
| 634 | |
---|
| 635 | /** |
---|
| 636 | * Gets the names of each of the columns produced for a single run. |
---|
| 637 | * A new result field is added for the number of results used to |
---|
| 638 | * produce each average. |
---|
| 639 | * If only averages are being produced the names are not altered, if |
---|
| 640 | * standard deviations are produced then "Dev_" and "Avg_" are prepended |
---|
| 641 | * to each result deviation and average field respectively. |
---|
| 642 | * |
---|
| 643 | * @return an array containing the name of each column |
---|
| 644 | * @throws Exception if the result names could not be determined (perhaps |
---|
| 645 | * because of a problem from a nested sub-resultproducer) |
---|
| 646 | */ |
---|
| 647 | public String [] getResultNames() throws Exception { |
---|
| 648 | |
---|
| 649 | String [] resultNames = m_ResultProducer.getResultNames(); |
---|
| 650 | // Add in the names of our extra Result fields |
---|
| 651 | if (getCalculateStdDevs()) { |
---|
| 652 | Object [] resultTypes = m_ResultProducer.getResultTypes(); |
---|
| 653 | int numNumeric = 0; |
---|
| 654 | for (int i = 0; i < resultTypes.length; i++) { |
---|
| 655 | if (resultTypes[i] instanceof Double) { |
---|
| 656 | numNumeric++; |
---|
| 657 | } |
---|
| 658 | } |
---|
| 659 | String [] newResultNames = new String [resultNames.length + |
---|
| 660 | 1 + numNumeric]; |
---|
| 661 | newResultNames[0] = m_CountFieldName; |
---|
| 662 | int j = 1; |
---|
| 663 | for (int i = 0; i < resultNames.length; i++) { |
---|
| 664 | newResultNames[j++] = "Avg_" + resultNames[i]; |
---|
| 665 | if (resultTypes[i] instanceof Double) { |
---|
| 666 | newResultNames[j++] = "Dev_" + resultNames[i]; |
---|
| 667 | } |
---|
| 668 | } |
---|
| 669 | return newResultNames; |
---|
| 670 | } else { |
---|
| 671 | String [] newResultNames = new String [resultNames.length + 1]; |
---|
| 672 | newResultNames[0] = m_CountFieldName; |
---|
| 673 | System.arraycopy(resultNames, 0, newResultNames, 1, resultNames.length); |
---|
| 674 | return newResultNames; |
---|
| 675 | } |
---|
| 676 | } |
---|
| 677 | |
---|
| 678 | /** |
---|
| 679 | * Gets the data types of each of the columns produced for a single run. |
---|
| 680 | * |
---|
| 681 | * @return an array containing objects of the type of each column. The |
---|
| 682 | * objects should be Strings, or Doubles. |
---|
| 683 | * @throws Exception if the result types could not be determined (perhaps |
---|
| 684 | * because of a problem from a nested sub-resultproducer) |
---|
| 685 | */ |
---|
| 686 | public Object [] getResultTypes() throws Exception { |
---|
| 687 | |
---|
| 688 | Object [] resultTypes = m_ResultProducer.getResultTypes(); |
---|
| 689 | // Add in the types of our extra Result fields |
---|
| 690 | if (getCalculateStdDevs()) { |
---|
| 691 | int numNumeric = 0; |
---|
| 692 | for (int i = 0; i < resultTypes.length; i++) { |
---|
| 693 | if (resultTypes[i] instanceof Double) { |
---|
| 694 | numNumeric++; |
---|
| 695 | } |
---|
| 696 | } |
---|
| 697 | Object [] newResultTypes = new Object [resultTypes.length + |
---|
| 698 | 1 + numNumeric]; |
---|
| 699 | newResultTypes[0] = new Double(0); |
---|
| 700 | int j = 1; |
---|
| 701 | for (int i = 0; i < resultTypes.length; i++) { |
---|
| 702 | newResultTypes[j++] = resultTypes[i]; |
---|
| 703 | if (resultTypes[i] instanceof Double) { |
---|
| 704 | newResultTypes[j++] = new Double(0); |
---|
| 705 | } |
---|
| 706 | } |
---|
| 707 | return newResultTypes; |
---|
| 708 | } else { |
---|
| 709 | Object [] newResultTypes = new Object [resultTypes.length + 1]; |
---|
| 710 | newResultTypes[0] = new Double(0); |
---|
| 711 | System.arraycopy(resultTypes, 0, newResultTypes, 1, resultTypes.length); |
---|
| 712 | return newResultTypes; |
---|
| 713 | } |
---|
| 714 | } |
---|
| 715 | |
---|
| 716 | /** |
---|
| 717 | * Gets a description of the internal settings of the result |
---|
| 718 | * producer, sufficient for distinguishing a ResultProducer |
---|
| 719 | * instance from another with different settings (ignoring |
---|
| 720 | * those settings set through this interface). For example, |
---|
| 721 | * a cross-validation ResultProducer may have a setting for the |
---|
| 722 | * number of folds. For a given state, the results produced should |
---|
| 723 | * be compatible. Typically if a ResultProducer is an OptionHandler, |
---|
| 724 | * this string will represent the command line arguments required |
---|
| 725 | * to set the ResultProducer to that state. |
---|
| 726 | * |
---|
| 727 | * @return the description of the ResultProducer state, or null |
---|
| 728 | * if no state is defined |
---|
| 729 | */ |
---|
| 730 | public String getCompatibilityState() { |
---|
| 731 | |
---|
| 732 | String result = // "-F " + Utils.quote(getKeyFieldName()) |
---|
| 733 | " -X " + getExpectedResultsPerAverage() + " "; |
---|
| 734 | if (getCalculateStdDevs()) { |
---|
| 735 | result += "-S "; |
---|
| 736 | } |
---|
| 737 | if (m_ResultProducer == null) { |
---|
| 738 | result += "<null ResultProducer>"; |
---|
| 739 | } else { |
---|
| 740 | result += "-W " + m_ResultProducer.getClass().getName(); |
---|
| 741 | } |
---|
| 742 | result += " -- " + m_ResultProducer.getCompatibilityState(); |
---|
| 743 | return result.trim(); |
---|
| 744 | } |
---|
| 745 | |
---|
| 746 | |
---|
| 747 | /** |
---|
| 748 | * Returns an enumeration describing the available options.. |
---|
| 749 | * |
---|
| 750 | * @return an enumeration of all the available options. |
---|
| 751 | */ |
---|
| 752 | public Enumeration listOptions() { |
---|
| 753 | |
---|
| 754 | Vector newVector = new Vector(2); |
---|
| 755 | |
---|
| 756 | newVector.addElement(new Option( |
---|
| 757 | "\tThe name of the field to average over.\n" |
---|
| 758 | +"\t(default \"Fold\")", |
---|
| 759 | "F", 1, |
---|
| 760 | "-F <field name>")); |
---|
| 761 | newVector.addElement(new Option( |
---|
| 762 | "\tThe number of results expected per average.\n" |
---|
| 763 | +"\t(default 10)", |
---|
| 764 | "X", 1, |
---|
| 765 | "-X <num results>")); |
---|
| 766 | newVector.addElement(new Option( |
---|
| 767 | "\tCalculate standard deviations.\n" |
---|
| 768 | +"\t(default only averages)", |
---|
| 769 | "S", 0, |
---|
| 770 | "-S")); |
---|
| 771 | newVector.addElement(new Option( |
---|
| 772 | "\tThe full class name of a ResultProducer.\n" |
---|
| 773 | +"\teg: weka.experiment.CrossValidationResultProducer", |
---|
| 774 | "W", 1, |
---|
| 775 | "-W <class name>")); |
---|
| 776 | |
---|
| 777 | if ((m_ResultProducer != null) && |
---|
| 778 | (m_ResultProducer instanceof OptionHandler)) { |
---|
| 779 | newVector.addElement(new Option( |
---|
| 780 | "", |
---|
| 781 | "", 0, "\nOptions specific to result producer " |
---|
| 782 | + m_ResultProducer.getClass().getName() + ":")); |
---|
| 783 | Enumeration enu = ((OptionHandler)m_ResultProducer).listOptions(); |
---|
| 784 | while (enu.hasMoreElements()) { |
---|
| 785 | newVector.addElement(enu.nextElement()); |
---|
| 786 | } |
---|
| 787 | } |
---|
| 788 | return newVector.elements(); |
---|
| 789 | } |
---|
| 790 | |
---|
| 791 | /** |
---|
| 792 | * Parses a given list of options. <p/> |
---|
| 793 | * |
---|
| 794 | <!-- options-start --> |
---|
| 795 | * Valid options are: <p/> |
---|
| 796 | * |
---|
| 797 | * <pre> -F <field name> |
---|
| 798 | * The name of the field to average over. |
---|
| 799 | * (default "Fold")</pre> |
---|
| 800 | * |
---|
| 801 | * <pre> -X <num results> |
---|
| 802 | * The number of results expected per average. |
---|
| 803 | * (default 10)</pre> |
---|
| 804 | * |
---|
| 805 | * <pre> -S |
---|
| 806 | * Calculate standard deviations. |
---|
| 807 | * (default only averages)</pre> |
---|
| 808 | * |
---|
| 809 | * <pre> -W <class name> |
---|
| 810 | * The full class name of a ResultProducer. |
---|
| 811 | * eg: weka.experiment.CrossValidationResultProducer</pre> |
---|
| 812 | * |
---|
| 813 | * <pre> |
---|
| 814 | * Options specific to result producer weka.experiment.CrossValidationResultProducer: |
---|
| 815 | * </pre> |
---|
| 816 | * |
---|
| 817 | * <pre> -X <number of folds> |
---|
| 818 | * The number of folds to use for the cross-validation. |
---|
| 819 | * (default 10)</pre> |
---|
| 820 | * |
---|
| 821 | * <pre> -D |
---|
| 822 | * Save raw split evaluator output.</pre> |
---|
| 823 | * |
---|
| 824 | * <pre> -O <file/directory name/path> |
---|
| 825 | * The filename where raw output will be stored. |
---|
| 826 | * If a directory name is specified then then individual |
---|
| 827 | * outputs will be gzipped, otherwise all output will be |
---|
| 828 | * zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip)</pre> |
---|
| 829 | * |
---|
| 830 | * <pre> -W <class name> |
---|
| 831 | * The full class name of a SplitEvaluator. |
---|
| 832 | * eg: weka.experiment.ClassifierSplitEvaluator</pre> |
---|
| 833 | * |
---|
| 834 | * <pre> |
---|
| 835 | * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator: |
---|
| 836 | * </pre> |
---|
| 837 | * |
---|
| 838 | * <pre> -W <class name> |
---|
| 839 | * The full class name of the classifier. |
---|
| 840 | * eg: weka.classifiers.bayes.NaiveBayes</pre> |
---|
| 841 | * |
---|
| 842 | * <pre> -C <index> |
---|
| 843 | * The index of the class for which IR statistics |
---|
| 844 | * are to be output. (default 1)</pre> |
---|
| 845 | * |
---|
| 846 | * <pre> -I <index> |
---|
| 847 | * The index of an attribute to output in the |
---|
| 848 | * results. This attribute should identify an |
---|
| 849 | * instance in order to know which instances are |
---|
| 850 | * in the test set of a cross validation. if 0 |
---|
| 851 | * no output (default 0).</pre> |
---|
| 852 | * |
---|
| 853 | * <pre> -P |
---|
| 854 | * Add target and prediction columns to the result |
---|
| 855 | * for each fold.</pre> |
---|
| 856 | * |
---|
| 857 | * <pre> |
---|
| 858 | * Options specific to classifier weka.classifiers.rules.ZeroR: |
---|
| 859 | * </pre> |
---|
| 860 | * |
---|
| 861 | * <pre> -D |
---|
| 862 | * If set, classifier is run in debug mode and |
---|
| 863 | * may output additional info to the console</pre> |
---|
| 864 | * |
---|
| 865 | <!-- options-end --> |
---|
| 866 | * |
---|
| 867 | * All options after -- will be passed to the result producer. |
---|
| 868 | * |
---|
| 869 | * @param options the list of options as an array of strings |
---|
| 870 | * @throws Exception if an option is not supported |
---|
| 871 | */ |
---|
| 872 | public void setOptions(String[] options) throws Exception { |
---|
| 873 | |
---|
| 874 | String keyFieldName = Utils.getOption('F', options); |
---|
| 875 | if (keyFieldName.length() != 0) { |
---|
| 876 | setKeyFieldName(keyFieldName); |
---|
| 877 | } else { |
---|
| 878 | setKeyFieldName(CrossValidationResultProducer.FOLD_FIELD_NAME); |
---|
| 879 | } |
---|
| 880 | |
---|
| 881 | String numResults = Utils.getOption('X', options); |
---|
| 882 | if (numResults.length() != 0) { |
---|
| 883 | setExpectedResultsPerAverage(Integer.parseInt(numResults)); |
---|
| 884 | } else { |
---|
| 885 | setExpectedResultsPerAverage(10); |
---|
| 886 | } |
---|
| 887 | |
---|
| 888 | setCalculateStdDevs(Utils.getFlag('S', options)); |
---|
| 889 | |
---|
| 890 | String rpName = Utils.getOption('W', options); |
---|
| 891 | if (rpName.length() == 0) { |
---|
| 892 | throw new Exception("A ResultProducer must be specified with" |
---|
| 893 | + " the -W option."); |
---|
| 894 | } |
---|
| 895 | // Do it first without options, so if an exception is thrown during |
---|
| 896 | // the option setting, listOptions will contain options for the actual |
---|
| 897 | // RP. |
---|
| 898 | setResultProducer((ResultProducer)Utils.forName( |
---|
| 899 | ResultProducer.class, |
---|
| 900 | rpName, |
---|
| 901 | null)); |
---|
| 902 | if (getResultProducer() instanceof OptionHandler) { |
---|
| 903 | ((OptionHandler) getResultProducer()) |
---|
| 904 | .setOptions(Utils.partitionOptions(options)); |
---|
| 905 | } |
---|
| 906 | } |
---|
| 907 | |
---|
| 908 | /** |
---|
| 909 | * Gets the current settings of the result producer. |
---|
| 910 | * |
---|
| 911 | * @return an array of strings suitable for passing to setOptions |
---|
| 912 | */ |
---|
| 913 | public String [] getOptions() { |
---|
| 914 | |
---|
| 915 | String [] seOptions = new String [0]; |
---|
| 916 | if ((m_ResultProducer != null) && |
---|
| 917 | (m_ResultProducer instanceof OptionHandler)) { |
---|
| 918 | seOptions = ((OptionHandler)m_ResultProducer).getOptions(); |
---|
| 919 | } |
---|
| 920 | |
---|
| 921 | String [] options = new String [seOptions.length + 8]; |
---|
| 922 | int current = 0; |
---|
| 923 | |
---|
| 924 | options[current++] = "-F"; |
---|
| 925 | options[current++] = "" + getKeyFieldName(); |
---|
| 926 | options[current++] = "-X"; |
---|
| 927 | options[current++] = "" + getExpectedResultsPerAverage(); |
---|
| 928 | if (getCalculateStdDevs()) { |
---|
| 929 | options[current++] = "-S"; |
---|
| 930 | } |
---|
| 931 | if (getResultProducer() != null) { |
---|
| 932 | options[current++] = "-W"; |
---|
| 933 | options[current++] = getResultProducer().getClass().getName(); |
---|
| 934 | } |
---|
| 935 | options[current++] = "--"; |
---|
| 936 | |
---|
| 937 | System.arraycopy(seOptions, 0, options, current, |
---|
| 938 | seOptions.length); |
---|
| 939 | current += seOptions.length; |
---|
| 940 | while (current < options.length) { |
---|
| 941 | options[current++] = ""; |
---|
| 942 | } |
---|
| 943 | return options; |
---|
| 944 | } |
---|
| 945 | |
---|
| 946 | /** |
---|
| 947 | * Set a list of method names for additional measures to look for |
---|
| 948 | * in SplitEvaluators. This could contain many measures (of which only a |
---|
| 949 | * subset may be produceable by the current resultProducer) if an experiment |
---|
| 950 | * is the type that iterates over a set of properties. |
---|
| 951 | * @param additionalMeasures an array of measure names, null if none |
---|
| 952 | */ |
---|
| 953 | public void setAdditionalMeasures(String [] additionalMeasures) { |
---|
| 954 | m_AdditionalMeasures = additionalMeasures; |
---|
| 955 | |
---|
| 956 | if (m_ResultProducer != null) { |
---|
| 957 | System.err.println("AveragingResultProducer: setting additional " |
---|
| 958 | +"measures for " |
---|
| 959 | +"ResultProducer"); |
---|
| 960 | m_ResultProducer.setAdditionalMeasures(m_AdditionalMeasures); |
---|
| 961 | } |
---|
| 962 | } |
---|
| 963 | |
---|
| 964 | /** |
---|
| 965 | * Returns an enumeration of any additional measure names that might be |
---|
| 966 | * in the result producer |
---|
| 967 | * @return an enumeration of the measure names |
---|
| 968 | */ |
---|
| 969 | public Enumeration enumerateMeasures() { |
---|
| 970 | Vector newVector = new Vector(); |
---|
| 971 | if (m_ResultProducer instanceof AdditionalMeasureProducer) { |
---|
| 972 | Enumeration en = ((AdditionalMeasureProducer)m_ResultProducer). |
---|
| 973 | enumerateMeasures(); |
---|
| 974 | while (en.hasMoreElements()) { |
---|
| 975 | String mname = (String)en.nextElement(); |
---|
| 976 | newVector.addElement(mname); |
---|
| 977 | } |
---|
| 978 | } |
---|
| 979 | return newVector.elements(); |
---|
| 980 | } |
---|
| 981 | |
---|
| 982 | /** |
---|
| 983 | * Returns the value of the named measure |
---|
| 984 | * @param additionalMeasureName the name of the measure to query for its value |
---|
| 985 | * @return the value of the named measure |
---|
| 986 | * @throws IllegalArgumentException if the named measure is not supported |
---|
| 987 | */ |
---|
| 988 | public double getMeasure(String additionalMeasureName) { |
---|
| 989 | if (m_ResultProducer instanceof AdditionalMeasureProducer) { |
---|
| 990 | return ((AdditionalMeasureProducer)m_ResultProducer). |
---|
| 991 | getMeasure(additionalMeasureName); |
---|
| 992 | } else { |
---|
| 993 | throw new IllegalArgumentException("AveragingResultProducer: " |
---|
| 994 | +"Can't return value for : "+additionalMeasureName |
---|
| 995 | +". "+m_ResultProducer.getClass().getName()+" " |
---|
| 996 | +"is not an AdditionalMeasureProducer"); |
---|
| 997 | } |
---|
| 998 | } |
---|
| 999 | |
---|
| 1000 | /** |
---|
| 1001 | * Sets the dataset that results will be obtained for. |
---|
| 1002 | * |
---|
| 1003 | * @param instances a value of type 'Instances'. |
---|
| 1004 | */ |
---|
| 1005 | public void setInstances(Instances instances) { |
---|
| 1006 | |
---|
| 1007 | m_Instances = instances; |
---|
| 1008 | } |
---|
| 1009 | |
---|
| 1010 | /** |
---|
| 1011 | * Returns the tip text for this property |
---|
| 1012 | * @return tip text for this property suitable for |
---|
| 1013 | * displaying in the explorer/experimenter gui |
---|
| 1014 | */ |
---|
| 1015 | public String calculateStdDevsTipText() { |
---|
| 1016 | return "Record standard deviations for each run."; |
---|
| 1017 | } |
---|
| 1018 | |
---|
| 1019 | /** |
---|
| 1020 | * Get the value of CalculateStdDevs. |
---|
| 1021 | * |
---|
| 1022 | * @return Value of CalculateStdDevs. |
---|
| 1023 | */ |
---|
| 1024 | public boolean getCalculateStdDevs() { |
---|
| 1025 | |
---|
| 1026 | return m_CalculateStdDevs; |
---|
| 1027 | } |
---|
| 1028 | |
---|
| 1029 | /** |
---|
| 1030 | * Set the value of CalculateStdDevs. |
---|
| 1031 | * |
---|
| 1032 | * @param newCalculateStdDevs Value to assign to CalculateStdDevs. |
---|
| 1033 | */ |
---|
| 1034 | public void setCalculateStdDevs(boolean newCalculateStdDevs) { |
---|
| 1035 | |
---|
| 1036 | m_CalculateStdDevs = newCalculateStdDevs; |
---|
| 1037 | } |
---|
| 1038 | |
---|
| 1039 | /** |
---|
| 1040 | * Returns the tip text for this property |
---|
| 1041 | * @return tip text for this property suitable for |
---|
| 1042 | * displaying in the explorer/experimenter gui |
---|
| 1043 | */ |
---|
| 1044 | public String expectedResultsPerAverageTipText() { |
---|
| 1045 | return "Set the expected number of results to average per run. " |
---|
| 1046 | +"For example if a CrossValidationResultProducer is being used " |
---|
| 1047 | +"(with the number of folds set to 10), then the expected number " |
---|
| 1048 | +"of results per run is 10."; |
---|
| 1049 | } |
---|
| 1050 | |
---|
| 1051 | /** |
---|
| 1052 | * Get the value of ExpectedResultsPerAverage. |
---|
| 1053 | * |
---|
| 1054 | * @return Value of ExpectedResultsPerAverage. |
---|
| 1055 | */ |
---|
| 1056 | public int getExpectedResultsPerAverage() { |
---|
| 1057 | |
---|
| 1058 | return m_ExpectedResultsPerAverage; |
---|
| 1059 | } |
---|
| 1060 | |
---|
| 1061 | /** |
---|
| 1062 | * Set the value of ExpectedResultsPerAverage. |
---|
| 1063 | * |
---|
| 1064 | * @param newExpectedResultsPerAverage Value to assign to |
---|
| 1065 | * ExpectedResultsPerAverage. |
---|
| 1066 | */ |
---|
| 1067 | public void setExpectedResultsPerAverage(int newExpectedResultsPerAverage) { |
---|
| 1068 | |
---|
| 1069 | m_ExpectedResultsPerAverage = newExpectedResultsPerAverage; |
---|
| 1070 | } |
---|
| 1071 | |
---|
| 1072 | /** |
---|
| 1073 | * Returns the tip text for this property |
---|
| 1074 | * @return tip text for this property suitable for |
---|
| 1075 | * displaying in the explorer/experimenter gui |
---|
| 1076 | */ |
---|
| 1077 | public String keyFieldNameTipText() { |
---|
| 1078 | return "Set the field name that will be unique for a run."; |
---|
| 1079 | } |
---|
| 1080 | |
---|
| 1081 | /** |
---|
| 1082 | * Get the value of KeyFieldName. |
---|
| 1083 | * |
---|
| 1084 | * @return Value of KeyFieldName. |
---|
| 1085 | */ |
---|
| 1086 | public String getKeyFieldName() { |
---|
| 1087 | |
---|
| 1088 | return m_KeyFieldName; |
---|
| 1089 | } |
---|
| 1090 | |
---|
| 1091 | /** |
---|
| 1092 | * Set the value of KeyFieldName. |
---|
| 1093 | * |
---|
| 1094 | * @param newKeyFieldName Value to assign to KeyFieldName. |
---|
| 1095 | */ |
---|
| 1096 | public void setKeyFieldName(String newKeyFieldName) { |
---|
| 1097 | |
---|
| 1098 | m_KeyFieldName = newKeyFieldName; |
---|
| 1099 | m_CountFieldName = "Num_" + m_KeyFieldName; |
---|
| 1100 | findKeyIndex(); |
---|
| 1101 | } |
---|
| 1102 | |
---|
| 1103 | /** |
---|
| 1104 | * Sets the object to send results of each run to. |
---|
| 1105 | * |
---|
| 1106 | * @param listener a value of type 'ResultListener' |
---|
| 1107 | */ |
---|
| 1108 | public void setResultListener(ResultListener listener) { |
---|
| 1109 | |
---|
| 1110 | m_ResultListener = listener; |
---|
| 1111 | } |
---|
| 1112 | |
---|
| 1113 | /** |
---|
| 1114 | * Returns the tip text for this property |
---|
| 1115 | * @return tip text for this property suitable for |
---|
| 1116 | * displaying in the explorer/experimenter gui |
---|
| 1117 | */ |
---|
| 1118 | public String resultProducerTipText() { |
---|
| 1119 | return "Set the resultProducer for which results are to be averaged."; |
---|
| 1120 | } |
---|
| 1121 | |
---|
| 1122 | /** |
---|
| 1123 | * Get the ResultProducer. |
---|
| 1124 | * |
---|
| 1125 | * @return the ResultProducer. |
---|
| 1126 | */ |
---|
| 1127 | public ResultProducer getResultProducer() { |
---|
| 1128 | |
---|
| 1129 | return m_ResultProducer; |
---|
| 1130 | } |
---|
| 1131 | |
---|
| 1132 | /** |
---|
| 1133 | * Set the ResultProducer. |
---|
| 1134 | * |
---|
| 1135 | * @param newResultProducer new ResultProducer to use. |
---|
| 1136 | */ |
---|
| 1137 | public void setResultProducer(ResultProducer newResultProducer) { |
---|
| 1138 | |
---|
| 1139 | m_ResultProducer = newResultProducer; |
---|
| 1140 | m_ResultProducer.setResultListener(this); |
---|
| 1141 | findKeyIndex(); |
---|
| 1142 | } |
---|
| 1143 | |
---|
| 1144 | /** |
---|
| 1145 | * Gets a text descrption of the result producer. |
---|
| 1146 | * |
---|
| 1147 | * @return a text description of the result producer. |
---|
| 1148 | */ |
---|
| 1149 | public String toString() { |
---|
| 1150 | |
---|
| 1151 | String result = "AveragingResultProducer: "; |
---|
| 1152 | result += getCompatibilityState(); |
---|
| 1153 | if (m_Instances == null) { |
---|
| 1154 | result += ": <null Instances>"; |
---|
| 1155 | } else { |
---|
| 1156 | result += ": " + Utils.backQuoteChars(m_Instances.relationName()); |
---|
| 1157 | } |
---|
| 1158 | return result; |
---|
| 1159 | } |
---|
| 1160 | |
---|
| 1161 | /** |
---|
| 1162 | * Returns the revision string. |
---|
| 1163 | * |
---|
| 1164 | * @return the revision |
---|
| 1165 | */ |
---|
| 1166 | public String getRevision() { |
---|
| 1167 | return RevisionUtils.extract("$Revision: 1.18 $"); |
---|
| 1168 | } |
---|
| 1169 | } // AveragingResultProducer |
---|