1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * UnivariateKernelEstimator.java |
---|
19 | * Copyright (C) 2009 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.estimators; |
---|
24 | |
---|
25 | import java.util.Random; |
---|
26 | import java.util.Collection; |
---|
27 | import java.util.Set; |
---|
28 | import java.util.Map; |
---|
29 | import java.util.Iterator; |
---|
30 | import java.util.TreeMap; |
---|
31 | import java.util.ArrayList; |
---|
32 | |
---|
33 | import weka.core.Statistics; |
---|
34 | import weka.core.Utils; |
---|
35 | |
---|
36 | /** |
---|
37 | * Simple weighted kernel density estimator. |
---|
38 | * |
---|
39 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
40 | * @version $Revision: 5680 $ |
---|
41 | */ |
---|
42 | public class UnivariateKernelEstimator implements UnivariateDensityEstimator, |
---|
43 | UnivariateIntervalEstimator { |
---|
44 | |
---|
45 | /** The collection used to store the weighted values. */ |
---|
46 | protected TreeMap<Double, Double> m_TM = new TreeMap<Double, Double>(); |
---|
47 | |
---|
48 | /** The weighted sum of values */ |
---|
49 | protected double m_WeightedSum = 0; |
---|
50 | |
---|
51 | /** The weighted sum of squared values */ |
---|
52 | protected double m_WeightedSumSquared = 0; |
---|
53 | |
---|
54 | /** The weight of the values collected so far */ |
---|
55 | protected double m_SumOfWeights = 0; |
---|
56 | |
---|
57 | /** The current bandwidth (only computed when needed) */ |
---|
58 | protected double m_Width = Double.MAX_VALUE; |
---|
59 | |
---|
60 | /** The exponent to use in computation of bandwidth (default: -0.25) */ |
---|
61 | protected double m_Exponent = -0.25; |
---|
62 | |
---|
63 | /** The minimum allowed value of the kernel width (default: 1.0E-6) */ |
---|
64 | protected double m_MinWidth = 1.0E-6; |
---|
65 | |
---|
66 | /** Constant for Gaussian density. */ |
---|
67 | public static final double CONST = - 0.5 * Math.log(2 * Math.PI); |
---|
68 | |
---|
69 | /** Threshold at which further kernels are no longer added to sum. */ |
---|
70 | protected double m_Threshold = 1.0E-6; |
---|
71 | |
---|
72 | /** The number of intervals used to approximate prediction interval. */ |
---|
73 | protected int m_NumIntervals = 1000; |
---|
74 | |
---|
75 | /** |
---|
76 | * Adds a value to the density estimator. |
---|
77 | * |
---|
78 | * @param value the value to add |
---|
79 | * @param weight the weight of the value |
---|
80 | */ |
---|
81 | public void addValue(double value, double weight) { |
---|
82 | |
---|
83 | m_WeightedSum += value * weight; |
---|
84 | m_WeightedSumSquared += value * value * weight; |
---|
85 | m_SumOfWeights += weight; |
---|
86 | if (m_TM.get(value) == null) { |
---|
87 | m_TM.put(value, weight); |
---|
88 | } else { |
---|
89 | m_TM.put(value, m_TM.get(value) + weight); |
---|
90 | } |
---|
91 | } |
---|
92 | |
---|
93 | /** |
---|
94 | * Updates bandwidth: the sample standard deviation is multiplied by |
---|
95 | * the total weight to the power of the given exponent. |
---|
96 | * |
---|
97 | * If the total weight is not greater than zero, the width is set to |
---|
98 | * Double.MAX_VALUE. If that is not the case, but the width becomes |
---|
99 | * smaller than m_MinWidth, the width is set to the value of |
---|
100 | * m_MinWidth. |
---|
101 | */ |
---|
102 | public void updateWidth() { |
---|
103 | |
---|
104 | // OK, need to do some work |
---|
105 | if (m_SumOfWeights > 0) { |
---|
106 | |
---|
107 | // Compute variance for scaling |
---|
108 | double mean = m_WeightedSum / m_SumOfWeights; |
---|
109 | double variance = m_WeightedSumSquared / m_SumOfWeights - mean * mean; |
---|
110 | if (variance < 0) { |
---|
111 | variance = 0; |
---|
112 | } |
---|
113 | |
---|
114 | // Compute kernel bandwidth |
---|
115 | m_Width = Math.sqrt(variance) * Math.pow(m_SumOfWeights, m_Exponent); |
---|
116 | |
---|
117 | if (m_Width <= m_MinWidth) { |
---|
118 | m_Width = m_MinWidth; |
---|
119 | } |
---|
120 | } else { |
---|
121 | m_Width = Double.MAX_VALUE; |
---|
122 | } |
---|
123 | } |
---|
124 | |
---|
125 | |
---|
126 | /** |
---|
127 | * Returns the interval for the given confidence value. |
---|
128 | * |
---|
129 | * @param conf the confidence value in the interval [0, 1] |
---|
130 | * @return the interval |
---|
131 | */ |
---|
132 | public double[][] predictIntervals(double conf) { |
---|
133 | |
---|
134 | // Update the bandwidth |
---|
135 | updateWidth(); |
---|
136 | |
---|
137 | // Compute minimum and maximum value, and delta |
---|
138 | double val = Statistics.normalInverse(1.0 - (1.0 - conf) / 2); |
---|
139 | double min = m_TM.firstKey() - val * m_Width; |
---|
140 | double max = m_TM.lastKey() + val * m_Width; |
---|
141 | double delta = (max - min) / m_NumIntervals; |
---|
142 | |
---|
143 | // Create array with estimated probabilities |
---|
144 | double[] probabilities = new double[m_NumIntervals]; |
---|
145 | double leftVal = Math.exp(logDensity(min)); |
---|
146 | for (int i = 0; i < m_NumIntervals; i++) { |
---|
147 | double rightVal = Math.exp(logDensity(min + (i + 1) * delta)); |
---|
148 | probabilities[i] = 0.5 * (leftVal + rightVal) * delta; |
---|
149 | leftVal = rightVal; |
---|
150 | } |
---|
151 | |
---|
152 | // Sort array based on area of bin estimates |
---|
153 | int[] sortedIndices = Utils.sort(probabilities); |
---|
154 | |
---|
155 | // Mark the intervals to use |
---|
156 | double sum = 0; |
---|
157 | boolean[] toUse = new boolean[probabilities.length]; |
---|
158 | int k = 0; |
---|
159 | while ((sum < conf) && (k < toUse.length)){ |
---|
160 | toUse[sortedIndices[toUse.length - (k + 1)]] = true; |
---|
161 | sum += probabilities[sortedIndices[toUse.length - (k + 1)]]; |
---|
162 | k++; |
---|
163 | } |
---|
164 | |
---|
165 | // Don't need probabilities anymore |
---|
166 | probabilities = null; |
---|
167 | |
---|
168 | // Create final list of intervals |
---|
169 | ArrayList<double[]> intervals = new ArrayList<double[]>(); |
---|
170 | |
---|
171 | // The current interval |
---|
172 | double[] interval = null; |
---|
173 | |
---|
174 | // Iterate through kernels |
---|
175 | boolean haveStartedInterval = false; |
---|
176 | for (int i = 0; i < m_NumIntervals; i++) { |
---|
177 | |
---|
178 | // Should the current bin be used? |
---|
179 | if (toUse[i]) { |
---|
180 | |
---|
181 | // Do we need to create a new interval? |
---|
182 | if (haveStartedInterval == false) { |
---|
183 | haveStartedInterval = true; |
---|
184 | interval = new double[2]; |
---|
185 | interval[0] = min + i * delta; |
---|
186 | } |
---|
187 | |
---|
188 | // Regardless, we should update the upper boundary |
---|
189 | interval[1] = min + (i + 1) * delta; |
---|
190 | } else { |
---|
191 | |
---|
192 | // We need to finalize and store the last interval |
---|
193 | // if necessary. |
---|
194 | if (haveStartedInterval) { |
---|
195 | haveStartedInterval = false; |
---|
196 | intervals.add(interval); |
---|
197 | } |
---|
198 | } |
---|
199 | } |
---|
200 | |
---|
201 | // Add last interval if there is one |
---|
202 | if (haveStartedInterval) { |
---|
203 | intervals.add(interval); |
---|
204 | } |
---|
205 | |
---|
206 | return intervals.toArray(new double[0][0]); |
---|
207 | } |
---|
208 | |
---|
209 | /** |
---|
210 | * Computes the logarithm of x and y given the logarithms of x and y. |
---|
211 | * |
---|
212 | * This is based on Tobias P. Mann's description in "Numerically |
---|
213 | * Stable Hidden Markov Implementation" (2006). |
---|
214 | */ |
---|
215 | protected double logOfSum(double logOfX, double logOfY) { |
---|
216 | |
---|
217 | // Check for cases where log of zero is present |
---|
218 | if (Double.isNaN(logOfX)) { |
---|
219 | return logOfY; |
---|
220 | } |
---|
221 | if (Double.isNaN(logOfY)) { |
---|
222 | return logOfX; |
---|
223 | } |
---|
224 | |
---|
225 | // Otherwise return proper result, taken care of overflows |
---|
226 | if (logOfX > logOfY) { |
---|
227 | return logOfX + Math.log(1 + Math.exp(logOfY - logOfX)); |
---|
228 | } else { |
---|
229 | return logOfY + Math.log(1 + Math.exp(logOfX - logOfY)); |
---|
230 | } |
---|
231 | } |
---|
232 | |
---|
233 | /** |
---|
234 | * Compute running sum of density values and weights. |
---|
235 | */ |
---|
236 | protected void runningSum(Set<Map.Entry<Double,Double>> c, double value, |
---|
237 | double[] sums) { |
---|
238 | |
---|
239 | // Auxiliary variables |
---|
240 | double offset = CONST - Math.log(m_Width); |
---|
241 | double logFactor = Math.log(m_Threshold) - Math.log(1 - m_Threshold); |
---|
242 | double logSumOfWeights = Math.log(m_SumOfWeights); |
---|
243 | |
---|
244 | // Iterate through values |
---|
245 | Iterator<Map.Entry<Double,Double>> itr = c.iterator(); |
---|
246 | while(itr.hasNext()) { |
---|
247 | Map.Entry<Double,Double> entry = itr.next(); |
---|
248 | |
---|
249 | // Skip entry if weight is zero because it cannot contribute to sum |
---|
250 | if (entry.getValue() > 0) { |
---|
251 | double diff = (entry.getKey() - value) / m_Width; |
---|
252 | double logDensity = offset - 0.5 * diff * diff; |
---|
253 | double logWeight = Math.log(entry.getValue()); |
---|
254 | sums[0] = logOfSum(sums[0], logWeight + logDensity); |
---|
255 | sums[1] = logOfSum(sums[1], logWeight); |
---|
256 | |
---|
257 | // Can we stop assuming worst case? |
---|
258 | if (logDensity + logSumOfWeights < logOfSum(logFactor + sums[0], logDensity + sums[1])) { |
---|
259 | break; |
---|
260 | } |
---|
261 | } |
---|
262 | } |
---|
263 | } |
---|
264 | |
---|
265 | /** |
---|
266 | * Returns the natural logarithm of the density estimate at the given |
---|
267 | * point. |
---|
268 | * |
---|
269 | * @param value the value at which to evaluate |
---|
270 | * @return the natural logarithm of the density estimate at the given |
---|
271 | * value |
---|
272 | */ |
---|
273 | public double logDensity(double value) { |
---|
274 | |
---|
275 | // Update the bandwidth |
---|
276 | updateWidth(); |
---|
277 | |
---|
278 | // Array used to keep running sums |
---|
279 | double[] sums = new double[2]; |
---|
280 | sums[0] = Double.NaN; |
---|
281 | sums[1] = Double.NaN; |
---|
282 | |
---|
283 | // Examine right-hand size of value |
---|
284 | runningSum(m_TM.tailMap(value, true).entrySet(), value, sums); |
---|
285 | |
---|
286 | // Examine left-hand size of value |
---|
287 | runningSum(m_TM.headMap(value, false).descendingMap().entrySet(), value, sums); |
---|
288 | |
---|
289 | // Need to normalize |
---|
290 | return sums[0] - Math.log(m_SumOfWeights); |
---|
291 | } |
---|
292 | |
---|
293 | /** |
---|
294 | * Returns textual description of this estimator. |
---|
295 | */ |
---|
296 | public String toString() { |
---|
297 | |
---|
298 | return "Kernel estimator with bandwidth " + m_Width + |
---|
299 | " and total weight " + m_SumOfWeights + |
---|
300 | " based on\n" + m_TM.toString(); |
---|
301 | } |
---|
302 | |
---|
303 | /** |
---|
304 | * Main method, used for testing this class. |
---|
305 | */ |
---|
306 | public static void main(String[] args) { |
---|
307 | |
---|
308 | // Get random number generator initialized by system |
---|
309 | Random r = new Random(); |
---|
310 | |
---|
311 | // Create density estimator |
---|
312 | UnivariateKernelEstimator e = new UnivariateKernelEstimator(); |
---|
313 | |
---|
314 | // Output the density estimator |
---|
315 | System.out.println(e); |
---|
316 | |
---|
317 | // Monte Carlo integration |
---|
318 | double sum = 0; |
---|
319 | for (int i = 0; i < 1000; i++) { |
---|
320 | sum += Math.exp(e.logDensity(r.nextDouble() * 10.0 - 5.0)); |
---|
321 | } |
---|
322 | System.out.println("Approximate integral: " + 10.0 * sum / 1000); |
---|
323 | |
---|
324 | // Add Gaussian values into it |
---|
325 | for (int i = 0; i < 1000; i++) { |
---|
326 | e.addValue(0.1 * r.nextGaussian() - 3, 1); |
---|
327 | e.addValue(r.nextGaussian() * 0.25, 3); |
---|
328 | } |
---|
329 | |
---|
330 | // Monte Carlo integration |
---|
331 | sum = 0; |
---|
332 | int points = 10000; |
---|
333 | for (int i = 0; i < points; i++) { |
---|
334 | double value = r.nextDouble() * 10.0 - 5.0; |
---|
335 | sum += Math.exp(e.logDensity(value)); |
---|
336 | } |
---|
337 | System.out.println("Approximate integral: " + 10.0 * sum / points); |
---|
338 | |
---|
339 | // Check interval estimates |
---|
340 | double[][] Intervals = e.predictIntervals(0.9); |
---|
341 | |
---|
342 | System.out.println("Printing kernel intervals ---------------------"); |
---|
343 | |
---|
344 | for (int k = 0; k < Intervals.length; k++) { |
---|
345 | System.out.println("Left: " + Intervals[k][0] + "\t Right: " + Intervals[k][1]); |
---|
346 | } |
---|
347 | |
---|
348 | System.out.println("Finished kernel printing intervals ---------------------"); |
---|
349 | |
---|
350 | double Covered = 0; |
---|
351 | for (int i = 0; i < 1000; i++) { |
---|
352 | double val = -1; |
---|
353 | if (r.nextDouble() < 0.25) { |
---|
354 | val = 0.1 * r.nextGaussian() - 3.0; |
---|
355 | } else { |
---|
356 | val = r.nextGaussian() * 0.25; |
---|
357 | } |
---|
358 | for (int k = 0; k < Intervals.length; k++) { |
---|
359 | if (val >= Intervals[k][0] && val <= Intervals[k][1]) { |
---|
360 | Covered++; |
---|
361 | break; |
---|
362 | } |
---|
363 | } |
---|
364 | } |
---|
365 | System.out.println("Coverage at 0.9 level for kernel intervals: " + Covered / 1000); |
---|
366 | |
---|
367 | // Compare performance to normal estimator on normally distributed data |
---|
368 | UnivariateKernelEstimator eKernel = new UnivariateKernelEstimator(); |
---|
369 | UnivariateNormalEstimator eNormal = new UnivariateNormalEstimator(); |
---|
370 | |
---|
371 | for (int j = 1; j < 5; j++) { |
---|
372 | double numTrain = Math.pow(10, j); |
---|
373 | System.out.println("Number of training cases: " + |
---|
374 | numTrain); |
---|
375 | |
---|
376 | // Add training cases |
---|
377 | for (int i = 0; i < numTrain; i++) { |
---|
378 | double val = r.nextGaussian() * 1.5 + 0.5; |
---|
379 | eKernel.addValue(val, 1); |
---|
380 | eNormal.addValue(val, 1); |
---|
381 | } |
---|
382 | |
---|
383 | // Monte Carlo integration |
---|
384 | sum = 0; |
---|
385 | points = 10000; |
---|
386 | for (int i = 0; i < points; i++) { |
---|
387 | double value = r.nextDouble() * 20.0 - 10.0; |
---|
388 | sum += Math.exp(eKernel.logDensity(value)); |
---|
389 | } |
---|
390 | System.out.println("Approximate integral for kernel estimator: " + 20.0 * sum / points); |
---|
391 | |
---|
392 | // Evaluate estimators |
---|
393 | double loglikelihoodKernel = 0, loglikelihoodNormal = 0; |
---|
394 | for (int i = 0; i < 1000; i++) { |
---|
395 | double val = r.nextGaussian() * 1.5 + 0.5; |
---|
396 | loglikelihoodKernel += eKernel.logDensity(val); |
---|
397 | loglikelihoodNormal += eNormal.logDensity(val); |
---|
398 | } |
---|
399 | System.out.println("Loglikelihood for kernel estimator: " + |
---|
400 | loglikelihoodKernel / 1000); |
---|
401 | System.out.println("Loglikelihood for normal estimator: " + |
---|
402 | loglikelihoodNormal / 1000); |
---|
403 | |
---|
404 | // Check interval estimates |
---|
405 | double[][] kernelIntervals = eKernel.predictIntervals(0.95); |
---|
406 | double[][] normalIntervals = eNormal.predictIntervals(0.95); |
---|
407 | |
---|
408 | System.out.println("Printing kernel intervals ---------------------"); |
---|
409 | |
---|
410 | for (int k = 0; k < kernelIntervals.length; k++) { |
---|
411 | System.out.println("Left: " + kernelIntervals[k][0] + "\t Right: " + kernelIntervals[k][1]); |
---|
412 | } |
---|
413 | |
---|
414 | System.out.println("Finished kernel printing intervals ---------------------"); |
---|
415 | |
---|
416 | System.out.println("Printing normal intervals ---------------------"); |
---|
417 | |
---|
418 | for (int k = 0; k < normalIntervals.length; k++) { |
---|
419 | System.out.println("Left: " + normalIntervals[k][0] + "\t Right: " + normalIntervals[k][1]); |
---|
420 | } |
---|
421 | |
---|
422 | System.out.println("Finished normal printing intervals ---------------------"); |
---|
423 | |
---|
424 | double kernelCovered = 0; |
---|
425 | double normalCovered = 0; |
---|
426 | for (int i = 0; i < 1000; i++) { |
---|
427 | double val = r.nextGaussian() * 1.5 + 0.5; |
---|
428 | for (int k = 0; k < kernelIntervals.length; k++) { |
---|
429 | if (val >= kernelIntervals[k][0] && val <= kernelIntervals[k][1]) { |
---|
430 | kernelCovered++; |
---|
431 | break; |
---|
432 | } |
---|
433 | } |
---|
434 | for (int k = 0; k < normalIntervals.length; k++) { |
---|
435 | if (val >= normalIntervals[k][0] && val <= normalIntervals[k][1]) { |
---|
436 | normalCovered++; |
---|
437 | break; |
---|
438 | } |
---|
439 | } |
---|
440 | } |
---|
441 | System.out.println("Coverage at 0.95 level for kernel intervals: " + kernelCovered / 1000); |
---|
442 | System.out.println("Coverage at 0.95 level for normal intervals: " + normalCovered / 1000); |
---|
443 | |
---|
444 | kernelIntervals = eKernel.predictIntervals(0.8); |
---|
445 | normalIntervals = eNormal.predictIntervals(0.8); |
---|
446 | kernelCovered = 0; |
---|
447 | normalCovered = 0; |
---|
448 | for (int i = 0; i < 1000; i++) { |
---|
449 | double val = r.nextGaussian() * 1.5 + 0.5; |
---|
450 | for (int k = 0; k < kernelIntervals.length; k++) { |
---|
451 | if (val >= kernelIntervals[k][0] && val <= kernelIntervals[k][1]) { |
---|
452 | kernelCovered++; |
---|
453 | break; |
---|
454 | } |
---|
455 | } |
---|
456 | for (int k = 0; k < normalIntervals.length; k++) { |
---|
457 | if (val >= normalIntervals[k][0] && val <= normalIntervals[k][1]) { |
---|
458 | normalCovered++; |
---|
459 | break; |
---|
460 | } |
---|
461 | } |
---|
462 | } |
---|
463 | System.out.println("Coverage at 0.8 level for kernel intervals: " + kernelCovered / 1000); |
---|
464 | System.out.println("Coverage at 0.8 level for normal intervals: " + normalCovered / 1000); |
---|
465 | } |
---|
466 | } |
---|
467 | } |
---|