1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * PoissonEstimator.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.estimators; |
---|
24 | |
---|
25 | import weka.core.Capabilities.Capability; |
---|
26 | import weka.core.Capabilities; |
---|
27 | import weka.core.RevisionUtils; |
---|
28 | import weka.core.Utils; |
---|
29 | |
---|
30 | /** |
---|
31 | * Simple probability estimator that places a single Poisson distribution |
---|
32 | * over the observed values. |
---|
33 | * |
---|
34 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
---|
35 | * @version $Revision: 5490 $ |
---|
36 | */ |
---|
37 | public class PoissonEstimator |
---|
38 | extends Estimator |
---|
39 | implements IncrementalEstimator { |
---|
40 | |
---|
41 | /** for serialization */ |
---|
42 | private static final long serialVersionUID = 7669362595289236662L; |
---|
43 | |
---|
44 | /** The number of values seen */ |
---|
45 | private double m_NumValues; |
---|
46 | |
---|
47 | /** The sum of the values seen */ |
---|
48 | private double m_SumOfValues; |
---|
49 | |
---|
50 | /** |
---|
51 | * The average number of times |
---|
52 | * an event occurs in an interval. |
---|
53 | */ |
---|
54 | private double m_Lambda; |
---|
55 | |
---|
56 | |
---|
57 | /** |
---|
58 | * Calculates the log factorial of a number. |
---|
59 | * |
---|
60 | * @param x input number. |
---|
61 | * @return log factorial of x. |
---|
62 | */ |
---|
63 | private double logFac(double x) { |
---|
64 | |
---|
65 | double result = 0; |
---|
66 | for (double i = 2; i <= x; i++) { |
---|
67 | result += Math.log(i); |
---|
68 | } |
---|
69 | return result; |
---|
70 | } |
---|
71 | |
---|
72 | /** |
---|
73 | * Returns value for Poisson distribution |
---|
74 | * |
---|
75 | * @param x the argument to the kernel function |
---|
76 | * @return the value for a Poisson kernel |
---|
77 | */ |
---|
78 | private double Poisson(double x) { |
---|
79 | |
---|
80 | return Math.exp(-m_Lambda + (x * Math.log(m_Lambda)) - logFac(x)); |
---|
81 | } |
---|
82 | |
---|
83 | /** |
---|
84 | * Add a new data value to the current estimator. |
---|
85 | * |
---|
86 | * @param data the new data value |
---|
87 | * @param weight the weight assigned to the data value |
---|
88 | */ |
---|
89 | public void addValue(double data, double weight) { |
---|
90 | |
---|
91 | m_NumValues += weight; |
---|
92 | m_SumOfValues += data * weight; |
---|
93 | if (m_NumValues != 0) { |
---|
94 | m_Lambda = m_SumOfValues / m_NumValues; |
---|
95 | } |
---|
96 | } |
---|
97 | |
---|
98 | /** |
---|
99 | * Get a probability estimate for a value |
---|
100 | * |
---|
101 | * @param data the value to estimate the probability of |
---|
102 | * @return the estimated probability of the supplied value |
---|
103 | */ |
---|
104 | public double getProbability(double data) { |
---|
105 | |
---|
106 | return Poisson(data); |
---|
107 | } |
---|
108 | |
---|
109 | /** Display a representation of this estimator */ |
---|
110 | public String toString() { |
---|
111 | |
---|
112 | return "Poisson Lambda = " + Utils.doubleToString(m_Lambda, 4, 2) + "\n"; |
---|
113 | } |
---|
114 | |
---|
115 | /** |
---|
116 | * Returns default capabilities of the classifier. |
---|
117 | * |
---|
118 | * @return the capabilities of this classifier |
---|
119 | */ |
---|
120 | public Capabilities getCapabilities() { |
---|
121 | Capabilities result = super.getCapabilities(); |
---|
122 | result.disableAll(); |
---|
123 | |
---|
124 | // class |
---|
125 | if (!m_noClass) { |
---|
126 | result.enable(Capability.NOMINAL_CLASS); |
---|
127 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
128 | } else { |
---|
129 | result.enable(Capability.NO_CLASS); |
---|
130 | } |
---|
131 | |
---|
132 | // attributes |
---|
133 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
134 | return result; |
---|
135 | } |
---|
136 | |
---|
137 | /** |
---|
138 | * Returns the revision string. |
---|
139 | * |
---|
140 | * @return the revision |
---|
141 | */ |
---|
142 | public String getRevision() { |
---|
143 | return RevisionUtils.extract("$Revision: 5490 $"); |
---|
144 | } |
---|
145 | |
---|
146 | /** |
---|
147 | * Main method for testing this class. |
---|
148 | * |
---|
149 | * @param argv should contain a sequence of numeric values |
---|
150 | */ |
---|
151 | public static void main(String [] argv) { |
---|
152 | |
---|
153 | try { |
---|
154 | if (argv.length == 0) { |
---|
155 | System.out.println("Please specify a set of instances."); |
---|
156 | return; |
---|
157 | } |
---|
158 | PoissonEstimator newEst = new PoissonEstimator(); |
---|
159 | for(int i = 0; i < argv.length; i++) { |
---|
160 | double current = Double.valueOf(argv[i]).doubleValue(); |
---|
161 | System.out.println(newEst); |
---|
162 | System.out.println("Prediction for " + current |
---|
163 | + " = " + newEst.getProbability(current)); |
---|
164 | newEst.addValue(current, 1); |
---|
165 | } |
---|
166 | |
---|
167 | } catch (Exception e) { |
---|
168 | System.out.println(e.getMessage()); |
---|
169 | } |
---|
170 | } |
---|
171 | } |
---|