1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * NormalEstimator.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.estimators; |
---|
24 | |
---|
25 | import weka.core.Capabilities.Capability; |
---|
26 | import weka.core.Capabilities; |
---|
27 | import weka.core.RevisionUtils; |
---|
28 | import weka.core.Statistics; |
---|
29 | import weka.core.Utils; |
---|
30 | |
---|
31 | /** |
---|
32 | * Simple probability estimator that places a single normal distribution |
---|
33 | * over the observed values. |
---|
34 | * |
---|
35 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
---|
36 | * @version $Revision: 5490 $ |
---|
37 | */ |
---|
38 | public class NormalEstimator |
---|
39 | extends Estimator |
---|
40 | implements IncrementalEstimator { |
---|
41 | |
---|
42 | /** for serialization */ |
---|
43 | private static final long serialVersionUID = 93584379632315841L; |
---|
44 | |
---|
45 | /** The sum of the weights */ |
---|
46 | private double m_SumOfWeights; |
---|
47 | |
---|
48 | /** The sum of the values seen */ |
---|
49 | private double m_SumOfValues; |
---|
50 | |
---|
51 | /** The sum of the values squared */ |
---|
52 | private double m_SumOfValuesSq; |
---|
53 | |
---|
54 | /** The current mean */ |
---|
55 | private double m_Mean; |
---|
56 | |
---|
57 | /** The current standard deviation */ |
---|
58 | private double m_StandardDev; |
---|
59 | |
---|
60 | /** The precision of numeric values ( = minimum std dev permitted) */ |
---|
61 | private double m_Precision; |
---|
62 | |
---|
63 | /** |
---|
64 | * Round a data value using the defined precision for this estimator |
---|
65 | * |
---|
66 | * @param data the value to round |
---|
67 | * @return the rounded data value |
---|
68 | */ |
---|
69 | private double round(double data) { |
---|
70 | |
---|
71 | return Math.rint(data / m_Precision) * m_Precision; |
---|
72 | } |
---|
73 | |
---|
74 | // =============== |
---|
75 | // Public methods. |
---|
76 | // =============== |
---|
77 | |
---|
78 | /** |
---|
79 | * Constructor that takes a precision argument. |
---|
80 | * |
---|
81 | * @param precision the precision to which numeric values are given. For |
---|
82 | * example, if the precision is stated to be 0.1, the values in the |
---|
83 | * interval (0.25,0.35] are all treated as 0.3. |
---|
84 | */ |
---|
85 | public NormalEstimator(double precision) { |
---|
86 | |
---|
87 | m_Precision = precision; |
---|
88 | |
---|
89 | // Allow at most 3 sd's within one interval |
---|
90 | m_StandardDev = m_Precision / (2 * 3); |
---|
91 | } |
---|
92 | |
---|
93 | /** |
---|
94 | * Add a new data value to the current estimator. |
---|
95 | * |
---|
96 | * @param data the new data value |
---|
97 | * @param weight the weight assigned to the data value |
---|
98 | */ |
---|
99 | public void addValue(double data, double weight) { |
---|
100 | |
---|
101 | if (weight == 0) { |
---|
102 | return; |
---|
103 | } |
---|
104 | data = round(data); |
---|
105 | m_SumOfWeights += weight; |
---|
106 | m_SumOfValues += data * weight; |
---|
107 | m_SumOfValuesSq += data * data * weight; |
---|
108 | |
---|
109 | if (m_SumOfWeights > 0) { |
---|
110 | m_Mean = m_SumOfValues / m_SumOfWeights; |
---|
111 | double stdDev = Math.sqrt(Math.abs(m_SumOfValuesSq |
---|
112 | - m_Mean * m_SumOfValues) |
---|
113 | / m_SumOfWeights); |
---|
114 | // If the stdDev ~= 0, we really have no idea of scale yet, |
---|
115 | // so stick with the default. Otherwise... |
---|
116 | if (stdDev > 1e-10) { |
---|
117 | m_StandardDev = Math.max(m_Precision / (2 * 3), |
---|
118 | // allow at most 3sd's within one interval |
---|
119 | stdDev); |
---|
120 | } |
---|
121 | } |
---|
122 | } |
---|
123 | |
---|
124 | /** |
---|
125 | * Get a probability estimate for a value |
---|
126 | * |
---|
127 | * @param data the value to estimate the probability of |
---|
128 | * @return the estimated probability of the supplied value |
---|
129 | */ |
---|
130 | public double getProbability(double data) { |
---|
131 | |
---|
132 | data = round(data); |
---|
133 | double zLower = (data - m_Mean - (m_Precision / 2)) / m_StandardDev; |
---|
134 | double zUpper = (data - m_Mean + (m_Precision / 2)) / m_StandardDev; |
---|
135 | |
---|
136 | double pLower = Statistics.normalProbability(zLower); |
---|
137 | double pUpper = Statistics.normalProbability(zUpper); |
---|
138 | return pUpper - pLower; |
---|
139 | } |
---|
140 | |
---|
141 | /** |
---|
142 | * Display a representation of this estimator |
---|
143 | */ |
---|
144 | public String toString() { |
---|
145 | |
---|
146 | return "Normal Distribution. Mean = " + Utils.doubleToString(m_Mean, 4) |
---|
147 | + " StandardDev = " + Utils.doubleToString(m_StandardDev, 4) |
---|
148 | + " WeightSum = " + Utils.doubleToString(m_SumOfWeights, 4) |
---|
149 | + " Precision = " + m_Precision + "\n"; |
---|
150 | } |
---|
151 | |
---|
152 | /** |
---|
153 | * Returns default capabilities of the classifier. |
---|
154 | * |
---|
155 | * @return the capabilities of this classifier |
---|
156 | */ |
---|
157 | public Capabilities getCapabilities() { |
---|
158 | Capabilities result = super.getCapabilities(); |
---|
159 | result.disableAll(); |
---|
160 | |
---|
161 | // class |
---|
162 | if (!m_noClass) { |
---|
163 | result.enable(Capability.NOMINAL_CLASS); |
---|
164 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
165 | } else { |
---|
166 | result.enable(Capability.NO_CLASS); |
---|
167 | } |
---|
168 | |
---|
169 | // attributes |
---|
170 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
171 | return result; |
---|
172 | } |
---|
173 | |
---|
174 | /** |
---|
175 | * Return the value of the mean of this normal estimator. |
---|
176 | * |
---|
177 | * @return the mean |
---|
178 | */ |
---|
179 | public double getMean() { |
---|
180 | return m_Mean; |
---|
181 | } |
---|
182 | |
---|
183 | /** |
---|
184 | * Return the value of the standard deviation of this normal estimator. |
---|
185 | * |
---|
186 | * @return the standard deviation |
---|
187 | */ |
---|
188 | public double getStdDev() { |
---|
189 | return m_StandardDev; |
---|
190 | } |
---|
191 | |
---|
192 | /** |
---|
193 | * Return the value of the precision of this normal estimator. |
---|
194 | * |
---|
195 | * @return the precision |
---|
196 | */ |
---|
197 | public double getPrecision() { |
---|
198 | return m_Precision; |
---|
199 | } |
---|
200 | |
---|
201 | /** |
---|
202 | * Return the sum of the weights for this normal estimator. |
---|
203 | * |
---|
204 | * @return the sum of the weights |
---|
205 | */ |
---|
206 | public double getSumOfWeights() { |
---|
207 | return m_SumOfWeights; |
---|
208 | } |
---|
209 | |
---|
210 | /** |
---|
211 | * Returns the revision string. |
---|
212 | * |
---|
213 | * @return the revision |
---|
214 | */ |
---|
215 | public String getRevision() { |
---|
216 | return RevisionUtils.extract("$Revision: 5490 $"); |
---|
217 | } |
---|
218 | |
---|
219 | /** |
---|
220 | * Main method for testing this class. |
---|
221 | * |
---|
222 | * @param argv should contain a sequence of numeric values |
---|
223 | */ |
---|
224 | public static void main(String [] argv) { |
---|
225 | |
---|
226 | try { |
---|
227 | |
---|
228 | if (argv.length == 0) { |
---|
229 | System.out.println("Please specify a set of instances."); |
---|
230 | return; |
---|
231 | } |
---|
232 | NormalEstimator newEst = new NormalEstimator(0.01); |
---|
233 | for(int i = 0; i < argv.length; i++) { |
---|
234 | double current = Double.valueOf(argv[i]).doubleValue(); |
---|
235 | System.out.println(newEst); |
---|
236 | System.out.println("Prediction for " + current |
---|
237 | + " = " + newEst.getProbability(current)); |
---|
238 | newEst.addValue(current, 1); |
---|
239 | } |
---|
240 | } catch (Exception e) { |
---|
241 | System.out.println(e.getMessage()); |
---|
242 | } |
---|
243 | } |
---|
244 | } |
---|