| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * NormalEstimator.java |
|---|
| 19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
|---|
| 20 | * |
|---|
| 21 | */ |
|---|
| 22 | |
|---|
| 23 | package weka.estimators; |
|---|
| 24 | |
|---|
| 25 | import weka.core.Capabilities.Capability; |
|---|
| 26 | import weka.core.Capabilities; |
|---|
| 27 | import weka.core.RevisionUtils; |
|---|
| 28 | import weka.core.Statistics; |
|---|
| 29 | import weka.core.Utils; |
|---|
| 30 | |
|---|
| 31 | /** |
|---|
| 32 | * Simple probability estimator that places a single normal distribution |
|---|
| 33 | * over the observed values. |
|---|
| 34 | * |
|---|
| 35 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
|---|
| 36 | * @version $Revision: 5490 $ |
|---|
| 37 | */ |
|---|
| 38 | public class NormalEstimator |
|---|
| 39 | extends Estimator |
|---|
| 40 | implements IncrementalEstimator { |
|---|
| 41 | |
|---|
| 42 | /** for serialization */ |
|---|
| 43 | private static final long serialVersionUID = 93584379632315841L; |
|---|
| 44 | |
|---|
| 45 | /** The sum of the weights */ |
|---|
| 46 | private double m_SumOfWeights; |
|---|
| 47 | |
|---|
| 48 | /** The sum of the values seen */ |
|---|
| 49 | private double m_SumOfValues; |
|---|
| 50 | |
|---|
| 51 | /** The sum of the values squared */ |
|---|
| 52 | private double m_SumOfValuesSq; |
|---|
| 53 | |
|---|
| 54 | /** The current mean */ |
|---|
| 55 | private double m_Mean; |
|---|
| 56 | |
|---|
| 57 | /** The current standard deviation */ |
|---|
| 58 | private double m_StandardDev; |
|---|
| 59 | |
|---|
| 60 | /** The precision of numeric values ( = minimum std dev permitted) */ |
|---|
| 61 | private double m_Precision; |
|---|
| 62 | |
|---|
| 63 | /** |
|---|
| 64 | * Round a data value using the defined precision for this estimator |
|---|
| 65 | * |
|---|
| 66 | * @param data the value to round |
|---|
| 67 | * @return the rounded data value |
|---|
| 68 | */ |
|---|
| 69 | private double round(double data) { |
|---|
| 70 | |
|---|
| 71 | return Math.rint(data / m_Precision) * m_Precision; |
|---|
| 72 | } |
|---|
| 73 | |
|---|
| 74 | // =============== |
|---|
| 75 | // Public methods. |
|---|
| 76 | // =============== |
|---|
| 77 | |
|---|
| 78 | /** |
|---|
| 79 | * Constructor that takes a precision argument. |
|---|
| 80 | * |
|---|
| 81 | * @param precision the precision to which numeric values are given. For |
|---|
| 82 | * example, if the precision is stated to be 0.1, the values in the |
|---|
| 83 | * interval (0.25,0.35] are all treated as 0.3. |
|---|
| 84 | */ |
|---|
| 85 | public NormalEstimator(double precision) { |
|---|
| 86 | |
|---|
| 87 | m_Precision = precision; |
|---|
| 88 | |
|---|
| 89 | // Allow at most 3 sd's within one interval |
|---|
| 90 | m_StandardDev = m_Precision / (2 * 3); |
|---|
| 91 | } |
|---|
| 92 | |
|---|
| 93 | /** |
|---|
| 94 | * Add a new data value to the current estimator. |
|---|
| 95 | * |
|---|
| 96 | * @param data the new data value |
|---|
| 97 | * @param weight the weight assigned to the data value |
|---|
| 98 | */ |
|---|
| 99 | public void addValue(double data, double weight) { |
|---|
| 100 | |
|---|
| 101 | if (weight == 0) { |
|---|
| 102 | return; |
|---|
| 103 | } |
|---|
| 104 | data = round(data); |
|---|
| 105 | m_SumOfWeights += weight; |
|---|
| 106 | m_SumOfValues += data * weight; |
|---|
| 107 | m_SumOfValuesSq += data * data * weight; |
|---|
| 108 | |
|---|
| 109 | if (m_SumOfWeights > 0) { |
|---|
| 110 | m_Mean = m_SumOfValues / m_SumOfWeights; |
|---|
| 111 | double stdDev = Math.sqrt(Math.abs(m_SumOfValuesSq |
|---|
| 112 | - m_Mean * m_SumOfValues) |
|---|
| 113 | / m_SumOfWeights); |
|---|
| 114 | // If the stdDev ~= 0, we really have no idea of scale yet, |
|---|
| 115 | // so stick with the default. Otherwise... |
|---|
| 116 | if (stdDev > 1e-10) { |
|---|
| 117 | m_StandardDev = Math.max(m_Precision / (2 * 3), |
|---|
| 118 | // allow at most 3sd's within one interval |
|---|
| 119 | stdDev); |
|---|
| 120 | } |
|---|
| 121 | } |
|---|
| 122 | } |
|---|
| 123 | |
|---|
| 124 | /** |
|---|
| 125 | * Get a probability estimate for a value |
|---|
| 126 | * |
|---|
| 127 | * @param data the value to estimate the probability of |
|---|
| 128 | * @return the estimated probability of the supplied value |
|---|
| 129 | */ |
|---|
| 130 | public double getProbability(double data) { |
|---|
| 131 | |
|---|
| 132 | data = round(data); |
|---|
| 133 | double zLower = (data - m_Mean - (m_Precision / 2)) / m_StandardDev; |
|---|
| 134 | double zUpper = (data - m_Mean + (m_Precision / 2)) / m_StandardDev; |
|---|
| 135 | |
|---|
| 136 | double pLower = Statistics.normalProbability(zLower); |
|---|
| 137 | double pUpper = Statistics.normalProbability(zUpper); |
|---|
| 138 | return pUpper - pLower; |
|---|
| 139 | } |
|---|
| 140 | |
|---|
| 141 | /** |
|---|
| 142 | * Display a representation of this estimator |
|---|
| 143 | */ |
|---|
| 144 | public String toString() { |
|---|
| 145 | |
|---|
| 146 | return "Normal Distribution. Mean = " + Utils.doubleToString(m_Mean, 4) |
|---|
| 147 | + " StandardDev = " + Utils.doubleToString(m_StandardDev, 4) |
|---|
| 148 | + " WeightSum = " + Utils.doubleToString(m_SumOfWeights, 4) |
|---|
| 149 | + " Precision = " + m_Precision + "\n"; |
|---|
| 150 | } |
|---|
| 151 | |
|---|
| 152 | /** |
|---|
| 153 | * Returns default capabilities of the classifier. |
|---|
| 154 | * |
|---|
| 155 | * @return the capabilities of this classifier |
|---|
| 156 | */ |
|---|
| 157 | public Capabilities getCapabilities() { |
|---|
| 158 | Capabilities result = super.getCapabilities(); |
|---|
| 159 | result.disableAll(); |
|---|
| 160 | |
|---|
| 161 | // class |
|---|
| 162 | if (!m_noClass) { |
|---|
| 163 | result.enable(Capability.NOMINAL_CLASS); |
|---|
| 164 | result.enable(Capability.MISSING_CLASS_VALUES); |
|---|
| 165 | } else { |
|---|
| 166 | result.enable(Capability.NO_CLASS); |
|---|
| 167 | } |
|---|
| 168 | |
|---|
| 169 | // attributes |
|---|
| 170 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
|---|
| 171 | return result; |
|---|
| 172 | } |
|---|
| 173 | |
|---|
| 174 | /** |
|---|
| 175 | * Return the value of the mean of this normal estimator. |
|---|
| 176 | * |
|---|
| 177 | * @return the mean |
|---|
| 178 | */ |
|---|
| 179 | public double getMean() { |
|---|
| 180 | return m_Mean; |
|---|
| 181 | } |
|---|
| 182 | |
|---|
| 183 | /** |
|---|
| 184 | * Return the value of the standard deviation of this normal estimator. |
|---|
| 185 | * |
|---|
| 186 | * @return the standard deviation |
|---|
| 187 | */ |
|---|
| 188 | public double getStdDev() { |
|---|
| 189 | return m_StandardDev; |
|---|
| 190 | } |
|---|
| 191 | |
|---|
| 192 | /** |
|---|
| 193 | * Return the value of the precision of this normal estimator. |
|---|
| 194 | * |
|---|
| 195 | * @return the precision |
|---|
| 196 | */ |
|---|
| 197 | public double getPrecision() { |
|---|
| 198 | return m_Precision; |
|---|
| 199 | } |
|---|
| 200 | |
|---|
| 201 | /** |
|---|
| 202 | * Return the sum of the weights for this normal estimator. |
|---|
| 203 | * |
|---|
| 204 | * @return the sum of the weights |
|---|
| 205 | */ |
|---|
| 206 | public double getSumOfWeights() { |
|---|
| 207 | return m_SumOfWeights; |
|---|
| 208 | } |
|---|
| 209 | |
|---|
| 210 | /** |
|---|
| 211 | * Returns the revision string. |
|---|
| 212 | * |
|---|
| 213 | * @return the revision |
|---|
| 214 | */ |
|---|
| 215 | public String getRevision() { |
|---|
| 216 | return RevisionUtils.extract("$Revision: 5490 $"); |
|---|
| 217 | } |
|---|
| 218 | |
|---|
| 219 | /** |
|---|
| 220 | * Main method for testing this class. |
|---|
| 221 | * |
|---|
| 222 | * @param argv should contain a sequence of numeric values |
|---|
| 223 | */ |
|---|
| 224 | public static void main(String [] argv) { |
|---|
| 225 | |
|---|
| 226 | try { |
|---|
| 227 | |
|---|
| 228 | if (argv.length == 0) { |
|---|
| 229 | System.out.println("Please specify a set of instances."); |
|---|
| 230 | return; |
|---|
| 231 | } |
|---|
| 232 | NormalEstimator newEst = new NormalEstimator(0.01); |
|---|
| 233 | for(int i = 0; i < argv.length; i++) { |
|---|
| 234 | double current = Double.valueOf(argv[i]).doubleValue(); |
|---|
| 235 | System.out.println(newEst); |
|---|
| 236 | System.out.println("Prediction for " + current |
|---|
| 237 | + " = " + newEst.getProbability(current)); |
|---|
| 238 | newEst.addValue(current, 1); |
|---|
| 239 | } |
|---|
| 240 | } catch (Exception e) { |
|---|
| 241 | System.out.println(e.getMessage()); |
|---|
| 242 | } |
|---|
| 243 | } |
|---|
| 244 | } |
|---|