1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * NNConditionalEstimator.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.estimators; |
---|
24 | |
---|
25 | import java.util.Random; |
---|
26 | import java.util.Vector; |
---|
27 | |
---|
28 | import weka.core.matrix.Matrix; |
---|
29 | import weka.core.RevisionUtils; |
---|
30 | import weka.core.Utils; |
---|
31 | |
---|
32 | /** |
---|
33 | * Conditional probability estimator for a numeric domain conditional upon |
---|
34 | * a numeric domain (using Mahalanobis distance). |
---|
35 | * |
---|
36 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
---|
37 | * @version $Revision: 1.8 $ |
---|
38 | */ |
---|
39 | public class NNConditionalEstimator implements ConditionalEstimator { |
---|
40 | |
---|
41 | /** Vector containing all of the values seen */ |
---|
42 | private Vector m_Values = new Vector(); |
---|
43 | |
---|
44 | /** Vector containing all of the conditioning values seen */ |
---|
45 | private Vector m_CondValues = new Vector(); |
---|
46 | |
---|
47 | /** Vector containing the associated weights */ |
---|
48 | private Vector m_Weights = new Vector(); |
---|
49 | |
---|
50 | /** The sum of the weights so far */ |
---|
51 | private double m_SumOfWeights; |
---|
52 | |
---|
53 | /** Current Conditional mean */ |
---|
54 | private double m_CondMean; |
---|
55 | |
---|
56 | /** Current Values mean */ |
---|
57 | private double m_ValueMean; |
---|
58 | |
---|
59 | /** Current covariance matrix */ |
---|
60 | private Matrix m_Covariance; |
---|
61 | |
---|
62 | /** Whether we can optimise the kernel summation */ |
---|
63 | private boolean m_AllWeightsOne = true; |
---|
64 | |
---|
65 | /** 2 * PI */ |
---|
66 | private static double TWO_PI = 2 * Math.PI; |
---|
67 | |
---|
68 | // =============== |
---|
69 | // Private methods |
---|
70 | // =============== |
---|
71 | |
---|
72 | /** |
---|
73 | * Execute a binary search to locate the nearest data value |
---|
74 | * |
---|
75 | * @param key the data value to locate |
---|
76 | * @param secondaryKey the data value to locate |
---|
77 | * @return the index of the nearest data value |
---|
78 | */ |
---|
79 | private int findNearestPair(double key, double secondaryKey) { |
---|
80 | |
---|
81 | int low = 0; |
---|
82 | int high = m_CondValues.size(); |
---|
83 | int middle = 0; |
---|
84 | while (low < high) { |
---|
85 | middle = (low + high) / 2; |
---|
86 | double current = ((Double)m_CondValues.elementAt(middle)).doubleValue(); |
---|
87 | if (current == key) { |
---|
88 | double secondary = ((Double)m_Values.elementAt(middle)).doubleValue(); |
---|
89 | if (secondary == secondaryKey) { |
---|
90 | return middle; |
---|
91 | } |
---|
92 | if (secondary > secondaryKey) { |
---|
93 | high = middle; |
---|
94 | } else if (secondary < secondaryKey) { |
---|
95 | low = middle + 1; |
---|
96 | } |
---|
97 | } |
---|
98 | if (current > key) { |
---|
99 | high = middle; |
---|
100 | } else if (current < key) { |
---|
101 | low = middle + 1; |
---|
102 | } |
---|
103 | } |
---|
104 | return low; |
---|
105 | } |
---|
106 | |
---|
107 | /** Calculate covariance and value means */ |
---|
108 | private void calculateCovariance() { |
---|
109 | |
---|
110 | double sumValues = 0, sumConds = 0; |
---|
111 | for(int i = 0; i < m_Values.size(); i++) { |
---|
112 | sumValues += ((Double)m_Values.elementAt(i)).doubleValue() |
---|
113 | * ((Double)m_Weights.elementAt(i)).doubleValue(); |
---|
114 | sumConds += ((Double)m_CondValues.elementAt(i)).doubleValue() |
---|
115 | * ((Double)m_Weights.elementAt(i)).doubleValue(); |
---|
116 | } |
---|
117 | m_ValueMean = sumValues / m_SumOfWeights; |
---|
118 | m_CondMean = sumConds / m_SumOfWeights; |
---|
119 | double c00 = 0, c01 = 0, c10 = 0, c11 = 0; |
---|
120 | for(int i = 0; i < m_Values.size(); i++) { |
---|
121 | double x = ((Double)m_Values.elementAt(i)).doubleValue(); |
---|
122 | double y = ((Double)m_CondValues.elementAt(i)).doubleValue(); |
---|
123 | double weight = ((Double)m_Weights.elementAt(i)).doubleValue(); |
---|
124 | c00 += (x - m_ValueMean) * (x - m_ValueMean) * weight; |
---|
125 | c01 += (x - m_ValueMean) * (y - m_CondMean) * weight; |
---|
126 | c11 += (y - m_CondMean) * (y - m_CondMean) * weight; |
---|
127 | } |
---|
128 | c00 /= (m_SumOfWeights - 1.0); |
---|
129 | c01 /= (m_SumOfWeights - 1.0); |
---|
130 | c10 = c01; |
---|
131 | c11 /= (m_SumOfWeights - 1.0); |
---|
132 | m_Covariance = new Matrix(2, 2); |
---|
133 | m_Covariance.set(0, 0, c00); |
---|
134 | m_Covariance.set(0, 1, c01); |
---|
135 | m_Covariance.set(1, 0, c10); |
---|
136 | m_Covariance.set(1, 1, c11); |
---|
137 | } |
---|
138 | |
---|
139 | /** |
---|
140 | * Returns value for normal kernel |
---|
141 | * |
---|
142 | * @param x the argument to the kernel function |
---|
143 | * @param variance the variance |
---|
144 | * @return the value for a normal kernel |
---|
145 | */ |
---|
146 | private double normalKernel(double x, double variance) { |
---|
147 | |
---|
148 | return Math.exp(-x * x / (2 * variance)) / Math.sqrt(variance * TWO_PI); |
---|
149 | } |
---|
150 | |
---|
151 | /** |
---|
152 | * Add a new data value to the current estimator. |
---|
153 | * |
---|
154 | * @param data the new data value |
---|
155 | * @param given the new value that data is conditional upon |
---|
156 | * @param weight the weight assigned to the data value |
---|
157 | */ |
---|
158 | public void addValue(double data, double given, double weight) { |
---|
159 | |
---|
160 | int insertIndex = findNearestPair(given, data); |
---|
161 | if ((m_Values.size() <= insertIndex) |
---|
162 | || (((Double)m_CondValues.elementAt(insertIndex)).doubleValue() |
---|
163 | != given) |
---|
164 | || (((Double)m_Values.elementAt(insertIndex)).doubleValue() |
---|
165 | != data)) { |
---|
166 | m_CondValues.insertElementAt(new Double(given), insertIndex); |
---|
167 | m_Values.insertElementAt(new Double(data), insertIndex); |
---|
168 | m_Weights.insertElementAt(new Double(weight), insertIndex); |
---|
169 | if (weight != 1) { |
---|
170 | m_AllWeightsOne = false; |
---|
171 | } |
---|
172 | } else { |
---|
173 | double newWeight = ((Double)m_Weights.elementAt(insertIndex)) |
---|
174 | .doubleValue(); |
---|
175 | newWeight += weight; |
---|
176 | m_Weights.setElementAt(new Double(newWeight), insertIndex); |
---|
177 | m_AllWeightsOne = false; |
---|
178 | } |
---|
179 | m_SumOfWeights += weight; |
---|
180 | // Invalidate any previously calculated covariance matrix |
---|
181 | m_Covariance = null; |
---|
182 | } |
---|
183 | |
---|
184 | /** |
---|
185 | * Get a probability estimator for a value |
---|
186 | * |
---|
187 | * @param given the new value that data is conditional upon |
---|
188 | * @return the estimator for the supplied value given the condition |
---|
189 | */ |
---|
190 | public Estimator getEstimator(double given) { |
---|
191 | |
---|
192 | if (m_Covariance == null) { |
---|
193 | calculateCovariance(); |
---|
194 | } |
---|
195 | Estimator result = new MahalanobisEstimator(m_Covariance, |
---|
196 | given - m_CondMean, |
---|
197 | m_ValueMean); |
---|
198 | return result; |
---|
199 | } |
---|
200 | |
---|
201 | /** |
---|
202 | * Get a probability estimate for a value |
---|
203 | * |
---|
204 | * @param data the value to estimate the probability of |
---|
205 | * @param given the new value that data is conditional upon |
---|
206 | * @return the estimated probability of the supplied value |
---|
207 | */ |
---|
208 | public double getProbability(double data, double given) { |
---|
209 | |
---|
210 | return getEstimator(given).getProbability(data); |
---|
211 | } |
---|
212 | |
---|
213 | /** Display a representation of this estimator */ |
---|
214 | public String toString() { |
---|
215 | |
---|
216 | if (m_Covariance == null) { |
---|
217 | calculateCovariance(); |
---|
218 | } |
---|
219 | String result = "NN Conditional Estimator. " |
---|
220 | + m_CondValues.size() |
---|
221 | + " data points. Mean = " + Utils.doubleToString(m_ValueMean, 4, 2) |
---|
222 | + " Conditional mean = " + Utils.doubleToString(m_CondMean, 4, 2); |
---|
223 | result += " Covariance Matrix: \n" + m_Covariance; |
---|
224 | return result; |
---|
225 | } |
---|
226 | |
---|
227 | /** |
---|
228 | * Returns the revision string. |
---|
229 | * |
---|
230 | * @return the revision |
---|
231 | */ |
---|
232 | public String getRevision() { |
---|
233 | return RevisionUtils.extract("$Revision: 1.8 $"); |
---|
234 | } |
---|
235 | |
---|
236 | /** |
---|
237 | * Main method for testing this class. |
---|
238 | * |
---|
239 | * @param argv should contain a sequence of numeric values |
---|
240 | */ |
---|
241 | public static void main(String [] argv) { |
---|
242 | |
---|
243 | try { |
---|
244 | int seed = 42; |
---|
245 | if (argv.length > 0) { |
---|
246 | seed = Integer.parseInt(argv[0]); |
---|
247 | } |
---|
248 | NNConditionalEstimator newEst = new NNConditionalEstimator(); |
---|
249 | |
---|
250 | // Create 100 random points and add them |
---|
251 | Random r = new Random(seed); |
---|
252 | |
---|
253 | int numPoints = 50; |
---|
254 | if (argv.length > 2) { |
---|
255 | numPoints = Integer.parseInt(argv[2]); |
---|
256 | } |
---|
257 | for(int i = 0; i < numPoints; i++) { |
---|
258 | int x = Math.abs(r.nextInt() % 100); |
---|
259 | int y = Math.abs(r.nextInt() % 100); |
---|
260 | System.out.println("# " + x + " " + y); |
---|
261 | newEst.addValue(x, y, 1); |
---|
262 | } |
---|
263 | // System.out.println(newEst); |
---|
264 | int cond; |
---|
265 | if (argv.length > 1) { |
---|
266 | cond = Integer.parseInt(argv[1]); |
---|
267 | } |
---|
268 | else cond = Math.abs(r.nextInt() % 100); |
---|
269 | System.out.println("## Conditional = " + cond); |
---|
270 | Estimator result = newEst.getEstimator(cond); |
---|
271 | for(int i = 0; i <= 100; i+= 5) { |
---|
272 | System.out.println(" " + i + " " + result.getProbability(i)); |
---|
273 | } |
---|
274 | } catch (Exception e) { |
---|
275 | System.out.println(e.getMessage()); |
---|
276 | } |
---|
277 | } |
---|
278 | } |
---|