| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * MahalanobisEstimator.java |
|---|
| 19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
|---|
| 20 | * |
|---|
| 21 | */ |
|---|
| 22 | |
|---|
| 23 | package weka.estimators; |
|---|
| 24 | |
|---|
| 25 | import weka.core.Capabilities.Capability; |
|---|
| 26 | import weka.core.matrix.Matrix; |
|---|
| 27 | import weka.core.Capabilities; |
|---|
| 28 | import weka.core.RevisionUtils; |
|---|
| 29 | import weka.core.Utils; |
|---|
| 30 | |
|---|
| 31 | /** |
|---|
| 32 | * Simple probability estimator that places a single normal distribution |
|---|
| 33 | * over the observed values. |
|---|
| 34 | * |
|---|
| 35 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
|---|
| 36 | * @version $Revision: 5490 $ |
|---|
| 37 | */ |
|---|
| 38 | public class MahalanobisEstimator extends Estimator implements IncrementalEstimator { |
|---|
| 39 | |
|---|
| 40 | /** for serialization */ |
|---|
| 41 | private static final long serialVersionUID = 8950225468990043868L; |
|---|
| 42 | |
|---|
| 43 | /** The inverse of the covariance matrix */ |
|---|
| 44 | private Matrix m_CovarianceInverse; |
|---|
| 45 | |
|---|
| 46 | /** The determinant of the covariance matrix */ |
|---|
| 47 | private double m_Determinant; |
|---|
| 48 | |
|---|
| 49 | /** |
|---|
| 50 | * The difference between the conditioning value and the conditioning mean |
|---|
| 51 | */ |
|---|
| 52 | private double m_ConstDelta; |
|---|
| 53 | |
|---|
| 54 | /** The mean of the values */ |
|---|
| 55 | private double m_ValueMean; |
|---|
| 56 | |
|---|
| 57 | /** 2 * PI */ |
|---|
| 58 | private static double TWO_PI = 2 * Math.PI; |
|---|
| 59 | |
|---|
| 60 | /** |
|---|
| 61 | * Returns value for normal kernel |
|---|
| 62 | * |
|---|
| 63 | * @param x the argument to the kernel function |
|---|
| 64 | * @param variance the variance |
|---|
| 65 | * @return the value for a normal kernel |
|---|
| 66 | */ |
|---|
| 67 | private double normalKernel(double x) { |
|---|
| 68 | |
|---|
| 69 | Matrix thisPoint = new Matrix(1, 2); |
|---|
| 70 | thisPoint.set(0, 0, x); |
|---|
| 71 | thisPoint.set(0, 1, m_ConstDelta); |
|---|
| 72 | return Math.exp(-thisPoint.times(m_CovarianceInverse). |
|---|
| 73 | times(thisPoint.transpose()).get(0, 0) |
|---|
| 74 | / 2) / (Math.sqrt(TWO_PI) * m_Determinant); |
|---|
| 75 | } |
|---|
| 76 | |
|---|
| 77 | /** |
|---|
| 78 | * Constructor |
|---|
| 79 | * |
|---|
| 80 | * @param covariance |
|---|
| 81 | * @param constDelta |
|---|
| 82 | * @param valueMean |
|---|
| 83 | */ |
|---|
| 84 | public MahalanobisEstimator(Matrix covariance, double constDelta, |
|---|
| 85 | double valueMean) { |
|---|
| 86 | |
|---|
| 87 | m_CovarianceInverse = null; |
|---|
| 88 | if ((covariance.getRowDimension() == 2) && (covariance.getColumnDimension() == 2)) { |
|---|
| 89 | double a = covariance.get(0, 0); |
|---|
| 90 | double b = covariance.get(0, 1); |
|---|
| 91 | double c = covariance.get(1, 0); |
|---|
| 92 | double d = covariance.get(1, 1); |
|---|
| 93 | if (a == 0) { |
|---|
| 94 | a = c; c = 0; |
|---|
| 95 | double temp = b; |
|---|
| 96 | b = d; d = temp; |
|---|
| 97 | } |
|---|
| 98 | if (a == 0) { |
|---|
| 99 | return; |
|---|
| 100 | } |
|---|
| 101 | double denom = d - c * b / a; |
|---|
| 102 | if (denom == 0) { |
|---|
| 103 | return; |
|---|
| 104 | } |
|---|
| 105 | m_Determinant = covariance.get(0, 0) * covariance.get(1, 1) |
|---|
| 106 | - covariance.get(1, 0) * covariance.get(0, 1); |
|---|
| 107 | m_CovarianceInverse = new Matrix(2, 2); |
|---|
| 108 | m_CovarianceInverse.set(0, 0, 1.0 / a + b * c / a / a / denom); |
|---|
| 109 | m_CovarianceInverse.set(0, 1, -b / a / denom); |
|---|
| 110 | m_CovarianceInverse.set(1, 0, -c / a / denom); |
|---|
| 111 | m_CovarianceInverse.set(1, 1, 1.0 / denom); |
|---|
| 112 | m_ConstDelta = constDelta; |
|---|
| 113 | m_ValueMean = valueMean; |
|---|
| 114 | } |
|---|
| 115 | } |
|---|
| 116 | |
|---|
| 117 | /** |
|---|
| 118 | * Add a new data value to the current estimator. Does nothing because the |
|---|
| 119 | * data is provided in the constructor. |
|---|
| 120 | * |
|---|
| 121 | * @param data the new data value |
|---|
| 122 | * @param weight the weight assigned to the data value |
|---|
| 123 | */ |
|---|
| 124 | public void addValue(double data, double weight) { |
|---|
| 125 | |
|---|
| 126 | } |
|---|
| 127 | |
|---|
| 128 | /** |
|---|
| 129 | * Get a probability estimate for a value |
|---|
| 130 | * |
|---|
| 131 | * @param data the value to estimate the probability of |
|---|
| 132 | * @return the estimated probability of the supplied value |
|---|
| 133 | */ |
|---|
| 134 | public double getProbability(double data) { |
|---|
| 135 | |
|---|
| 136 | double delta = data - m_ValueMean; |
|---|
| 137 | if (m_CovarianceInverse == null) { |
|---|
| 138 | return 0; |
|---|
| 139 | } |
|---|
| 140 | return normalKernel(delta); |
|---|
| 141 | } |
|---|
| 142 | |
|---|
| 143 | /** Display a representation of this estimator */ |
|---|
| 144 | public String toString() { |
|---|
| 145 | |
|---|
| 146 | if (m_CovarianceInverse == null) { |
|---|
| 147 | return "No covariance inverse\n"; |
|---|
| 148 | } |
|---|
| 149 | return "Mahalanovis Distribution. Mean = " |
|---|
| 150 | + Utils.doubleToString(m_ValueMean, 4, 2) |
|---|
| 151 | + " ConditionalOffset = " |
|---|
| 152 | + Utils.doubleToString(m_ConstDelta, 4, 2) + "\n" |
|---|
| 153 | + "Covariance Matrix: Determinant = " + m_Determinant |
|---|
| 154 | + " Inverse:\n" + m_CovarianceInverse; |
|---|
| 155 | } |
|---|
| 156 | |
|---|
| 157 | /** |
|---|
| 158 | * Returns default capabilities of the classifier. |
|---|
| 159 | * |
|---|
| 160 | * @return the capabilities of this classifier |
|---|
| 161 | */ |
|---|
| 162 | public Capabilities getCapabilities() { |
|---|
| 163 | Capabilities result = super.getCapabilities(); |
|---|
| 164 | result.disableAll(); |
|---|
| 165 | |
|---|
| 166 | // class |
|---|
| 167 | if (!m_noClass) { |
|---|
| 168 | result.enable(Capability.NOMINAL_CLASS); |
|---|
| 169 | result.enable(Capability.MISSING_CLASS_VALUES); |
|---|
| 170 | } else { |
|---|
| 171 | result.enable(Capability.NO_CLASS); |
|---|
| 172 | } |
|---|
| 173 | |
|---|
| 174 | // attributes |
|---|
| 175 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
|---|
| 176 | return result; |
|---|
| 177 | } |
|---|
| 178 | |
|---|
| 179 | /** |
|---|
| 180 | * Returns the revision string. |
|---|
| 181 | * |
|---|
| 182 | * @return the revision |
|---|
| 183 | */ |
|---|
| 184 | public String getRevision() { |
|---|
| 185 | return RevisionUtils.extract("$Revision: 5490 $"); |
|---|
| 186 | } |
|---|
| 187 | |
|---|
| 188 | /** |
|---|
| 189 | * Main method for testing this class. |
|---|
| 190 | * |
|---|
| 191 | * @param argv should contain a sequence of numeric values |
|---|
| 192 | */ |
|---|
| 193 | public static void main(String [] argv) { |
|---|
| 194 | |
|---|
| 195 | try { |
|---|
| 196 | double delta = 0.5; |
|---|
| 197 | double xmean = 0; |
|---|
| 198 | double lower = 0; |
|---|
| 199 | double upper = 10; |
|---|
| 200 | Matrix covariance = new Matrix(2, 2); |
|---|
| 201 | covariance.set(0, 0, 2); |
|---|
| 202 | covariance.set(0, 1, -3); |
|---|
| 203 | covariance.set(1, 0, -4); |
|---|
| 204 | covariance.set(1, 1, 5); |
|---|
| 205 | if (argv.length > 0) { |
|---|
| 206 | covariance.set(0, 0, Double.valueOf(argv[0]).doubleValue()); |
|---|
| 207 | } |
|---|
| 208 | if (argv.length > 1) { |
|---|
| 209 | covariance.set(0, 1, Double.valueOf(argv[1]).doubleValue()); |
|---|
| 210 | } |
|---|
| 211 | if (argv.length > 2) { |
|---|
| 212 | covariance.set(1, 0, Double.valueOf(argv[2]).doubleValue()); |
|---|
| 213 | } |
|---|
| 214 | if (argv.length > 3) { |
|---|
| 215 | covariance.set(1, 1, Double.valueOf(argv[3]).doubleValue()); |
|---|
| 216 | } |
|---|
| 217 | if (argv.length > 4) { |
|---|
| 218 | delta = Double.valueOf(argv[4]).doubleValue(); |
|---|
| 219 | } |
|---|
| 220 | if (argv.length > 5) { |
|---|
| 221 | xmean = Double.valueOf(argv[5]).doubleValue(); |
|---|
| 222 | } |
|---|
| 223 | |
|---|
| 224 | MahalanobisEstimator newEst = new MahalanobisEstimator(covariance, |
|---|
| 225 | delta, xmean); |
|---|
| 226 | if (argv.length > 6) { |
|---|
| 227 | lower = Double.valueOf(argv[6]).doubleValue(); |
|---|
| 228 | if (argv.length > 7) { |
|---|
| 229 | upper = Double.valueOf(argv[7]).doubleValue(); |
|---|
| 230 | } |
|---|
| 231 | double increment = (upper - lower) / 50; |
|---|
| 232 | for(double current = lower; current <= upper; current+= increment) |
|---|
| 233 | System.out.println(current + " " + newEst.getProbability(current)); |
|---|
| 234 | } else { |
|---|
| 235 | System.out.println("Covariance Matrix\n" + covariance); |
|---|
| 236 | System.out.println(newEst); |
|---|
| 237 | } |
|---|
| 238 | } catch (Exception e) { |
|---|
| 239 | System.out.println(e.getMessage()); |
|---|
| 240 | } |
|---|
| 241 | } |
|---|
| 242 | } |
|---|