1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * KernelEstimator.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.estimators; |
---|
24 | |
---|
25 | import weka.core.Capabilities.Capability; |
---|
26 | import weka.core.Capabilities; |
---|
27 | import weka.core.RevisionUtils; |
---|
28 | import weka.core.Utils; |
---|
29 | import weka.core.Statistics; |
---|
30 | |
---|
31 | /** |
---|
32 | * Simple kernel density estimator. Uses one gaussian kernel per observed |
---|
33 | * data value. |
---|
34 | * |
---|
35 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
---|
36 | * @version $Revision: 5490 $ |
---|
37 | */ |
---|
38 | public class KernelEstimator extends Estimator implements IncrementalEstimator { |
---|
39 | |
---|
40 | /** for serialization */ |
---|
41 | private static final long serialVersionUID = 3646923563367683925L; |
---|
42 | |
---|
43 | /** Vector containing all of the values seen */ |
---|
44 | private double [] m_Values; |
---|
45 | |
---|
46 | /** Vector containing the associated weights */ |
---|
47 | private double [] m_Weights; |
---|
48 | |
---|
49 | /** Number of values stored in m_Weights and m_Values so far */ |
---|
50 | private int m_NumValues; |
---|
51 | |
---|
52 | /** The sum of the weights so far */ |
---|
53 | private double m_SumOfWeights; |
---|
54 | |
---|
55 | /** The standard deviation */ |
---|
56 | private double m_StandardDev; |
---|
57 | |
---|
58 | /** The precision of data values */ |
---|
59 | private double m_Precision; |
---|
60 | |
---|
61 | /** Whether we can optimise the kernel summation */ |
---|
62 | private boolean m_AllWeightsOne; |
---|
63 | |
---|
64 | /** Maximum percentage error permitted in probability calculations */ |
---|
65 | private static double MAX_ERROR = 0.01; |
---|
66 | |
---|
67 | |
---|
68 | /** |
---|
69 | * Execute a binary search to locate the nearest data value |
---|
70 | * |
---|
71 | * @param the data value to locate |
---|
72 | * @return the index of the nearest data value |
---|
73 | */ |
---|
74 | private int findNearestValue(double key) { |
---|
75 | |
---|
76 | int low = 0; |
---|
77 | int high = m_NumValues; |
---|
78 | int middle = 0; |
---|
79 | while (low < high) { |
---|
80 | middle = (low + high) / 2; |
---|
81 | double current = m_Values[middle]; |
---|
82 | if (current == key) { |
---|
83 | return middle; |
---|
84 | } |
---|
85 | if (current > key) { |
---|
86 | high = middle; |
---|
87 | } else if (current < key) { |
---|
88 | low = middle + 1; |
---|
89 | } |
---|
90 | } |
---|
91 | return low; |
---|
92 | } |
---|
93 | |
---|
94 | /** |
---|
95 | * Round a data value using the defined precision for this estimator |
---|
96 | * |
---|
97 | * @param data the value to round |
---|
98 | * @return the rounded data value |
---|
99 | */ |
---|
100 | private double round(double data) { |
---|
101 | |
---|
102 | return Math.rint(data / m_Precision) * m_Precision; |
---|
103 | } |
---|
104 | |
---|
105 | // =============== |
---|
106 | // Public methods. |
---|
107 | // =============== |
---|
108 | |
---|
109 | /** |
---|
110 | * Constructor that takes a precision argument. |
---|
111 | * |
---|
112 | * @param precision the precision to which numeric values are given. For |
---|
113 | * example, if the precision is stated to be 0.1, the values in the |
---|
114 | * interval (0.25,0.35] are all treated as 0.3. |
---|
115 | */ |
---|
116 | public KernelEstimator(double precision) { |
---|
117 | |
---|
118 | m_Values = new double [50]; |
---|
119 | m_Weights = new double [50]; |
---|
120 | m_NumValues = 0; |
---|
121 | m_SumOfWeights = 0; |
---|
122 | m_AllWeightsOne = true; |
---|
123 | m_Precision = precision; |
---|
124 | // precision cannot be zero |
---|
125 | if (m_Precision < Utils.SMALL) m_Precision = Utils.SMALL; |
---|
126 | // m_StandardDev = 1e10 * m_Precision; // Set the standard deviation initially very wide |
---|
127 | m_StandardDev = m_Precision / (2 * 3); |
---|
128 | } |
---|
129 | |
---|
130 | /** |
---|
131 | * Add a new data value to the current estimator. |
---|
132 | * |
---|
133 | * @param data the new data value |
---|
134 | * @param weight the weight assigned to the data value |
---|
135 | */ |
---|
136 | public void addValue(double data, double weight) { |
---|
137 | |
---|
138 | if (weight == 0) { |
---|
139 | return; |
---|
140 | } |
---|
141 | data = round(data); |
---|
142 | int insertIndex = findNearestValue(data); |
---|
143 | if ((m_NumValues <= insertIndex) || (m_Values[insertIndex] != data)) { |
---|
144 | if (m_NumValues < m_Values.length) { |
---|
145 | int left = m_NumValues - insertIndex; |
---|
146 | System.arraycopy(m_Values, insertIndex, |
---|
147 | m_Values, insertIndex + 1, left); |
---|
148 | System.arraycopy(m_Weights, insertIndex, |
---|
149 | m_Weights, insertIndex + 1, left); |
---|
150 | |
---|
151 | m_Values[insertIndex] = data; |
---|
152 | m_Weights[insertIndex] = weight; |
---|
153 | m_NumValues++; |
---|
154 | } else { |
---|
155 | double [] newValues = new double [m_Values.length * 2]; |
---|
156 | double [] newWeights = new double [m_Values.length * 2]; |
---|
157 | int left = m_NumValues - insertIndex; |
---|
158 | System.arraycopy(m_Values, 0, newValues, 0, insertIndex); |
---|
159 | System.arraycopy(m_Weights, 0, newWeights, 0, insertIndex); |
---|
160 | newValues[insertIndex] = data; |
---|
161 | newWeights[insertIndex] = weight; |
---|
162 | System.arraycopy(m_Values, insertIndex, |
---|
163 | newValues, insertIndex + 1, left); |
---|
164 | System.arraycopy(m_Weights, insertIndex, |
---|
165 | newWeights, insertIndex + 1, left); |
---|
166 | m_NumValues++; |
---|
167 | m_Values = newValues; |
---|
168 | m_Weights = newWeights; |
---|
169 | } |
---|
170 | if (weight != 1) { |
---|
171 | m_AllWeightsOne = false; |
---|
172 | } |
---|
173 | } else { |
---|
174 | m_Weights[insertIndex] += weight; |
---|
175 | m_AllWeightsOne = false; |
---|
176 | } |
---|
177 | m_SumOfWeights += weight; |
---|
178 | double range = m_Values[m_NumValues - 1] - m_Values[0]; |
---|
179 | if (range > 0) { |
---|
180 | m_StandardDev = Math.max(range / Math.sqrt(m_SumOfWeights), |
---|
181 | // allow at most 3 sds within one interval |
---|
182 | m_Precision / (2 * 3)); |
---|
183 | } |
---|
184 | } |
---|
185 | |
---|
186 | /** |
---|
187 | * Get a probability estimate for a value. |
---|
188 | * |
---|
189 | * @param data the value to estimate the probability of |
---|
190 | * @return the estimated probability of the supplied value |
---|
191 | */ |
---|
192 | public double getProbability(double data) { |
---|
193 | |
---|
194 | double delta = 0, sum = 0, currentProb = 0; |
---|
195 | double zLower = 0, zUpper = 0; |
---|
196 | if (m_NumValues == 0) { |
---|
197 | zLower = (data - (m_Precision / 2)) / m_StandardDev; |
---|
198 | zUpper = (data + (m_Precision / 2)) / m_StandardDev; |
---|
199 | return (Statistics.normalProbability(zUpper) |
---|
200 | - Statistics.normalProbability(zLower)); |
---|
201 | } |
---|
202 | double weightSum = 0; |
---|
203 | int start = findNearestValue(data); |
---|
204 | for (int i = start; i < m_NumValues; i++) { |
---|
205 | delta = m_Values[i] - data; |
---|
206 | zLower = (delta - (m_Precision / 2)) / m_StandardDev; |
---|
207 | zUpper = (delta + (m_Precision / 2)) / m_StandardDev; |
---|
208 | currentProb = (Statistics.normalProbability(zUpper) |
---|
209 | - Statistics.normalProbability(zLower)); |
---|
210 | sum += currentProb * m_Weights[i]; |
---|
211 | /* |
---|
212 | System.out.print("zL" + (i + 1) + ": " + zLower + " "); |
---|
213 | System.out.print("zU" + (i + 1) + ": " + zUpper + " "); |
---|
214 | System.out.print("P" + (i + 1) + ": " + currentProb + " "); |
---|
215 | System.out.println("total: " + (currentProb * m_Weights[i]) + " "); |
---|
216 | */ |
---|
217 | weightSum += m_Weights[i]; |
---|
218 | if (currentProb * (m_SumOfWeights - weightSum) < sum * MAX_ERROR) { |
---|
219 | break; |
---|
220 | } |
---|
221 | } |
---|
222 | for (int i = start - 1; i >= 0; i--) { |
---|
223 | delta = m_Values[i] - data; |
---|
224 | zLower = (delta - (m_Precision / 2)) / m_StandardDev; |
---|
225 | zUpper = (delta + (m_Precision / 2)) / m_StandardDev; |
---|
226 | currentProb = (Statistics.normalProbability(zUpper) |
---|
227 | - Statistics.normalProbability(zLower)); |
---|
228 | sum += currentProb * m_Weights[i]; |
---|
229 | weightSum += m_Weights[i]; |
---|
230 | if (currentProb * (m_SumOfWeights - weightSum) < sum * MAX_ERROR) { |
---|
231 | break; |
---|
232 | } |
---|
233 | } |
---|
234 | return sum / m_SumOfWeights; |
---|
235 | } |
---|
236 | |
---|
237 | /** Display a representation of this estimator */ |
---|
238 | public String toString() { |
---|
239 | |
---|
240 | String result = m_NumValues + " Normal Kernels. \nStandardDev = " |
---|
241 | + Utils.doubleToString(m_StandardDev,6,4) |
---|
242 | + " Precision = " + m_Precision; |
---|
243 | if (m_NumValues == 0) { |
---|
244 | result += " \nMean = 0"; |
---|
245 | } else { |
---|
246 | result += " \nMeans ="; |
---|
247 | for (int i = 0; i < m_NumValues; i++) { |
---|
248 | result += " " + m_Values[i]; |
---|
249 | } |
---|
250 | if (!m_AllWeightsOne) { |
---|
251 | result += "\nWeights = "; |
---|
252 | for (int i = 0; i < m_NumValues; i++) { |
---|
253 | result += " " + m_Weights[i]; |
---|
254 | } |
---|
255 | } |
---|
256 | } |
---|
257 | return result + "\n"; |
---|
258 | } |
---|
259 | |
---|
260 | /** |
---|
261 | * Return the number of kernels in this kernel estimator |
---|
262 | * |
---|
263 | * @return the number of kernels |
---|
264 | */ |
---|
265 | public int getNumKernels() { |
---|
266 | return m_NumValues; |
---|
267 | } |
---|
268 | |
---|
269 | /** |
---|
270 | * Return the means of the kernels. |
---|
271 | * |
---|
272 | * @return the means of the kernels |
---|
273 | */ |
---|
274 | public double[] getMeans() { |
---|
275 | return m_Values; |
---|
276 | } |
---|
277 | |
---|
278 | /** |
---|
279 | * Return the weights of the kernels. |
---|
280 | * |
---|
281 | * @return the weights of the kernels |
---|
282 | */ |
---|
283 | public double[] getWeights() { |
---|
284 | return m_Weights; |
---|
285 | } |
---|
286 | |
---|
287 | /** |
---|
288 | * Return the precision of this kernel estimator. |
---|
289 | * |
---|
290 | * @return the precision |
---|
291 | */ |
---|
292 | public double getPrecision() { |
---|
293 | return m_Precision; |
---|
294 | } |
---|
295 | |
---|
296 | /** |
---|
297 | * Return the standard deviation of this kernel estimator. |
---|
298 | * |
---|
299 | * @return the standard deviation |
---|
300 | */ |
---|
301 | public double getStdDev() { |
---|
302 | return m_StandardDev; |
---|
303 | } |
---|
304 | |
---|
305 | /** |
---|
306 | * Returns default capabilities of the classifier. |
---|
307 | * |
---|
308 | * @return the capabilities of this classifier |
---|
309 | */ |
---|
310 | public Capabilities getCapabilities() { |
---|
311 | Capabilities result = super.getCapabilities(); |
---|
312 | result.disableAll(); |
---|
313 | // class |
---|
314 | if (!m_noClass) { |
---|
315 | result.enable(Capability.NOMINAL_CLASS); |
---|
316 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
317 | } else { |
---|
318 | result.enable(Capability.NO_CLASS); |
---|
319 | } |
---|
320 | |
---|
321 | // attributes |
---|
322 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
323 | return result; |
---|
324 | } |
---|
325 | |
---|
326 | /** |
---|
327 | * Returns the revision string. |
---|
328 | * |
---|
329 | * @return the revision |
---|
330 | */ |
---|
331 | public String getRevision() { |
---|
332 | return RevisionUtils.extract("$Revision: 5490 $"); |
---|
333 | } |
---|
334 | |
---|
335 | /** |
---|
336 | * Main method for testing this class. |
---|
337 | * |
---|
338 | * @param argv should contain a sequence of numeric values |
---|
339 | */ |
---|
340 | public static void main(String [] argv) { |
---|
341 | |
---|
342 | try { |
---|
343 | if (argv.length < 2) { |
---|
344 | System.out.println("Please specify a set of instances."); |
---|
345 | return; |
---|
346 | } |
---|
347 | KernelEstimator newEst = new KernelEstimator(0.01); |
---|
348 | for (int i = 0; i < argv.length - 3; i += 2) { |
---|
349 | newEst.addValue(Double.valueOf(argv[i]).doubleValue(), |
---|
350 | Double.valueOf(argv[i + 1]).doubleValue()); |
---|
351 | } |
---|
352 | System.out.println(newEst); |
---|
353 | |
---|
354 | double start = Double.valueOf(argv[argv.length - 2]).doubleValue(); |
---|
355 | double finish = Double.valueOf(argv[argv.length - 1]).doubleValue(); |
---|
356 | for (double current = start; current < finish; |
---|
357 | current += (finish - start) / 50) { |
---|
358 | System.out.println("Data: " + current + " " |
---|
359 | + newEst.getProbability(current)); |
---|
360 | } |
---|
361 | } catch (Exception e) { |
---|
362 | System.out.println(e.getMessage()); |
---|
363 | } |
---|
364 | } |
---|
365 | } |
---|