1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * KKConditionalEstimator.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.estimators; |
---|
24 | |
---|
25 | import java.util.Random; |
---|
26 | |
---|
27 | import weka.core.RevisionUtils; |
---|
28 | import weka.core.Statistics; |
---|
29 | import weka.core.Utils; |
---|
30 | |
---|
31 | /** |
---|
32 | * Conditional probability estimator for a numeric domain conditional upon |
---|
33 | * a numeric domain. |
---|
34 | * |
---|
35 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
---|
36 | * @version $Revision: 1.8 $ |
---|
37 | */ |
---|
38 | public class KKConditionalEstimator implements ConditionalEstimator { |
---|
39 | |
---|
40 | /** Vector containing all of the values seen */ |
---|
41 | private double [] m_Values; |
---|
42 | |
---|
43 | /** Vector containing all of the conditioning values seen */ |
---|
44 | private double [] m_CondValues; |
---|
45 | |
---|
46 | /** Vector containing the associated weights */ |
---|
47 | private double [] m_Weights; |
---|
48 | |
---|
49 | /** |
---|
50 | * Number of values stored in m_Weights, m_CondValues, and m_Values so far |
---|
51 | */ |
---|
52 | private int m_NumValues; |
---|
53 | |
---|
54 | /** The sum of the weights so far */ |
---|
55 | private double m_SumOfWeights; |
---|
56 | |
---|
57 | /** Current standard dev */ |
---|
58 | private double m_StandardDev; |
---|
59 | |
---|
60 | /** Whether we can optimise the kernel summation */ |
---|
61 | private boolean m_AllWeightsOne; |
---|
62 | |
---|
63 | /** The numeric precision */ |
---|
64 | private double m_Precision; |
---|
65 | |
---|
66 | /** |
---|
67 | * Execute a binary search to locate the nearest data value |
---|
68 | * |
---|
69 | * @param key the data value to locate |
---|
70 | * @param secondaryKey the data value to locate |
---|
71 | * @return the index of the nearest data value |
---|
72 | */ |
---|
73 | private int findNearestPair(double key, double secondaryKey) { |
---|
74 | |
---|
75 | int low = 0; |
---|
76 | int high = m_NumValues; |
---|
77 | int middle = 0; |
---|
78 | while (low < high) { |
---|
79 | middle = (low + high) / 2; |
---|
80 | double current = m_CondValues[middle]; |
---|
81 | if (current == key) { |
---|
82 | double secondary = m_Values[middle]; |
---|
83 | if (secondary == secondaryKey) { |
---|
84 | return middle; |
---|
85 | } |
---|
86 | if (secondary > secondaryKey) { |
---|
87 | high = middle; |
---|
88 | } else if (secondary < secondaryKey) { |
---|
89 | low = middle+1; |
---|
90 | } |
---|
91 | } |
---|
92 | if (current > key) { |
---|
93 | high = middle; |
---|
94 | } else if (current < key) { |
---|
95 | low = middle+1; |
---|
96 | } |
---|
97 | } |
---|
98 | return low; |
---|
99 | } |
---|
100 | |
---|
101 | /** |
---|
102 | * Round a data value using the defined precision for this estimator |
---|
103 | * |
---|
104 | * @param data the value to round |
---|
105 | * @return the rounded data value |
---|
106 | */ |
---|
107 | private double round(double data) { |
---|
108 | |
---|
109 | return Math.rint(data / m_Precision) * m_Precision; |
---|
110 | } |
---|
111 | |
---|
112 | /** |
---|
113 | * Constructor |
---|
114 | * |
---|
115 | * @param precision the precision to which numeric values are given. For |
---|
116 | * example, if the precision is stated to be 0.1, the values in the |
---|
117 | * interval (0.25,0.35] are all treated as 0.3. |
---|
118 | */ |
---|
119 | public KKConditionalEstimator(double precision) { |
---|
120 | |
---|
121 | m_CondValues = new double [50]; |
---|
122 | m_Values = new double [50]; |
---|
123 | m_Weights = new double [50]; |
---|
124 | m_NumValues = 0; |
---|
125 | m_SumOfWeights = 0; |
---|
126 | m_StandardDev = 0; |
---|
127 | m_AllWeightsOne = true; |
---|
128 | m_Precision = precision; |
---|
129 | } |
---|
130 | |
---|
131 | /** |
---|
132 | * Add a new data value to the current estimator. |
---|
133 | * |
---|
134 | * @param data the new data value |
---|
135 | * @param given the new value that data is conditional upon |
---|
136 | * @param weight the weight assigned to the data value |
---|
137 | */ |
---|
138 | public void addValue(double data, double given, double weight) { |
---|
139 | |
---|
140 | data = round(data); |
---|
141 | given = round(given); |
---|
142 | int insertIndex = findNearestPair(given, data); |
---|
143 | if ((m_NumValues <= insertIndex) |
---|
144 | || (m_CondValues[insertIndex] != given) |
---|
145 | || (m_Values[insertIndex] != data)) { |
---|
146 | if (m_NumValues < m_Values.length) { |
---|
147 | int left = m_NumValues - insertIndex; |
---|
148 | System.arraycopy(m_Values, insertIndex, |
---|
149 | m_Values, insertIndex + 1, left); |
---|
150 | System.arraycopy(m_CondValues, insertIndex, |
---|
151 | m_CondValues, insertIndex + 1, left); |
---|
152 | System.arraycopy(m_Weights, insertIndex, |
---|
153 | m_Weights, insertIndex + 1, left); |
---|
154 | m_Values[insertIndex] = data; |
---|
155 | m_CondValues[insertIndex] = given; |
---|
156 | m_Weights[insertIndex] = weight; |
---|
157 | m_NumValues++; |
---|
158 | } else { |
---|
159 | double [] newValues = new double [m_Values.length*2]; |
---|
160 | double [] newCondValues = new double [m_Values.length*2]; |
---|
161 | double [] newWeights = new double [m_Values.length*2]; |
---|
162 | int left = m_NumValues - insertIndex; |
---|
163 | System.arraycopy(m_Values, 0, newValues, 0, insertIndex); |
---|
164 | System.arraycopy(m_CondValues, 0, newCondValues, 0, insertIndex); |
---|
165 | System.arraycopy(m_Weights, 0, newWeights, 0, insertIndex); |
---|
166 | newValues[insertIndex] = data; |
---|
167 | newCondValues[insertIndex] = given; |
---|
168 | newWeights[insertIndex] = weight; |
---|
169 | System.arraycopy(m_Values, insertIndex, |
---|
170 | newValues, insertIndex+1, left); |
---|
171 | System.arraycopy(m_CondValues, insertIndex, |
---|
172 | newCondValues, insertIndex+1, left); |
---|
173 | System.arraycopy(m_Weights, insertIndex, |
---|
174 | newWeights, insertIndex+1, left); |
---|
175 | m_NumValues++; |
---|
176 | m_Values = newValues; |
---|
177 | m_CondValues = newCondValues; |
---|
178 | m_Weights = newWeights; |
---|
179 | } |
---|
180 | if (weight != 1) { |
---|
181 | m_AllWeightsOne = false; |
---|
182 | } |
---|
183 | } else { |
---|
184 | m_Weights[insertIndex] += weight; |
---|
185 | m_AllWeightsOne = false; |
---|
186 | } |
---|
187 | m_SumOfWeights += weight; |
---|
188 | double range = m_CondValues[m_NumValues-1] - m_CondValues[0]; |
---|
189 | m_StandardDev = Math.max(range / Math.sqrt(m_SumOfWeights), |
---|
190 | // allow at most 3 sds within one interval |
---|
191 | m_Precision / (2 * 3)); |
---|
192 | } |
---|
193 | |
---|
194 | /** |
---|
195 | * Get a probability estimator for a value |
---|
196 | * |
---|
197 | * @param given the new value that data is conditional upon |
---|
198 | * @return the estimator for the supplied value given the condition |
---|
199 | */ |
---|
200 | public Estimator getEstimator(double given) { |
---|
201 | |
---|
202 | Estimator result = new KernelEstimator(m_Precision); |
---|
203 | if (m_NumValues == 0) { |
---|
204 | return result; |
---|
205 | } |
---|
206 | |
---|
207 | double delta = 0, currentProb = 0; |
---|
208 | double zLower, zUpper; |
---|
209 | for(int i = 0; i < m_NumValues; i++) { |
---|
210 | delta = m_CondValues[i] - given; |
---|
211 | zLower = (delta - (m_Precision / 2)) / m_StandardDev; |
---|
212 | zUpper = (delta + (m_Precision / 2)) / m_StandardDev; |
---|
213 | currentProb = (Statistics.normalProbability(zUpper) |
---|
214 | - Statistics.normalProbability(zLower)); |
---|
215 | result.addValue(m_Values[i], currentProb * m_Weights[i]); |
---|
216 | } |
---|
217 | return result; |
---|
218 | } |
---|
219 | |
---|
220 | /** |
---|
221 | * Get a probability estimate for a value |
---|
222 | * |
---|
223 | * @param data the value to estimate the probability of |
---|
224 | * @param given the new value that data is conditional upon |
---|
225 | * @return the estimated probability of the supplied value |
---|
226 | */ |
---|
227 | public double getProbability(double data, double given) { |
---|
228 | |
---|
229 | return getEstimator(given).getProbability(data); |
---|
230 | } |
---|
231 | |
---|
232 | /** |
---|
233 | * Display a representation of this estimator |
---|
234 | */ |
---|
235 | public String toString() { |
---|
236 | |
---|
237 | String result = "KK Conditional Estimator. " |
---|
238 | + m_NumValues + " Normal Kernels:\n" |
---|
239 | + "StandardDev = " + Utils.doubleToString(m_StandardDev,4,2) |
---|
240 | + " \nMeans ="; |
---|
241 | for(int i = 0; i < m_NumValues; i++) { |
---|
242 | result += " (" + m_Values[i] + ", " + m_CondValues[i] + ")"; |
---|
243 | if (!m_AllWeightsOne) { |
---|
244 | result += "w=" + m_Weights[i]; |
---|
245 | } |
---|
246 | } |
---|
247 | return result; |
---|
248 | } |
---|
249 | |
---|
250 | /** |
---|
251 | * Returns the revision string. |
---|
252 | * |
---|
253 | * @return the revision |
---|
254 | */ |
---|
255 | public String getRevision() { |
---|
256 | return RevisionUtils.extract("$Revision: 1.8 $"); |
---|
257 | } |
---|
258 | |
---|
259 | /** |
---|
260 | * Main method for testing this class. Creates some random points |
---|
261 | * in the range 0 - 100, |
---|
262 | * and prints out a distribution conditional on some value |
---|
263 | * |
---|
264 | * @param argv should contain: seed conditional_value numpoints |
---|
265 | */ |
---|
266 | public static void main(String [] argv) { |
---|
267 | |
---|
268 | try { |
---|
269 | int seed = 42; |
---|
270 | if (argv.length > 0) { |
---|
271 | seed = Integer.parseInt(argv[0]); |
---|
272 | } |
---|
273 | KKConditionalEstimator newEst = new KKConditionalEstimator(0.1); |
---|
274 | |
---|
275 | // Create 100 random points and add them |
---|
276 | Random r = new Random(seed); |
---|
277 | |
---|
278 | int numPoints = 50; |
---|
279 | if (argv.length > 2) { |
---|
280 | numPoints = Integer.parseInt(argv[2]); |
---|
281 | } |
---|
282 | for(int i = 0; i < numPoints; i++) { |
---|
283 | int x = Math.abs(r.nextInt()%100); |
---|
284 | int y = Math.abs(r.nextInt()%100); |
---|
285 | System.out.println("# " + x + " " + y); |
---|
286 | newEst.addValue(x, y, 1); |
---|
287 | } |
---|
288 | // System.out.println(newEst); |
---|
289 | int cond; |
---|
290 | if (argv.length > 1) { |
---|
291 | cond = Integer.parseInt(argv[1]); |
---|
292 | } else { |
---|
293 | cond = Math.abs(r.nextInt()%100); |
---|
294 | } |
---|
295 | System.out.println("## Conditional = " + cond); |
---|
296 | Estimator result = newEst.getEstimator(cond); |
---|
297 | for(int i = 0; i <= 100; i+= 5) { |
---|
298 | System.out.println(" " + i + " " + result.getProbability(i)); |
---|
299 | } |
---|
300 | } catch (Exception e) { |
---|
301 | System.out.println(e.getMessage()); |
---|
302 | } |
---|
303 | } |
---|
304 | } |
---|