| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * KDConditionalEstimator.java |
|---|
| 19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
|---|
| 20 | * |
|---|
| 21 | */ |
|---|
| 22 | |
|---|
| 23 | package weka.estimators; |
|---|
| 24 | |
|---|
| 25 | import weka.core.RevisionUtils; |
|---|
| 26 | |
|---|
| 27 | /** |
|---|
| 28 | * Conditional probability estimator for a numeric domain conditional upon |
|---|
| 29 | * a discrete domain (utilises separate kernel estimators for each discrete |
|---|
| 30 | * conditioning value). |
|---|
| 31 | * |
|---|
| 32 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
|---|
| 33 | * @version $Revision: 1.8 $ |
|---|
| 34 | */ |
|---|
| 35 | public class KDConditionalEstimator implements ConditionalEstimator { |
|---|
| 36 | |
|---|
| 37 | /** Hold the sub-estimators */ |
|---|
| 38 | private KernelEstimator [] m_Estimators; |
|---|
| 39 | |
|---|
| 40 | /** |
|---|
| 41 | * Constructor |
|---|
| 42 | * |
|---|
| 43 | * @param numCondSymbols the number of conditioning symbols |
|---|
| 44 | * @param precision the precision to which numeric values are given. For |
|---|
| 45 | * example, if the precision is stated to be 0.1, the values in the |
|---|
| 46 | * interval (0.25,0.35] are all treated as 0.3. |
|---|
| 47 | */ |
|---|
| 48 | public KDConditionalEstimator(int numCondSymbols, double precision) { |
|---|
| 49 | |
|---|
| 50 | m_Estimators = new KernelEstimator [numCondSymbols]; |
|---|
| 51 | for(int i = 0; i < numCondSymbols; i++) { |
|---|
| 52 | m_Estimators[i] = new KernelEstimator(precision); |
|---|
| 53 | } |
|---|
| 54 | } |
|---|
| 55 | |
|---|
| 56 | /** |
|---|
| 57 | * Add a new data value to the current estimator. |
|---|
| 58 | * |
|---|
| 59 | * @param data the new data value |
|---|
| 60 | * @param given the new value that data is conditional upon |
|---|
| 61 | * @param weight the weight assigned to the data value |
|---|
| 62 | */ |
|---|
| 63 | public void addValue(double data, double given, double weight) { |
|---|
| 64 | |
|---|
| 65 | m_Estimators[(int)given].addValue(data, weight); |
|---|
| 66 | } |
|---|
| 67 | |
|---|
| 68 | /** |
|---|
| 69 | * Get a probability estimator for a value |
|---|
| 70 | * |
|---|
| 71 | * @param given the new value that data is conditional upon |
|---|
| 72 | * @return the estimator for the supplied value given the condition |
|---|
| 73 | */ |
|---|
| 74 | public Estimator getEstimator(double given) { |
|---|
| 75 | |
|---|
| 76 | return m_Estimators[(int)given]; |
|---|
| 77 | } |
|---|
| 78 | |
|---|
| 79 | /** |
|---|
| 80 | * Get a probability estimate for a value |
|---|
| 81 | * |
|---|
| 82 | * @param data the value to estimate the probability of |
|---|
| 83 | * @param given the new value that data is conditional upon |
|---|
| 84 | * @return the estimated probability of the supplied value |
|---|
| 85 | */ |
|---|
| 86 | public double getProbability(double data, double given) { |
|---|
| 87 | |
|---|
| 88 | return getEstimator(given).getProbability(data); |
|---|
| 89 | } |
|---|
| 90 | |
|---|
| 91 | /** Display a representation of this estimator */ |
|---|
| 92 | public String toString() { |
|---|
| 93 | |
|---|
| 94 | String result = "KD Conditional Estimator. " |
|---|
| 95 | + m_Estimators.length + " sub-estimators:\n"; |
|---|
| 96 | for(int i = 0; i < m_Estimators.length; i++) { |
|---|
| 97 | result += "Sub-estimator " + i + ": " + m_Estimators[i]; |
|---|
| 98 | } |
|---|
| 99 | return result; |
|---|
| 100 | } |
|---|
| 101 | |
|---|
| 102 | /** |
|---|
| 103 | * Returns the revision string. |
|---|
| 104 | * |
|---|
| 105 | * @return the revision |
|---|
| 106 | */ |
|---|
| 107 | public String getRevision() { |
|---|
| 108 | return RevisionUtils.extract("$Revision: 1.8 $"); |
|---|
| 109 | } |
|---|
| 110 | |
|---|
| 111 | /** |
|---|
| 112 | * Main method for testing this class. |
|---|
| 113 | * |
|---|
| 114 | * @param argv should contain a sequence of pairs of integers which |
|---|
| 115 | * will be treated as numeric, symbolic. |
|---|
| 116 | */ |
|---|
| 117 | public static void main(String [] argv) { |
|---|
| 118 | |
|---|
| 119 | try { |
|---|
| 120 | if (argv.length == 0) { |
|---|
| 121 | System.out.println("Please specify a set of instances."); |
|---|
| 122 | return; |
|---|
| 123 | } |
|---|
| 124 | int currentA = Integer.parseInt(argv[0]); |
|---|
| 125 | int maxA = currentA; |
|---|
| 126 | int currentB = Integer.parseInt(argv[1]); |
|---|
| 127 | int maxB = currentB; |
|---|
| 128 | for(int i = 2; i < argv.length - 1; i += 2) { |
|---|
| 129 | currentA = Integer.parseInt(argv[i]); |
|---|
| 130 | currentB = Integer.parseInt(argv[i + 1]); |
|---|
| 131 | if (currentA > maxA) { |
|---|
| 132 | maxA = currentA; |
|---|
| 133 | } |
|---|
| 134 | if (currentB > maxB) { |
|---|
| 135 | maxB = currentB; |
|---|
| 136 | } |
|---|
| 137 | } |
|---|
| 138 | KDConditionalEstimator newEst = new KDConditionalEstimator(maxB + 1, |
|---|
| 139 | 1); |
|---|
| 140 | for(int i = 0; i < argv.length - 1; i += 2) { |
|---|
| 141 | currentA = Integer.parseInt(argv[i]); |
|---|
| 142 | currentB = Integer.parseInt(argv[i + 1]); |
|---|
| 143 | System.out.println(newEst); |
|---|
| 144 | System.out.println("Prediction for " + currentA + '|' + currentB |
|---|
| 145 | + " = " |
|---|
| 146 | + newEst.getProbability(currentA, currentB)); |
|---|
| 147 | newEst.addValue(currentA, currentB, 1); |
|---|
| 148 | } |
|---|
| 149 | } catch (Exception e) { |
|---|
| 150 | System.out.println(e.getMessage()); |
|---|
| 151 | } |
|---|
| 152 | } |
|---|
| 153 | } |
|---|