1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * DiscreteEstimator.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.estimators; |
---|
24 | |
---|
25 | import weka.core.Capabilities.Capability; |
---|
26 | import weka.core.Capabilities; |
---|
27 | import weka.core.RevisionUtils; |
---|
28 | import weka.core.Utils; |
---|
29 | |
---|
30 | /** |
---|
31 | * Simple symbolic probability estimator based on symbol counts. |
---|
32 | * |
---|
33 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
---|
34 | * @version $Revision: 5490 $ |
---|
35 | */ |
---|
36 | public class DiscreteEstimator extends Estimator implements IncrementalEstimator { |
---|
37 | |
---|
38 | /** for serialization */ |
---|
39 | private static final long serialVersionUID = -5526486742612434779L; |
---|
40 | |
---|
41 | /** Hold the counts */ |
---|
42 | private double [] m_Counts; |
---|
43 | |
---|
44 | /** Hold the sum of counts */ |
---|
45 | private double m_SumOfCounts; |
---|
46 | |
---|
47 | |
---|
48 | /** |
---|
49 | * Constructor |
---|
50 | * |
---|
51 | * @param numSymbols the number of possible symbols (remember to include 0) |
---|
52 | * @param laplace if true, counts will be initialised to 1 |
---|
53 | */ |
---|
54 | public DiscreteEstimator(int numSymbols, boolean laplace) { |
---|
55 | |
---|
56 | m_Counts = new double [numSymbols]; |
---|
57 | m_SumOfCounts = 0; |
---|
58 | if (laplace) { |
---|
59 | for(int i = 0; i < numSymbols; i++) { |
---|
60 | m_Counts[i] = 1; |
---|
61 | } |
---|
62 | m_SumOfCounts = (double)numSymbols; |
---|
63 | } |
---|
64 | } |
---|
65 | |
---|
66 | /** |
---|
67 | * Constructor |
---|
68 | * |
---|
69 | * @param nSymbols the number of possible symbols (remember to include 0) |
---|
70 | * @param fPrior value with which counts will be initialised |
---|
71 | */ |
---|
72 | public DiscreteEstimator(int nSymbols, double fPrior) { |
---|
73 | |
---|
74 | m_Counts = new double [nSymbols]; |
---|
75 | for(int iSymbol = 0; iSymbol < nSymbols; iSymbol++) { |
---|
76 | m_Counts[iSymbol] = fPrior; |
---|
77 | } |
---|
78 | m_SumOfCounts = fPrior * (double) nSymbols; |
---|
79 | } |
---|
80 | |
---|
81 | /** |
---|
82 | * Add a new data value to the current estimator. |
---|
83 | * |
---|
84 | * @param data the new data value |
---|
85 | * @param weight the weight assigned to the data value |
---|
86 | */ |
---|
87 | public void addValue(double data, double weight) { |
---|
88 | |
---|
89 | m_Counts[(int)data] += weight; |
---|
90 | m_SumOfCounts += weight; |
---|
91 | } |
---|
92 | |
---|
93 | /** |
---|
94 | * Get a probability estimate for a value |
---|
95 | * |
---|
96 | * @param data the value to estimate the probability of |
---|
97 | * @return the estimated probability of the supplied value |
---|
98 | */ |
---|
99 | public double getProbability(double data) { |
---|
100 | |
---|
101 | if (m_SumOfCounts == 0) { |
---|
102 | return 0; |
---|
103 | } |
---|
104 | return (double)m_Counts[(int)data] / m_SumOfCounts; |
---|
105 | } |
---|
106 | |
---|
107 | /** |
---|
108 | * Gets the number of symbols this estimator operates with |
---|
109 | * |
---|
110 | * @return the number of estimator symbols |
---|
111 | */ |
---|
112 | public int getNumSymbols() { |
---|
113 | |
---|
114 | return (m_Counts == null) ? 0 : m_Counts.length; |
---|
115 | } |
---|
116 | |
---|
117 | |
---|
118 | /** |
---|
119 | * Get the count for a value |
---|
120 | * |
---|
121 | * @param data the value to get the count of |
---|
122 | * @return the count of the supplied value |
---|
123 | */ |
---|
124 | public double getCount(double data) { |
---|
125 | |
---|
126 | if (m_SumOfCounts == 0) { |
---|
127 | return 0; |
---|
128 | } |
---|
129 | return m_Counts[(int)data]; |
---|
130 | } |
---|
131 | |
---|
132 | |
---|
133 | /** |
---|
134 | * Get the sum of all the counts |
---|
135 | * |
---|
136 | * @return the total sum of counts |
---|
137 | */ |
---|
138 | public double getSumOfCounts() { |
---|
139 | |
---|
140 | return m_SumOfCounts; |
---|
141 | } |
---|
142 | |
---|
143 | |
---|
144 | /** |
---|
145 | * Display a representation of this estimator |
---|
146 | */ |
---|
147 | public String toString() { |
---|
148 | |
---|
149 | StringBuffer result = new StringBuffer("Discrete Estimator. Counts = "); |
---|
150 | if (m_SumOfCounts > 1) { |
---|
151 | for(int i = 0; i < m_Counts.length; i++) { |
---|
152 | result.append(" ").append(Utils.doubleToString(m_Counts[i], 2)); |
---|
153 | } |
---|
154 | result.append(" (Total = " ).append(Utils.doubleToString(m_SumOfCounts, 2)); |
---|
155 | result.append(")\n"); |
---|
156 | } else { |
---|
157 | for(int i = 0; i < m_Counts.length; i++) { |
---|
158 | result.append(" ").append(m_Counts[i]); |
---|
159 | } |
---|
160 | result.append(" (Total = ").append(m_SumOfCounts).append(")\n"); |
---|
161 | } |
---|
162 | return result.toString(); |
---|
163 | } |
---|
164 | |
---|
165 | /** |
---|
166 | * Returns default capabilities of the classifier. |
---|
167 | * |
---|
168 | * @return the capabilities of this classifier |
---|
169 | */ |
---|
170 | public Capabilities getCapabilities() { |
---|
171 | Capabilities result = super.getCapabilities(); |
---|
172 | result.disableAll(); |
---|
173 | |
---|
174 | // class |
---|
175 | if (!m_noClass) { |
---|
176 | result.enable(Capability.NOMINAL_CLASS); |
---|
177 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
178 | } else { |
---|
179 | result.enable(Capability.NO_CLASS); |
---|
180 | } |
---|
181 | |
---|
182 | // attributes |
---|
183 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
184 | return result; |
---|
185 | } |
---|
186 | |
---|
187 | /** |
---|
188 | * Returns the revision string. |
---|
189 | * |
---|
190 | * @return the revision |
---|
191 | */ |
---|
192 | public String getRevision() { |
---|
193 | return RevisionUtils.extract("$Revision: 5490 $"); |
---|
194 | } |
---|
195 | |
---|
196 | /** |
---|
197 | * Main method for testing this class. |
---|
198 | * |
---|
199 | * @param argv should contain a sequence of integers which |
---|
200 | * will be treated as symbolic. |
---|
201 | */ |
---|
202 | public static void main(String [] argv) { |
---|
203 | |
---|
204 | try { |
---|
205 | if (argv.length == 0) { |
---|
206 | System.out.println("Please specify a set of instances."); |
---|
207 | return; |
---|
208 | } |
---|
209 | int current = Integer.parseInt(argv[0]); |
---|
210 | int max = current; |
---|
211 | for(int i = 1; i < argv.length; i++) { |
---|
212 | current = Integer.parseInt(argv[i]); |
---|
213 | if (current > max) { |
---|
214 | max = current; |
---|
215 | } |
---|
216 | } |
---|
217 | DiscreteEstimator newEst = new DiscreteEstimator(max + 1, true); |
---|
218 | for(int i = 0; i < argv.length; i++) { |
---|
219 | current = Integer.parseInt(argv[i]); |
---|
220 | System.out.println(newEst); |
---|
221 | System.out.println("Prediction for " + current |
---|
222 | + " = " + newEst.getProbability(current)); |
---|
223 | newEst.addValue(current, 1); |
---|
224 | } |
---|
225 | } catch (Exception e) { |
---|
226 | System.out.println(e.getMessage()); |
---|
227 | } |
---|
228 | } |
---|
229 | } |
---|