1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * RandomVariates.java |
---|
19 | * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.core; |
---|
24 | |
---|
25 | import java.util.Random; |
---|
26 | |
---|
27 | /** |
---|
28 | * Class implementing some simple random variates generator. |
---|
29 | * |
---|
30 | * @author Xin Xu (xx5@cs.waikato.ac.nz) |
---|
31 | * @version $Revision: 5359 $ |
---|
32 | */ |
---|
33 | public final class RandomVariates extends Random implements RevisionHandler { |
---|
34 | |
---|
35 | /** for serialization */ |
---|
36 | private static final long serialVersionUID = -4763742718209460354L; |
---|
37 | |
---|
38 | /** |
---|
39 | * Simply the constructor of super class |
---|
40 | */ |
---|
41 | public RandomVariates(){ super(); } |
---|
42 | |
---|
43 | /** |
---|
44 | * Simply the constructor of super class |
---|
45 | * |
---|
46 | * @param seed the seed in this random object |
---|
47 | */ |
---|
48 | public RandomVariates(long seed){ super(seed); } |
---|
49 | |
---|
50 | /** |
---|
51 | * Simply use the method of the super class |
---|
52 | * |
---|
53 | * @param bits - random bits |
---|
54 | * @return the next pseudorandom value from this random number |
---|
55 | * generator's sequence. |
---|
56 | */ |
---|
57 | protected int next(int bits) {return super.next(bits);} |
---|
58 | |
---|
59 | /** |
---|
60 | * Generate a value of a variate following standard exponential |
---|
61 | * distribution using simple inverse method.<p> |
---|
62 | * |
---|
63 | * Variates related to standard Exponential can be generated using simple |
---|
64 | * transformations. |
---|
65 | * @return a value of the variate |
---|
66 | */ |
---|
67 | public double nextExponential(){ |
---|
68 | return -Math.log(1.0-super.nextDouble()); |
---|
69 | } |
---|
70 | |
---|
71 | /** |
---|
72 | * Generate a value of a variate following standard Erlang distribution. |
---|
73 | * It can be used when the shape parameter is an integer and not too large, |
---|
74 | * say, <100. When the parameter is not an integer (which is often named |
---|
75 | * Gamma distribution) or is large, use <code>nextGamma(double a)</code> |
---|
76 | * instead. |
---|
77 | * |
---|
78 | * @param a the shape parameter, must be no less than 1 |
---|
79 | * @return a value of the variate |
---|
80 | * @exception Exception if parameter less than 1 |
---|
81 | */ |
---|
82 | public double nextErlang(int a) throws Exception{ |
---|
83 | if(a<1) |
---|
84 | throw new Exception("Shape parameter of Erlang distribution must be greater than 1!"); |
---|
85 | |
---|
86 | double product = 1.0; |
---|
87 | for(int i=1; i<=a; i++) |
---|
88 | product *= super.nextDouble(); |
---|
89 | |
---|
90 | return -Math.log(product); |
---|
91 | } |
---|
92 | |
---|
93 | /** |
---|
94 | * Generate a value of a variate following standard Gamma distribution |
---|
95 | * with shape parameter a.<p> |
---|
96 | * If a>1, it uses a rejection method developed by Minh(1988)"Generating |
---|
97 | * Gamma Variates", ACM Trans. on Math. Software, Vol.14, No.3, pp261-266. |
---|
98 | * <br> |
---|
99 | * If a<1, it uses the algorithm "GS" developed by Ahrens and Dieter(1974) |
---|
100 | * "COMPUTER METHODS FOR SAMPLING FROM GAMMA, BETA, POISSON AND BINOMIAL |
---|
101 | * DISTRIBUTIONS", COMPUTING, 12 (1974), pp223-246, and further implemented |
---|
102 | * in Fortran by Ahrens, Kohrt and Dieter(1983) "Algorithm 599: sampling |
---|
103 | * from Gamma and Poisson distributions", ACM Trans. on Math. Software, |
---|
104 | * Vol.9 No.2, pp255-257.<p> |
---|
105 | * |
---|
106 | * Variates related to standard Gamma can be generated using simple |
---|
107 | * transformations. |
---|
108 | * |
---|
109 | * @param a the shape parameter, must be greater than 1 |
---|
110 | * @return a value of the variate |
---|
111 | * @exception Exception if parameter not greater than 1 |
---|
112 | */ |
---|
113 | public double nextGamma(double a) throws Exception{ |
---|
114 | if(a<=0.0) |
---|
115 | throw new Exception("Shape parameter of Gamma distribution"+ |
---|
116 | "must be greater than 0!"); |
---|
117 | else if (a==1.0) |
---|
118 | return nextExponential(); |
---|
119 | else if (a<1.0){ |
---|
120 | double b=1.0+Math.exp(-1.0)*a, p,x, condition; |
---|
121 | do{ |
---|
122 | p=b*super.nextDouble(); |
---|
123 | if(p<1.0){ |
---|
124 | x = Math.exp(Math.log(p)/a); |
---|
125 | condition = x; |
---|
126 | } |
---|
127 | else{ |
---|
128 | x = -Math.log((b-p)/a); |
---|
129 | condition = (1.0-a)*Math.log(x); |
---|
130 | } |
---|
131 | } |
---|
132 | while(nextExponential() < condition); |
---|
133 | return x; |
---|
134 | } |
---|
135 | else{ // a>1 |
---|
136 | double b=a-1.0, D=Math.sqrt(b), D1,x1,x2,xl,f1,f2,x4,x5,xr,f4,f5, |
---|
137 | p1,p2,p3,p4; |
---|
138 | |
---|
139 | // Initialization |
---|
140 | if(a<=2.0){ |
---|
141 | D1 = b/2.0; |
---|
142 | x1 = 0.0; |
---|
143 | x2 = D1; |
---|
144 | xl = -1.0; |
---|
145 | f1 = 0.0; |
---|
146 | } |
---|
147 | else{ |
---|
148 | D1 = D-0.5; |
---|
149 | x2 = b-D1; |
---|
150 | x1 = x2-D1; |
---|
151 | xl = 1.0-b/x1; |
---|
152 | f1 = Math.exp(b*Math.log(x1/b)+2.0*D1); |
---|
153 | } |
---|
154 | |
---|
155 | f2=Math.exp(b*Math.log(x2/b)+D1); |
---|
156 | x4 = b+D; |
---|
157 | x5 = x4+D; |
---|
158 | xr = 1.0-b/x5; |
---|
159 | f4 = Math.exp(b*Math.log(x4/b)-D); |
---|
160 | f5 = Math.exp(b*Math.log(x5/b)-2.0*D); |
---|
161 | p1 = 2.0*f4*D; |
---|
162 | p2 = 2.0*f2*D1+p1; |
---|
163 | p3 = f5/xr+p2; |
---|
164 | p4 = -f1/xl+p3; |
---|
165 | |
---|
166 | // Generation |
---|
167 | double u, w=Double.MAX_VALUE, x=b, v, xp; |
---|
168 | while(Math.log(w) > (b*Math.log(x/b)+b-x) || x < 0.0){ |
---|
169 | u=super.nextDouble()*p4; |
---|
170 | if(u<=p1){ // step 5-6 |
---|
171 | w = u/D-f4; |
---|
172 | if(w<=0.0) return (b+u/f4); |
---|
173 | if(w<=f5) return (x4+(w*D)/f5); |
---|
174 | |
---|
175 | v = super.nextDouble(); |
---|
176 | x=x4+v*D; |
---|
177 | xp=2.0*x4-x; |
---|
178 | |
---|
179 | if(w >= f4+(f4-1)*(x-x4)/(x4-b)) |
---|
180 | return xp; |
---|
181 | if(w <= f4+(b/x4-1)*f4*(x-x4)) |
---|
182 | return x; |
---|
183 | if((w < 2.0*f4-1.0) || |
---|
184 | (w < 2.0*f4-Math.exp(b*Math.log(xp/b)+b-xp))) |
---|
185 | continue; |
---|
186 | return xp; |
---|
187 | } |
---|
188 | else if(u<=p2){ // step 7-8 |
---|
189 | w = (u-p1)/D1-f2; |
---|
190 | if(w<=0.0) return (b-(u-p1)/f2); |
---|
191 | if(w<=f1) return (x1+w*D1/f1); |
---|
192 | |
---|
193 | v = super.nextDouble(); |
---|
194 | x=x1+v*D1; |
---|
195 | xp=2.0*x2-x; |
---|
196 | |
---|
197 | if(w >= f2+(f2-1)*(x-x2)/(x2-b)) |
---|
198 | return xp; |
---|
199 | if(w <= f2*(x-x1)/D1) |
---|
200 | return x; |
---|
201 | if((w < 2.0*f2-1.0) || |
---|
202 | (w < 2.0*f2-Math.exp(b*Math.log(xp/b)+b-xp))) |
---|
203 | continue; |
---|
204 | return xp; |
---|
205 | } |
---|
206 | else if(u<p3){ // step 9 |
---|
207 | w = super.nextDouble(); |
---|
208 | u = (p3-u)/(p3-p2); |
---|
209 | x = x5-Math.log(u)/xr; |
---|
210 | if(w <= (xr*(x5-x)+1.0)/u) return x; |
---|
211 | w = w*f5*u; |
---|
212 | } |
---|
213 | else{ // step 10 |
---|
214 | w = super.nextDouble(); |
---|
215 | u = (p4-u)/(p4-p3); |
---|
216 | x = x1-Math.log(u)/xl; |
---|
217 | if(x<0.0) continue; |
---|
218 | if(w <= (xl*(x1-x)+1.0)/u) return x; |
---|
219 | w = w*f1*u; |
---|
220 | } |
---|
221 | } |
---|
222 | |
---|
223 | return x; |
---|
224 | } |
---|
225 | } |
---|
226 | |
---|
227 | /** |
---|
228 | * Returns the revision string. |
---|
229 | * |
---|
230 | * @return the revision |
---|
231 | */ |
---|
232 | public String getRevision() { |
---|
233 | return RevisionUtils.extract("$Revision: 5359 $"); |
---|
234 | } |
---|
235 | |
---|
236 | |
---|
237 | /** |
---|
238 | * Main method for testing this class. |
---|
239 | * |
---|
240 | * @param ops # of variates/seed, default is 10/45 |
---|
241 | */ |
---|
242 | public static void main(String[] ops) { |
---|
243 | |
---|
244 | int n = Integer.parseInt(ops[0]); |
---|
245 | if(n<=0) |
---|
246 | n=10; |
---|
247 | long seed = Long.parseLong(ops[1]); |
---|
248 | if(seed <= 0) |
---|
249 | seed = 45; |
---|
250 | RandomVariates var = new RandomVariates(seed); |
---|
251 | double varb[] = new double[n]; |
---|
252 | |
---|
253 | try { |
---|
254 | System.out.println("Generate "+n+" values with std. exp dist:"); |
---|
255 | for(int i=0; i<n; i++){ |
---|
256 | varb[i] = var.nextExponential(); |
---|
257 | System.out.print("["+i+"] "+varb[i]+", "); |
---|
258 | } |
---|
259 | |
---|
260 | System.out.println("\nMean is "+Utils.mean(varb)+ |
---|
261 | ", Variance is "+Utils.variance(varb)+ |
---|
262 | "\n\nGenerate "+n+" values with"+ |
---|
263 | " std. Erlang-5 dist:"); |
---|
264 | |
---|
265 | for(int i=0; i<n; i++){ |
---|
266 | varb[i] = var.nextErlang(5); |
---|
267 | System.out.print("["+i+"] "+varb[i]+", "); |
---|
268 | } |
---|
269 | |
---|
270 | System.out.println("\nMean is "+Utils.mean(varb)+ |
---|
271 | ", Variance is "+Utils.variance(varb)+ |
---|
272 | "\n\nGenerate "+n+" values with"+ |
---|
273 | " std. Gamma(4.5) dist:"); |
---|
274 | |
---|
275 | for(int i=0; i<n; i++){ |
---|
276 | varb[i] = var.nextGamma(4.5); |
---|
277 | System.out.print("["+i+"] "+varb[i]+", "); |
---|
278 | } |
---|
279 | |
---|
280 | System.out.println("\nMean is "+Utils.mean(varb)+ |
---|
281 | ", Variance is "+Utils.variance(varb)+ |
---|
282 | "\n\nGenerate "+n+" values with"+ |
---|
283 | " std. Gamma(0.5) dist:"); |
---|
284 | |
---|
285 | for(int i=0; i<n; i++){ |
---|
286 | varb[i] = var.nextGamma(0.5); |
---|
287 | System.out.print("["+i+"] "+varb[i]+", "); |
---|
288 | } |
---|
289 | |
---|
290 | System.out.println("\nMean is "+Utils.mean(varb)+ |
---|
291 | ", Variance is "+Utils.variance(varb)+ |
---|
292 | "\n\nGenerate "+n+" values with"+ |
---|
293 | " std. Gaussian(5, 2) dist:"); |
---|
294 | |
---|
295 | for(int i=0; i<n; i++){ |
---|
296 | varb[i] = var.nextGaussian()*2.0+5.0; |
---|
297 | System.out.print("["+i+"] "+varb[i]+", "); |
---|
298 | } |
---|
299 | System.out.println("\nMean is "+Utils.mean(varb)+ |
---|
300 | ", Variance is "+Utils.variance(varb)+"\n"); |
---|
301 | |
---|
302 | } catch (Exception e) { |
---|
303 | e.printStackTrace(); |
---|
304 | } |
---|
305 | } |
---|
306 | } |
---|