source: src/main/java/weka/core/MinkowskiDistance.java @ 24

Last change on this file since 24 was 4, checked in by gnappo, 14 years ago

Import di weka.

File size: 8.5 KB
Line 
1/*
2 *    This program is free software; you can redistribute it and/or modify
3 *    it under the terms of the GNU General Public License as published by
4 *    the Free Software Foundation; either version 2 of the License, or
5 *    (at your option) any later version.
6 *
7 *    This program is distributed in the hope that it will be useful,
8 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
9 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10 *    GNU General Public License for more details.
11 *
12 *    You should have received a copy of the GNU General Public License
13 *    along with this program; if not, write to the Free Software
14 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
15 */
16
17/*
18 *    MinkowskiDistance.java
19 *    Copyright (C) 2009 University of Waikato, Hamilton, New Zealand
20 *
21 */
22
23package weka.core;
24
25import weka.core.TechnicalInformation.Field;
26import weka.core.TechnicalInformation.Type;
27import weka.core.neighboursearch.PerformanceStats;
28
29import java.util.Enumeration;
30import java.util.Vector;
31
32/**
33 <!-- globalinfo-start -->
34 * Implementing Minkowski distance (or similarity) function.<br/>
35 * <br/>
36 * One object defines not one distance but the data model in which the distances between objects of that data model can be computed.<br/>
37 * <br/>
38 * Attention: For efficiency reasons the use of consistency checks (like are the data models of the two instances exactly the same), is low.<br/>
39 * <br/>
40 * For more information, see:<br/>
41 * <br/>
42 * Wikipedia. Minkowski distance. URL http://en.wikipedia.org/wiki/Minkowski_distance.
43 * <p/>
44 <!-- globalinfo-end -->
45 *
46 <!-- technical-bibtex-start -->
47 * BibTeX:
48 * <pre>
49 * &#64;misc{missing_id,
50 *    author = {Wikipedia},
51 *    title = {Minkowski distance},
52 *    URL = {http://en.wikipedia.org/wiki/Minkowski_distance}
53 * }
54 * </pre>
55 * <p/>
56 <!-- technical-bibtex-end -->
57 *
58 <!-- options-start -->
59 * Valid options are: <p/>
60 *
61 * <pre> -P &lt;order&gt;
62 *  The order 'p'. With '1' being the Manhattan distance and '2'
63 *  the Euclidean distance.
64 *  (default: 2)</pre>
65 *
66 * <pre> -D
67 *  Turns off the normalization of attribute
68 *  values in distance calculation.</pre>
69 *
70 * <pre> -R &lt;col1,col2-col4,...&gt;
71 *  Specifies list of columns to used in the calculation of the
72 *  distance. 'first' and 'last' are valid indices.
73 *  (default: first-last)</pre>
74 *
75 * <pre> -V
76 *  Invert matching sense of column indices.</pre>
77 *
78 <!-- options-end -->
79 *
80 * @author FracPete (fracpete at waikato dot ac dot nz)
81 * @version $Revision: 5953 $
82 */
83public class MinkowskiDistance
84  extends NormalizableDistance
85  implements Cloneable, TechnicalInformationHandler {
86
87  /** for serialization. */
88  private static final long serialVersionUID = -7446019339455453893L;
89 
90  /** the order of the minkowski distance. */
91  protected double m_Order = 2;
92 
93  /**
94   * Constructs an Minkowski Distance object, Instances must be still set.
95   */
96  public MinkowskiDistance() {
97    super();
98  }
99
100  /**
101   * Constructs an Minkowski Distance object and automatically initializes the
102   * ranges.
103   *
104   * @param data        the instances the distance function should work on
105   */
106  public MinkowskiDistance(Instances data) {
107    super(data);
108  }
109
110  /**
111   * Returns a string describing this object.
112   *
113   * @return            a description of the evaluator suitable for
114   *                    displaying in the explorer/experimenter gui
115   */
116  public String globalInfo() {
117    return 
118        "Implementing Minkowski distance (or similarity) function.\n\n"
119      + "One object defines not one distance but the data model in which "
120      + "the distances between objects of that data model can be computed.\n\n"
121      + "Attention: For efficiency reasons the use of consistency checks "
122      + "(like are the data models of the two instances exactly the same), "
123      + "is low.\n\n"
124      + "For more information, see:\n\n"
125      + getTechnicalInformation().toString();
126  }
127
128  /**
129   * Returns an instance of a TechnicalInformation object, containing
130   * detailed information about the technical background of this class,
131   * e.g., paper reference or book this class is based on.
132   *
133   * @return            the technical information about this class
134   */
135  public TechnicalInformation getTechnicalInformation() {
136    TechnicalInformation        result;
137   
138    result = new TechnicalInformation(Type.MISC);
139    result.setValue(Field.AUTHOR, "Wikipedia");
140    result.setValue(Field.TITLE, "Minkowski distance");
141    result.setValue(Field.URL, "http://en.wikipedia.org/wiki/Minkowski_distance");
142
143    return result;
144  }
145
146  /**
147   * Returns an enumeration describing the available options.
148   *
149   * @return            an enumeration of all the available options.
150   */
151  public Enumeration listOptions() {
152    Vector<Option> result = new Vector<Option>();
153   
154    result.addElement(new Option(
155        "\tThe order 'p'. With '1' being the Manhattan distance and '2'\n"
156        + "\tthe Euclidean distance.\n"
157        + "\t(default: 2)",
158        "P", 1, "-P <order>"));
159   
160    Enumeration en = super.listOptions();
161    while (en.hasMoreElements())
162      result.addElement((Option)en.nextElement());
163     
164    return result.elements();
165  }
166
167  /**
168   * Returns the tip text for this property.
169   *
170   * @return            tip text for this property suitable for
171   *                    displaying in the explorer/experimenter gui
172   */
173  public String orderTipText() {
174    return 
175        "The order of the Minkowski distance ('1' is Manhattan distance and "
176      + "'2' the Euclidean distance).";
177  }
178
179  /**
180   * Sets the order.
181   *
182   * @param value       the new order
183   */
184  public void setOrder(double value) {
185    if (m_Order != 0.0) {
186      m_Order = value;
187      invalidate();
188    }
189    else {
190      System.err.println("Order cannot be zero!");
191    }
192  }
193 
194  /**
195   * Gets the order.
196   *
197   * @return            the order
198   */
199  public double getOrder() {
200    return m_Order;
201  }   
202 
203  /**
204   * Calculates the distance between two instances.
205   *
206   * @param first       the first instance
207   * @param second      the second instance
208   * @return            the distance between the two given instances
209   */
210  public double distance(Instance first, Instance second) {
211    return Math.pow(distance(first, second, Double.POSITIVE_INFINITY), 1/m_Order);
212  }
213 
214  /**
215   * Calculates the distance (or similarity) between two instances. Need to
216   * pass this returned distance later on to postprocess method to set it on
217   * correct scale. <br/>
218   * P.S.: Please don't mix the use of this function with
219   * distance(Instance first, Instance second), as that already does post
220   * processing. Please consider passing Double.POSITIVE_INFINITY as the cutOffValue to
221   * this function and then later on do the post processing on all the
222   * distances.
223   *
224   * @param first       the first instance
225   * @param second      the second instance
226   * @param stats       the structure for storing performance statistics.
227   * @return            the distance between the two given instances or
228   *                    Double.POSITIVE_INFINITY.
229   */
230  public double distance(Instance first, Instance second, PerformanceStats stats) { //debug method pls remove after use
231    return Math.pow(distance(first, second, Double.POSITIVE_INFINITY, stats), 1/m_Order);
232  }
233 
234  /**
235   * Updates the current distance calculated so far with the new difference
236   * between two attributes. The difference between the attributes was
237   * calculated with the difference(int,double,double) method.
238   *
239   * @param currDist    the current distance calculated so far
240   * @param diff        the difference between two new attributes
241   * @return            the update distance
242   * @see               #difference(int, double, double)
243   */
244  protected double updateDistance(double currDist, double diff) {
245    double      result;
246   
247    result  = currDist;
248    result += Math.pow(Math.abs(diff), m_Order);
249   
250    return result;
251  }
252 
253  /**
254   * Does post processing of the distances (if necessary) returned by
255   * distance(distance(Instance first, Instance second, double cutOffValue). It
256   * is necessary to do so to get the correct distances if
257   * distance(distance(Instance first, Instance second, double cutOffValue) is
258   * used. This is because that function actually returns the squared distance
259   * to avoid inaccuracies arising from floating point comparison.
260   *
261   * @param distances   the distances to post-process
262   */
263  public void postProcessDistances(double distances[]) {
264    for(int i = 0; i < distances.length; i++) {
265      distances[i] = Math.pow(distances[i], 1/m_Order);
266    }
267  }
268 
269  /**
270   * Returns the revision string.
271   *
272   * @return            the revision
273   */
274  public String getRevision() {
275    return RevisionUtils.extract("$Revision: 0$");
276  }
277}
Note: See TracBrowser for help on using the repository browser.