1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * Matrix.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.core; |
---|
24 | |
---|
25 | import java.io.Reader; |
---|
26 | import java.io.Serializable; |
---|
27 | import java.io.Writer; |
---|
28 | |
---|
29 | /** |
---|
30 | * Class for performing operations on a matrix of floating-point values. |
---|
31 | * <p/> |
---|
32 | * Deprecated: Uses internally the code of the sub-package |
---|
33 | * <code>weka.core.matrix</code> - only for backwards compatibility. |
---|
34 | * |
---|
35 | * @author Gabi Schmidberger (gabi@cs.waikato.ac.nz) |
---|
36 | * @author Yong Wang (yongwang@cs.waikato.ac.nz) |
---|
37 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
38 | * @author Len Trigg (eibe@cs.waikato.ac.nz) |
---|
39 | * @author Fracpete (fracpete at waikato dot ac dot nz) |
---|
40 | * @version $Revision: 5953 $ |
---|
41 | * @deprecated Use <code>weka.core.matrix.Matrix</code> instead - only for |
---|
42 | * backwards compatibility. |
---|
43 | */ |
---|
44 | public class Matrix |
---|
45 | implements Cloneable, Serializable, RevisionHandler { |
---|
46 | |
---|
47 | /** for serialization */ |
---|
48 | private static final long serialVersionUID = -3604757095849145838L; |
---|
49 | |
---|
50 | /** |
---|
51 | * The actual matrix */ |
---|
52 | protected weka.core.matrix.Matrix m_Matrix = null; |
---|
53 | |
---|
54 | /** |
---|
55 | * Constructs a matrix and initializes it with default values. |
---|
56 | * |
---|
57 | * @param nr the number of rows |
---|
58 | * @param nc the number of columns |
---|
59 | */ |
---|
60 | public Matrix(int nr, int nc) { |
---|
61 | m_Matrix = new weka.core.matrix.Matrix(nr, nc); |
---|
62 | } |
---|
63 | |
---|
64 | /** |
---|
65 | * Constructs a matrix using a given array. |
---|
66 | * |
---|
67 | * @param array the values of the matrix |
---|
68 | */ |
---|
69 | public Matrix(double[][] array) throws Exception { |
---|
70 | m_Matrix = new weka.core.matrix.Matrix(array); |
---|
71 | } |
---|
72 | |
---|
73 | /** |
---|
74 | * Reads a matrix from a reader. The first line in the file should |
---|
75 | * contain the number of rows and columns. Subsequent lines |
---|
76 | * contain elements of the matrix. |
---|
77 | * |
---|
78 | * @param r the reader containing the matrix |
---|
79 | * @throws Exception if an error occurs |
---|
80 | */ |
---|
81 | public Matrix(Reader r) throws Exception { |
---|
82 | m_Matrix = new weka.core.matrix.Matrix(r); |
---|
83 | } |
---|
84 | |
---|
85 | /** |
---|
86 | * Creates and returns a clone of this object. |
---|
87 | * |
---|
88 | * @return a clone of this instance. |
---|
89 | * @throws Exception if an error occurs |
---|
90 | */ |
---|
91 | public Object clone() { |
---|
92 | try { |
---|
93 | return new Matrix(m_Matrix.getArrayCopy()); |
---|
94 | } |
---|
95 | catch (Exception e) { |
---|
96 | e.printStackTrace(); |
---|
97 | return null; |
---|
98 | } |
---|
99 | } |
---|
100 | |
---|
101 | /** |
---|
102 | * Writes out a matrix. |
---|
103 | * |
---|
104 | * @param w the output Writer |
---|
105 | * @throws Exception if an error occurs |
---|
106 | */ |
---|
107 | public void write(Writer w) throws Exception { |
---|
108 | m_Matrix.write(w); |
---|
109 | } |
---|
110 | |
---|
111 | /** |
---|
112 | * returns the internal matrix |
---|
113 | * @see #m_Matrix |
---|
114 | */ |
---|
115 | protected weka.core.matrix.Matrix getMatrix() { |
---|
116 | return m_Matrix; |
---|
117 | } |
---|
118 | |
---|
119 | /** |
---|
120 | * Returns the value of a cell in the matrix. |
---|
121 | * |
---|
122 | * @param rowIndex the row's index |
---|
123 | * @param columnIndex the column's index |
---|
124 | * @return the value of the cell of the matrix |
---|
125 | */ |
---|
126 | public final double getElement(int rowIndex, int columnIndex) { |
---|
127 | return m_Matrix.get(rowIndex, columnIndex); |
---|
128 | } |
---|
129 | |
---|
130 | /** |
---|
131 | * Add a value to an element. |
---|
132 | * |
---|
133 | * @param rowIndex the row's index. |
---|
134 | * @param columnIndex the column's index. |
---|
135 | * @param value the value to add. |
---|
136 | */ |
---|
137 | public final void addElement(int rowIndex, int columnIndex, double value) { |
---|
138 | m_Matrix.set( |
---|
139 | rowIndex, columnIndex, m_Matrix.get(rowIndex, columnIndex) + value); |
---|
140 | } |
---|
141 | |
---|
142 | /** |
---|
143 | * Returns the number of rows in the matrix. |
---|
144 | * |
---|
145 | * @return the number of rows |
---|
146 | */ |
---|
147 | public final int numRows() { |
---|
148 | return m_Matrix.getRowDimension(); |
---|
149 | } |
---|
150 | |
---|
151 | /** |
---|
152 | * Returns the number of columns in the matrix. |
---|
153 | * |
---|
154 | * @return the number of columns |
---|
155 | */ |
---|
156 | public final int numColumns() { |
---|
157 | return m_Matrix.getColumnDimension(); |
---|
158 | } |
---|
159 | |
---|
160 | /** |
---|
161 | * Sets an element of the matrix to the given value. |
---|
162 | * |
---|
163 | * @param rowIndex the row's index |
---|
164 | * @param columnIndex the column's index |
---|
165 | * @param value the value |
---|
166 | */ |
---|
167 | public final void setElement(int rowIndex, int columnIndex, double value) { |
---|
168 | m_Matrix.set(rowIndex, columnIndex, value); |
---|
169 | } |
---|
170 | |
---|
171 | /** |
---|
172 | * Sets a row of the matrix to the given row. Performs a deep copy. |
---|
173 | * |
---|
174 | * @param index the row's index |
---|
175 | * @param newRow an array of doubles |
---|
176 | */ |
---|
177 | public final void setRow(int index, double[] newRow) { |
---|
178 | for (int i = 0; i < newRow.length; i++) |
---|
179 | m_Matrix.set(index, i, newRow[i]); |
---|
180 | } |
---|
181 | |
---|
182 | /** |
---|
183 | * Gets a row of the matrix and returns it as double array. |
---|
184 | * |
---|
185 | * @param index the row's index |
---|
186 | * @return an array of doubles |
---|
187 | */ |
---|
188 | public double[] getRow(int index) { |
---|
189 | double[] newRow = new double[this.numColumns()]; |
---|
190 | for (int i = 0; i < newRow.length; i++) |
---|
191 | newRow[i] = getElement(index, i); |
---|
192 | |
---|
193 | return newRow; |
---|
194 | } |
---|
195 | |
---|
196 | /** |
---|
197 | * Gets a column of the matrix and returns it as a double array. |
---|
198 | * |
---|
199 | * @param index the column's index |
---|
200 | * @return an array of doubles |
---|
201 | */ |
---|
202 | public double[] getColumn(int index) { |
---|
203 | double[] newColumn = new double[this.numRows()]; |
---|
204 | for (int i = 0; i < newColumn.length; i++) |
---|
205 | newColumn[i] = getElement(i, index); |
---|
206 | |
---|
207 | return newColumn; |
---|
208 | } |
---|
209 | |
---|
210 | /** |
---|
211 | * Sets a column of the matrix to the given column. Performs a deep copy. |
---|
212 | * |
---|
213 | * @param index the column's index |
---|
214 | * @param newColumn an array of doubles |
---|
215 | */ |
---|
216 | public final void setColumn(int index, double[] newColumn) { |
---|
217 | for (int i = 0; i < numRows(); i++) |
---|
218 | m_Matrix.set(i, index, newColumn[i]); |
---|
219 | } |
---|
220 | |
---|
221 | /** |
---|
222 | * Converts a matrix to a string |
---|
223 | * |
---|
224 | * @return the converted string |
---|
225 | */ |
---|
226 | public String toString() { |
---|
227 | return m_Matrix.toString(); |
---|
228 | } |
---|
229 | |
---|
230 | /** |
---|
231 | * Returns the sum of this matrix with another. |
---|
232 | * |
---|
233 | * @return a matrix containing the sum. |
---|
234 | */ |
---|
235 | public final Matrix add(Matrix other) { |
---|
236 | try { |
---|
237 | return new Matrix(m_Matrix.plus(other.getMatrix()).getArrayCopy()); |
---|
238 | } |
---|
239 | catch (Exception e) { |
---|
240 | e.printStackTrace(); |
---|
241 | return null; |
---|
242 | } |
---|
243 | } |
---|
244 | |
---|
245 | /** |
---|
246 | * Returns the transpose of a matrix. |
---|
247 | * |
---|
248 | * @return the transposition of this instance. |
---|
249 | */ |
---|
250 | public final Matrix transpose() { |
---|
251 | try { |
---|
252 | return new Matrix(m_Matrix.transpose().getArrayCopy()); |
---|
253 | } |
---|
254 | catch (Exception e) { |
---|
255 | e.printStackTrace(); |
---|
256 | return null; |
---|
257 | } |
---|
258 | } |
---|
259 | |
---|
260 | /** |
---|
261 | * Returns true if the matrix is symmetric. |
---|
262 | * |
---|
263 | * @return boolean true if matrix is symmetric. |
---|
264 | */ |
---|
265 | public boolean isSymmetric() { |
---|
266 | return m_Matrix.isSymmetric(); |
---|
267 | } |
---|
268 | |
---|
269 | /** |
---|
270 | * Returns the multiplication of two matrices |
---|
271 | * |
---|
272 | * @param b the multiplication matrix |
---|
273 | * @return the product matrix |
---|
274 | */ |
---|
275 | public final Matrix multiply(Matrix b) { |
---|
276 | try { |
---|
277 | return new Matrix(getMatrix().times(b.getMatrix()).getArrayCopy()); |
---|
278 | } |
---|
279 | catch (Exception e) { |
---|
280 | e.printStackTrace(); |
---|
281 | return null; |
---|
282 | } |
---|
283 | } |
---|
284 | |
---|
285 | /** |
---|
286 | * Performs a (ridged) linear regression. |
---|
287 | * |
---|
288 | * @param y the dependent variable vector |
---|
289 | * @param ridge the ridge parameter |
---|
290 | * @return the coefficients |
---|
291 | * @throws IllegalArgumentException if not successful |
---|
292 | */ |
---|
293 | public final double[] regression(Matrix y, double ridge) { |
---|
294 | return getMatrix().regression(y.getMatrix(), ridge).getCoefficients(); |
---|
295 | } |
---|
296 | |
---|
297 | /** |
---|
298 | * Performs a weighted (ridged) linear regression. |
---|
299 | * |
---|
300 | * @param y the dependent variable vector |
---|
301 | * @param w the array of data point weights |
---|
302 | * @param ridge the ridge parameter |
---|
303 | * @return the coefficients |
---|
304 | * @throws IllegalArgumentException if the wrong number of weights were |
---|
305 | * provided. |
---|
306 | */ |
---|
307 | public final double[] regression(Matrix y, double [] w, double ridge) { |
---|
308 | return getMatrix().regression(y.getMatrix(), w, ridge).getCoefficients(); |
---|
309 | } |
---|
310 | |
---|
311 | /** |
---|
312 | * Returns the L part of the matrix. |
---|
313 | * This does only make sense after LU decomposition. |
---|
314 | * |
---|
315 | * @return matrix with the L part of the matrix; |
---|
316 | * @see #LUDecomposition() |
---|
317 | */ |
---|
318 | public Matrix getL() throws Exception { |
---|
319 | int nr = numRows(); // num of rows |
---|
320 | int nc = numColumns(); // num of columns |
---|
321 | double[][] ld = new double[nr][nc]; |
---|
322 | |
---|
323 | for (int i = 0; i < nr; i++) { |
---|
324 | for (int j = 0; (j < i) && (j < nc); j++) { |
---|
325 | ld[i][j] = getElement(i, j); |
---|
326 | } |
---|
327 | if (i < nc) ld[i][i] = 1; |
---|
328 | } |
---|
329 | Matrix l = new Matrix(ld); |
---|
330 | return l; |
---|
331 | } |
---|
332 | |
---|
333 | /** |
---|
334 | * Returns the U part of the matrix. |
---|
335 | * This does only make sense after LU decomposition. |
---|
336 | * |
---|
337 | * @return matrix with the U part of a matrix; |
---|
338 | * @see #LUDecomposition() |
---|
339 | */ |
---|
340 | public Matrix getU() throws Exception { |
---|
341 | int nr = numRows(); // num of rows |
---|
342 | int nc = numColumns(); // num of columns |
---|
343 | double[][] ud = new double[nr][nc]; |
---|
344 | |
---|
345 | for (int i = 0; i < nr; i++) { |
---|
346 | for (int j = i; j < nc ; j++) { |
---|
347 | ud[i][j] = getElement(i, j); |
---|
348 | } |
---|
349 | } |
---|
350 | Matrix u = new Matrix(ud); |
---|
351 | return u; |
---|
352 | } |
---|
353 | |
---|
354 | /** |
---|
355 | * Performs a LUDecomposition on the matrix. |
---|
356 | * It changes the matrix into its LU decomposition. |
---|
357 | * |
---|
358 | * @return the indices of the row permutation |
---|
359 | */ |
---|
360 | public int[] LUDecomposition() throws Exception { |
---|
361 | // decompose |
---|
362 | weka.core.matrix.LUDecomposition lu = m_Matrix.lu(); |
---|
363 | |
---|
364 | // singular? old class throws Exception! |
---|
365 | if (!lu.isNonsingular()) |
---|
366 | throw new Exception("Matrix is singular"); |
---|
367 | |
---|
368 | weka.core.matrix.Matrix u = lu.getU(); |
---|
369 | weka.core.matrix.Matrix l = lu.getL(); |
---|
370 | |
---|
371 | // modify internal matrix |
---|
372 | int nr = numRows(); |
---|
373 | int nc = numColumns(); |
---|
374 | for (int i = 0; i < nr; i++) { |
---|
375 | for (int j = 0; j < nc; j++) { |
---|
376 | if (j < i) |
---|
377 | setElement(i, j, l.get(i, j)); |
---|
378 | else |
---|
379 | setElement(i, j, u.get(i, j)); |
---|
380 | } |
---|
381 | } |
---|
382 | |
---|
383 | u = null; |
---|
384 | l = null; |
---|
385 | |
---|
386 | return lu.getPivot(); |
---|
387 | } |
---|
388 | |
---|
389 | /** |
---|
390 | * Solve A*X = B using backward substitution. |
---|
391 | * A is current object (this). Note that this matrix will be changed! |
---|
392 | * B parameter bb. |
---|
393 | * X returned in parameter bb. |
---|
394 | * |
---|
395 | * @param bb first vector B in above equation then X in same equation. |
---|
396 | */ |
---|
397 | public void solve(double[] bb) throws Exception { |
---|
398 | // solve |
---|
399 | weka.core.matrix.Matrix x = m_Matrix.solve( |
---|
400 | new weka.core.matrix.Matrix(bb, bb.length)); |
---|
401 | |
---|
402 | // move X into bb |
---|
403 | int nr = x.getRowDimension(); |
---|
404 | for (int i = 0; i < nr; i++) |
---|
405 | bb[i] = x.get(i, 0); |
---|
406 | } |
---|
407 | |
---|
408 | /** |
---|
409 | * Performs Eigenvalue Decomposition using Householder QR Factorization |
---|
410 | * |
---|
411 | * Matrix must be symmetrical. |
---|
412 | * Eigenvectors are return in parameter V, as columns of the 2D array. |
---|
413 | * (Real parts of) Eigenvalues are returned in parameter d. |
---|
414 | * |
---|
415 | * @param V double array in which the eigenvectors are returned |
---|
416 | * @param d array in which the eigenvalues are returned |
---|
417 | * @throws Exception if matrix is not symmetric |
---|
418 | */ |
---|
419 | public void eigenvalueDecomposition(double[][] V, double[] d) |
---|
420 | throws Exception { |
---|
421 | |
---|
422 | // old class only worked with symmetric matrices! |
---|
423 | if (!this.isSymmetric()) |
---|
424 | throw new Exception("EigenvalueDecomposition: Matrix must be symmetric."); |
---|
425 | |
---|
426 | // perform eigenvalue decomposition |
---|
427 | weka.core.matrix.EigenvalueDecomposition eig = m_Matrix.eig(); |
---|
428 | weka.core.matrix.Matrix v = eig.getV(); |
---|
429 | double[] d2 = eig.getRealEigenvalues(); |
---|
430 | |
---|
431 | // transfer data |
---|
432 | int nr = numRows(); |
---|
433 | int nc = numColumns(); |
---|
434 | for (int i = 0; i < nr; i++) |
---|
435 | for (int j = 0; j < nc; j++) |
---|
436 | V[i][j] = v.get(i, j); |
---|
437 | |
---|
438 | for (int i = 0; i < d2.length; i++) |
---|
439 | d[i] = d2[i]; |
---|
440 | } |
---|
441 | |
---|
442 | /** |
---|
443 | * Returns sqrt(a^2 + b^2) without under/overflow. |
---|
444 | * |
---|
445 | * @param a length of one side of rectangular triangle |
---|
446 | * @param b length of other side of rectangular triangle |
---|
447 | * @return lenght of third side |
---|
448 | */ |
---|
449 | protected static double hypot(double a, double b) { |
---|
450 | return weka.core.matrix.Maths.hypot(a, b); |
---|
451 | } |
---|
452 | |
---|
453 | /** |
---|
454 | * converts the Matrix into a single line Matlab string: matrix is enclosed |
---|
455 | * by parentheses, rows are separated by semicolon and single cells by |
---|
456 | * blanks, e.g., [1 2; 3 4]. |
---|
457 | * @return the matrix in Matlab single line format |
---|
458 | */ |
---|
459 | public String toMatlab() { |
---|
460 | return getMatrix().toMatlab(); |
---|
461 | } |
---|
462 | |
---|
463 | /** |
---|
464 | * creates a matrix from the given Matlab string. |
---|
465 | * @param matlab the matrix in matlab format |
---|
466 | * @return the matrix represented by the given string |
---|
467 | * @see #toMatlab() |
---|
468 | */ |
---|
469 | public static Matrix parseMatlab(String matlab) throws Exception { |
---|
470 | return new Matrix(weka.core.matrix.Matrix.parseMatlab(matlab).getArray()); |
---|
471 | } |
---|
472 | |
---|
473 | /** |
---|
474 | * Returns the revision string. |
---|
475 | * |
---|
476 | * @return the revision |
---|
477 | */ |
---|
478 | public String getRevision() { |
---|
479 | return RevisionUtils.extract("$Revision: 5953 $"); |
---|
480 | } |
---|
481 | |
---|
482 | /** |
---|
483 | * Main method for testing this class. |
---|
484 | */ |
---|
485 | public static void main(String[] ops) { |
---|
486 | |
---|
487 | double[] first = {2.3, 1.2, 5}; |
---|
488 | double[] second = {5.2, 1.4, 9}; |
---|
489 | double[] response = {4, 7, 8}; |
---|
490 | double[] weights = {1, 2, 3}; |
---|
491 | |
---|
492 | try { |
---|
493 | // test eigenvaluedecomposition |
---|
494 | double[][] m = {{1, 2, 3}, {2, 5, 6},{3, 6, 9}}; |
---|
495 | Matrix M = new Matrix(m); |
---|
496 | int n = M.numRows(); |
---|
497 | double[][] V = new double[n][n]; |
---|
498 | double[] d = new double[n]; |
---|
499 | double[] e = new double[n]; |
---|
500 | M.eigenvalueDecomposition(V, d); |
---|
501 | Matrix v = new Matrix(V); |
---|
502 | // M.testEigen(v, d, ); |
---|
503 | // end of test-eigenvaluedecomposition |
---|
504 | |
---|
505 | Matrix a = new Matrix(2, 3); |
---|
506 | Matrix b = new Matrix(3, 2); |
---|
507 | System.out.println("Number of columns for a: " + a.numColumns()); |
---|
508 | System.out.println("Number of rows for a: " + a.numRows()); |
---|
509 | a.setRow(0, first); |
---|
510 | a.setRow(1, second); |
---|
511 | b.setColumn(0, first); |
---|
512 | b.setColumn(1, second); |
---|
513 | System.out.println("a:\n " + a); |
---|
514 | System.out.println("b:\n " + b); |
---|
515 | System.out.println("a (0, 0): " + a.getElement(0, 0)); |
---|
516 | System.out.println("a transposed:\n " + a.transpose()); |
---|
517 | System.out.println("a * b:\n " + a.multiply(b)); |
---|
518 | Matrix r = new Matrix(3, 1); |
---|
519 | r.setColumn(0, response); |
---|
520 | System.out.println("r:\n " + r); |
---|
521 | System.out.println("Coefficients of regression of b on r: "); |
---|
522 | double[] coefficients = b.regression(r, 1.0e-8); |
---|
523 | for (int i = 0; i < coefficients.length; i++) { |
---|
524 | System.out.print(coefficients[i] + " "); |
---|
525 | } |
---|
526 | System.out.println(); |
---|
527 | System.out.println("Weights: "); |
---|
528 | for (int i = 0; i < weights.length; i++) { |
---|
529 | System.out.print(weights[i] + " "); |
---|
530 | } |
---|
531 | System.out.println(); |
---|
532 | System.out.println("Coefficients of weighted regression of b on r: "); |
---|
533 | coefficients = b.regression(r, weights, 1.0e-8); |
---|
534 | for (int i = 0; i < coefficients.length; i++) { |
---|
535 | System.out.print(coefficients[i] + " "); |
---|
536 | } |
---|
537 | System.out.println(); |
---|
538 | a.setElement(0, 0, 6); |
---|
539 | System.out.println("a with (0, 0) set to 6:\n " + a); |
---|
540 | a.write(new java.io.FileWriter("main.matrix")); |
---|
541 | System.out.println("wrote matrix to \"main.matrix\"\n" + a); |
---|
542 | a = new Matrix(new java.io.FileReader("main.matrix")); |
---|
543 | System.out.println("read matrix from \"main.matrix\"\n" + a); |
---|
544 | } catch (Exception e) { |
---|
545 | e.printStackTrace(); |
---|
546 | } |
---|
547 | } |
---|
548 | } |
---|
549 | |
---|