source: src/main/java/weka/clusterers/SingleClustererEnhancer.java @ 19

Last change on this file since 19 was 4, checked in by gnappo, 14 years ago

Import di weka.

File size: 5.7 KB
Line 
1/*
2 *    This program is free software; you can redistribute it and/or modify
3 *    it under the terms of the GNU General Public License as published by
4 *    the Free Software Foundation; either version 2 of the License, or
5 *    (at your option) any later version.
6 *
7 *    This program is distributed in the hope that it will be useful,
8 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
9 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10 *    GNU General Public License for more details.
11 *
12 *    You should have received a copy of the GNU General Public License
13 *    along with this program; if not, write to the Free Software
14 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
15 */
16
17/*
18 * SingleClustererEnhancer.java
19 * Copyright (C) 2006 University of Waikato, Hamilton, New Zealand
20 *
21 */
22
23package weka.clusterers;
24
25import weka.core.Capabilities;
26import weka.core.Option;
27import weka.core.OptionHandler;
28import weka.core.Utils;
29import weka.core.Capabilities.Capability;
30
31import java.util.Enumeration;
32import java.util.Vector;
33
34/**
35 * Meta-clusterer for enhancing a base clusterer.
36 *
37 * @author FracPete (fracpete at waikato dot ac dot nz)
38 * @version $Revision: 1.4 $
39 */
40public abstract class SingleClustererEnhancer
41  extends AbstractClusterer
42  implements OptionHandler {
43
44  /** for serialization */
45  private static final long serialVersionUID = 4893928362926428671L;
46
47  /** the clusterer */
48  protected Clusterer m_Clusterer = new SimpleKMeans();
49
50  /**
51   * String describing default clusterer.
52   *
53   * @return            the default clusterer classname
54   */
55  protected String defaultClustererString() {
56    return SimpleKMeans.class.getName();
57  }
58
59  /**
60   * Returns an enumeration describing the available options.
61   *
62   * @return            an enumeration of all the available options.
63   */
64  public Enumeration listOptions() {
65    Vector result = new Vector();
66
67    result.addElement(new Option(
68        "\tFull name of base clusterer.\n"
69        + "\t(default: " + defaultClustererString() +")",
70        "W", 1, "-W"));
71
72    if (m_Clusterer instanceof OptionHandler) {
73      result.addElement(new Option(
74          "",
75          "", 0, "\nOptions specific to clusterer "
76          + m_Clusterer.getClass().getName() + ":"));
77      Enumeration enu = ((OptionHandler) m_Clusterer).listOptions();
78      while (enu.hasMoreElements()) {
79        result.addElement(enu.nextElement());
80      }
81    }
82
83    return result.elements();
84  }
85
86  /**
87   * Parses a given list of options.
88   *
89   * @param options     the list of options as an array of strings
90   * @throws Exception  if an option is not supported
91   */
92  public void setOptions(String[] options) throws Exception {
93    String      tmpStr;
94   
95    tmpStr = Utils.getOption('W', options);
96    if (tmpStr.length() > 0) { 
97      // This is just to set the classifier in case the option
98      // parsing fails.
99      setClusterer(AbstractClusterer.forName(tmpStr, null));
100      setClusterer(AbstractClusterer.forName(tmpStr, Utils.partitionOptions(options)));
101    } 
102    else {
103      // This is just to set the classifier in case the option
104      // parsing fails.
105      setClusterer(AbstractClusterer.forName(defaultClustererString(), null));
106      setClusterer(AbstractClusterer.forName(defaultClustererString(), Utils.partitionOptions(options)));
107    }
108  }
109
110  /**
111   * Gets the current settings of the clusterer.
112   *
113   * @return            an array of strings suitable for passing to setOptions
114   */
115  public String[] getOptions() {
116    Vector      result;
117    String[]    options;
118    int         i;
119   
120    result = new Vector();
121
122    result.add("-W");
123    result.add(getClusterer().getClass().getName());
124   
125    if (getClusterer() instanceof OptionHandler) {
126      result.add("--");
127      options = ((OptionHandler) getClusterer()).getOptions();
128      for (i = 0; i < options.length; i++)
129        result.add(options[i]);
130    }
131   
132    return (String[]) result.toArray(new String[result.size()]);
133  }
134 
135  /**
136   * Returns the tip text for this property
137   *
138   * @return            tip text for this property suitable for
139   *                    displaying in the explorer/experimenter gui
140   */
141  public String clustererTipText() {
142    return "The base clusterer to be used.";
143  }
144
145  /**
146   * Set the base clusterer.
147   *
148   * @param value       the classifier to use.
149   */
150  public void setClusterer(Clusterer value) {
151    m_Clusterer = value;
152  }
153
154  /**
155   * Get the clusterer used as the base clusterer.
156   *
157   * @return            the base clusterer
158   */
159  public Clusterer getClusterer() {
160    return m_Clusterer;
161  }
162 
163  /**
164   * Gets the clusterer specification string, which contains the class name of
165   * the clusterer and any options to the clusterer
166   *
167   * @return            the clusterer string
168   */
169  protected String getClustererSpec() {
170    String      result;
171    Clusterer   clusterer;
172   
173    clusterer = getClusterer();
174    result    = clusterer.getClass().getName();
175   
176    if (clusterer instanceof OptionHandler)
177      result += " " + Utils.joinOptions(((OptionHandler) clusterer).getOptions());
178   
179    return result;
180  }
181
182  /**
183   * Returns default capabilities of the clusterer.
184   *
185   * @return            the capabilities of this clusterer
186   */
187  public Capabilities getCapabilities() {
188    Capabilities        result;
189   
190    if (getClusterer() == null)
191      result = super.getCapabilities();
192    else
193      result = getClusterer().getCapabilities();
194   
195    // set dependencies
196    for (Capability cap: Capability.values())
197      result.enableDependency(cap);
198   
199    return result;
200  }
201
202  /**
203   * Returns the number of clusters.
204   *
205   * @return            the number of clusters generated for a training dataset.
206   * @throws Exception  if number of clusters could not be returned
207   *                    successfully
208   */
209  public int numberOfClusters() throws Exception {
210    return m_Clusterer.numberOfClusters();
211  }
212}
Note: See TracBrowser for help on using the repository browser.