1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * SimpleKMeans.java |
---|
19 | * Copyright (C) 2000 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | package weka.clusterers; |
---|
23 | |
---|
24 | import weka.classifiers.rules.DecisionTableHashKey; |
---|
25 | import weka.core.Attribute; |
---|
26 | import weka.core.Capabilities; |
---|
27 | import weka.core.DistanceFunction; |
---|
28 | import weka.core.EuclideanDistance; |
---|
29 | import weka.core.Instance; |
---|
30 | import weka.core.DenseInstance; |
---|
31 | import weka.core.Instances; |
---|
32 | import weka.core.ManhattanDistance; |
---|
33 | import weka.core.Option; |
---|
34 | import weka.core.RevisionUtils; |
---|
35 | import weka.core.Utils; |
---|
36 | import weka.core.WeightedInstancesHandler; |
---|
37 | import weka.core.Capabilities.Capability; |
---|
38 | import weka.filters.Filter; |
---|
39 | import weka.filters.unsupervised.attribute.ReplaceMissingValues; |
---|
40 | |
---|
41 | import java.util.Enumeration; |
---|
42 | import java.util.HashMap; |
---|
43 | import java.util.Random; |
---|
44 | import java.util.Vector; |
---|
45 | |
---|
46 | /** |
---|
47 | <!-- globalinfo-start --> |
---|
48 | * Cluster data using the k means algorithm |
---|
49 | * <p/> |
---|
50 | <!-- globalinfo-end --> |
---|
51 | * |
---|
52 | <!-- options-start --> |
---|
53 | * Valid options are: <p/> |
---|
54 | * |
---|
55 | * <pre> -N <num> |
---|
56 | * number of clusters. |
---|
57 | * (default 2).</pre> |
---|
58 | * |
---|
59 | * <pre> -V |
---|
60 | * Display std. deviations for centroids. |
---|
61 | * </pre> |
---|
62 | * |
---|
63 | * <pre> -M |
---|
64 | * Replace missing values with mean/mode. |
---|
65 | * </pre> |
---|
66 | * |
---|
67 | * <pre> -S <num> |
---|
68 | * Random number seed. |
---|
69 | * (default 10)</pre> |
---|
70 | * |
---|
71 | * <pre> -A <classname and options> |
---|
72 | * Distance function to be used for instance comparison |
---|
73 | * (default weka.core.EuclidianDistance)</pre> |
---|
74 | * |
---|
75 | * <pre> -I <num> |
---|
76 | * Maximum number of iterations. </pre> |
---|
77 | * |
---|
78 | * <pre> -O |
---|
79 | * Preserve order of instances. </pre> |
---|
80 | * |
---|
81 | * |
---|
82 | <!-- options-end --> |
---|
83 | * |
---|
84 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
85 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
86 | * @version $Revision: 5987 $ |
---|
87 | * @see RandomizableClusterer |
---|
88 | */ |
---|
89 | public class SimpleKMeans |
---|
90 | extends RandomizableClusterer |
---|
91 | implements NumberOfClustersRequestable, WeightedInstancesHandler { |
---|
92 | |
---|
93 | /** for serialization */ |
---|
94 | static final long serialVersionUID = -3235809600124455376L; |
---|
95 | |
---|
96 | /** |
---|
97 | * replace missing values in training instances |
---|
98 | */ |
---|
99 | private ReplaceMissingValues m_ReplaceMissingFilter; |
---|
100 | |
---|
101 | /** |
---|
102 | * number of clusters to generate |
---|
103 | */ |
---|
104 | private int m_NumClusters = 2; |
---|
105 | |
---|
106 | /** |
---|
107 | * holds the cluster centroids |
---|
108 | */ |
---|
109 | private Instances m_ClusterCentroids; |
---|
110 | |
---|
111 | /** |
---|
112 | * Holds the standard deviations of the numeric attributes in each cluster |
---|
113 | */ |
---|
114 | private Instances m_ClusterStdDevs; |
---|
115 | |
---|
116 | |
---|
117 | /** |
---|
118 | * For each cluster, holds the frequency counts for the values of each |
---|
119 | * nominal attribute |
---|
120 | */ |
---|
121 | private int [][][] m_ClusterNominalCounts; |
---|
122 | private int[][] m_ClusterMissingCounts; |
---|
123 | |
---|
124 | /** |
---|
125 | * Stats on the full data set for comparison purposes |
---|
126 | * In case the attribute is numeric the value is the mean if is |
---|
127 | * being used the Euclidian distance or the median if Manhattan distance |
---|
128 | * and if the attribute is nominal then it's mode is saved |
---|
129 | */ |
---|
130 | private double[] m_FullMeansOrMediansOrModes; |
---|
131 | private double[] m_FullStdDevs; |
---|
132 | private int[][] m_FullNominalCounts; |
---|
133 | private int[] m_FullMissingCounts; |
---|
134 | |
---|
135 | /** |
---|
136 | * Display standard deviations for numeric atts |
---|
137 | */ |
---|
138 | private boolean m_displayStdDevs; |
---|
139 | |
---|
140 | /** |
---|
141 | * Replace missing values globally? |
---|
142 | */ |
---|
143 | private boolean m_dontReplaceMissing = false; |
---|
144 | |
---|
145 | /** |
---|
146 | * The number of instances in each cluster |
---|
147 | */ |
---|
148 | private int [] m_ClusterSizes; |
---|
149 | |
---|
150 | /** |
---|
151 | * Maximum number of iterations to be executed |
---|
152 | */ |
---|
153 | private int m_MaxIterations = 500; |
---|
154 | |
---|
155 | /** |
---|
156 | * Keep track of the number of iterations completed before convergence |
---|
157 | */ |
---|
158 | private int m_Iterations = 0; |
---|
159 | |
---|
160 | /** |
---|
161 | * Holds the squared errors for all clusters |
---|
162 | */ |
---|
163 | private double [] m_squaredErrors; |
---|
164 | |
---|
165 | /** the distance function used. */ |
---|
166 | protected DistanceFunction m_DistanceFunction = new EuclideanDistance(); |
---|
167 | |
---|
168 | /** |
---|
169 | * Preserve order of instances |
---|
170 | */ |
---|
171 | private boolean m_PreserveOrder = false; |
---|
172 | |
---|
173 | /** |
---|
174 | * Assignments obtained |
---|
175 | */ |
---|
176 | protected int[] m_Assignments = null; |
---|
177 | |
---|
178 | /** |
---|
179 | * the default constructor |
---|
180 | */ |
---|
181 | public SimpleKMeans() { |
---|
182 | super(); |
---|
183 | |
---|
184 | m_SeedDefault = 10; |
---|
185 | setSeed(m_SeedDefault); |
---|
186 | } |
---|
187 | |
---|
188 | /** |
---|
189 | * Returns a string describing this clusterer |
---|
190 | * @return a description of the evaluator suitable for |
---|
191 | * displaying in the explorer/experimenter gui |
---|
192 | */ |
---|
193 | public String globalInfo() { |
---|
194 | return "Cluster data using the k means algorithm. Can use either " |
---|
195 | + "the Euclidean distance (default) or the Manhattan distance." |
---|
196 | + " If the Manhattan distance is used, then centroids are computed " |
---|
197 | + "as the component-wise median rather than mean."; |
---|
198 | } |
---|
199 | |
---|
200 | /** |
---|
201 | * Returns default capabilities of the clusterer. |
---|
202 | * |
---|
203 | * @return the capabilities of this clusterer |
---|
204 | */ |
---|
205 | public Capabilities getCapabilities() { |
---|
206 | Capabilities result = super.getCapabilities(); |
---|
207 | result.disableAll(); |
---|
208 | result.enable(Capability.NO_CLASS); |
---|
209 | |
---|
210 | // attributes |
---|
211 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
212 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
213 | result.enable(Capability.MISSING_VALUES); |
---|
214 | |
---|
215 | return result; |
---|
216 | } |
---|
217 | |
---|
218 | /** |
---|
219 | * Generates a clusterer. Has to initialize all fields of the clusterer |
---|
220 | * that are not being set via options. |
---|
221 | * |
---|
222 | * @param data set of instances serving as training data |
---|
223 | * @throws Exception if the clusterer has not been |
---|
224 | * generated successfully |
---|
225 | */ |
---|
226 | public void buildClusterer(Instances data) throws Exception { |
---|
227 | |
---|
228 | // can clusterer handle the data? |
---|
229 | getCapabilities().testWithFail(data); |
---|
230 | |
---|
231 | m_Iterations = 0; |
---|
232 | |
---|
233 | m_ReplaceMissingFilter = new ReplaceMissingValues(); |
---|
234 | Instances instances = new Instances(data); |
---|
235 | |
---|
236 | instances.setClassIndex(-1); |
---|
237 | if (!m_dontReplaceMissing) { |
---|
238 | m_ReplaceMissingFilter.setInputFormat(instances); |
---|
239 | instances = Filter.useFilter(instances, m_ReplaceMissingFilter); |
---|
240 | } |
---|
241 | |
---|
242 | m_FullMissingCounts = new int[instances.numAttributes()]; |
---|
243 | if (m_displayStdDevs) { |
---|
244 | m_FullStdDevs = new double[instances.numAttributes()]; |
---|
245 | } |
---|
246 | m_FullNominalCounts = new int[instances.numAttributes()][0]; |
---|
247 | |
---|
248 | m_FullMeansOrMediansOrModes = moveCentroid(0, instances, false); |
---|
249 | for (int i = 0; i < instances.numAttributes(); i++) { |
---|
250 | m_FullMissingCounts[i] = instances.attributeStats(i).missingCount; |
---|
251 | if (instances.attribute(i).isNumeric()) { |
---|
252 | if (m_displayStdDevs) { |
---|
253 | m_FullStdDevs[i] = Math.sqrt(instances.variance(i)); |
---|
254 | } |
---|
255 | if (m_FullMissingCounts[i] == instances.numInstances()) { |
---|
256 | m_FullMeansOrMediansOrModes[i] = Double.NaN; // mark missing as mean |
---|
257 | } |
---|
258 | } else { |
---|
259 | m_FullNominalCounts[i] = instances.attributeStats(i).nominalCounts; |
---|
260 | if (m_FullMissingCounts[i] |
---|
261 | > m_FullNominalCounts[i][Utils.maxIndex(m_FullNominalCounts[i])]) { |
---|
262 | m_FullMeansOrMediansOrModes[i] = -1; // mark missing as most common value |
---|
263 | } |
---|
264 | } |
---|
265 | } |
---|
266 | |
---|
267 | m_ClusterCentroids = new Instances(instances, m_NumClusters); |
---|
268 | int[] clusterAssignments = new int [instances.numInstances()]; |
---|
269 | |
---|
270 | if(m_PreserveOrder) |
---|
271 | m_Assignments = clusterAssignments; |
---|
272 | |
---|
273 | m_DistanceFunction.setInstances(instances); |
---|
274 | |
---|
275 | Random RandomO = new Random(getSeed()); |
---|
276 | int instIndex; |
---|
277 | HashMap initC = new HashMap(); |
---|
278 | DecisionTableHashKey hk = null; |
---|
279 | |
---|
280 | Instances initInstances = null; |
---|
281 | if(m_PreserveOrder) |
---|
282 | initInstances = new Instances(instances); |
---|
283 | else |
---|
284 | initInstances = instances; |
---|
285 | |
---|
286 | for (int j = initInstances.numInstances() - 1; j >= 0; j--) { |
---|
287 | instIndex = RandomO.nextInt(j+1); |
---|
288 | hk = new DecisionTableHashKey(initInstances.instance(instIndex), |
---|
289 | initInstances.numAttributes(), true); |
---|
290 | if (!initC.containsKey(hk)) { |
---|
291 | m_ClusterCentroids.add(initInstances.instance(instIndex)); |
---|
292 | initC.put(hk, null); |
---|
293 | } |
---|
294 | initInstances.swap(j, instIndex); |
---|
295 | |
---|
296 | if (m_ClusterCentroids.numInstances() == m_NumClusters) { |
---|
297 | break; |
---|
298 | } |
---|
299 | } |
---|
300 | |
---|
301 | m_NumClusters = m_ClusterCentroids.numInstances(); |
---|
302 | |
---|
303 | //removing reference |
---|
304 | initInstances = null; |
---|
305 | |
---|
306 | int i; |
---|
307 | boolean converged = false; |
---|
308 | int emptyClusterCount; |
---|
309 | Instances [] tempI = new Instances[m_NumClusters]; |
---|
310 | m_squaredErrors = new double [m_NumClusters]; |
---|
311 | m_ClusterNominalCounts = new int [m_NumClusters][instances.numAttributes()][0]; |
---|
312 | m_ClusterMissingCounts = new int[m_NumClusters][instances.numAttributes()]; |
---|
313 | while (!converged) { |
---|
314 | emptyClusterCount = 0; |
---|
315 | m_Iterations++; |
---|
316 | converged = true; |
---|
317 | for (i = 0; i < instances.numInstances(); i++) { |
---|
318 | Instance toCluster = instances.instance(i); |
---|
319 | int newC = clusterProcessedInstance(toCluster, true); |
---|
320 | if (newC != clusterAssignments[i]) { |
---|
321 | converged = false; |
---|
322 | } |
---|
323 | clusterAssignments[i] = newC; |
---|
324 | } |
---|
325 | |
---|
326 | // update centroids |
---|
327 | m_ClusterCentroids = new Instances(instances, m_NumClusters); |
---|
328 | for (i = 0; i < m_NumClusters; i++) { |
---|
329 | tempI[i] = new Instances(instances, 0); |
---|
330 | } |
---|
331 | for (i = 0; i < instances.numInstances(); i++) { |
---|
332 | tempI[clusterAssignments[i]].add(instances.instance(i)); |
---|
333 | } |
---|
334 | for (i = 0; i < m_NumClusters; i++) { |
---|
335 | if (tempI[i].numInstances() == 0) { |
---|
336 | // empty cluster |
---|
337 | emptyClusterCount++; |
---|
338 | } else { |
---|
339 | moveCentroid( i, tempI[i], true ); |
---|
340 | } |
---|
341 | } |
---|
342 | |
---|
343 | if (emptyClusterCount > 0) { |
---|
344 | m_NumClusters -= emptyClusterCount; |
---|
345 | if (converged) { |
---|
346 | Instances[] t = new Instances[m_NumClusters]; |
---|
347 | int index = 0; |
---|
348 | for (int k = 0; k < tempI.length; k++) { |
---|
349 | if (tempI[k].numInstances() > 0) { |
---|
350 | t[index++] = tempI[k]; |
---|
351 | } |
---|
352 | } |
---|
353 | tempI = t; |
---|
354 | } else { |
---|
355 | tempI = new Instances[m_NumClusters]; |
---|
356 | } |
---|
357 | } |
---|
358 | |
---|
359 | if(m_Iterations == m_MaxIterations) |
---|
360 | converged = true; |
---|
361 | |
---|
362 | if (!converged) { |
---|
363 | m_squaredErrors = new double [m_NumClusters]; |
---|
364 | m_ClusterNominalCounts = new int [m_NumClusters][instances.numAttributes()][0]; |
---|
365 | } |
---|
366 | } |
---|
367 | |
---|
368 | if (m_displayStdDevs) { |
---|
369 | m_ClusterStdDevs = new Instances(instances, m_NumClusters); |
---|
370 | } |
---|
371 | m_ClusterSizes = new int [m_NumClusters]; |
---|
372 | for (i = 0; i < m_NumClusters; i++) { |
---|
373 | if (m_displayStdDevs) { |
---|
374 | double [] vals2 = new double[instances.numAttributes()]; |
---|
375 | for (int j = 0; j < instances.numAttributes(); j++) { |
---|
376 | if (instances.attribute(j).isNumeric()) { |
---|
377 | vals2[j] = Math.sqrt(tempI[i].variance(j)); |
---|
378 | } else { |
---|
379 | vals2[j] = Utils.missingValue(); |
---|
380 | } |
---|
381 | } |
---|
382 | m_ClusterStdDevs.add(new DenseInstance(1.0, vals2)); |
---|
383 | } |
---|
384 | m_ClusterSizes[i] = tempI[i].numInstances(); |
---|
385 | } |
---|
386 | } |
---|
387 | |
---|
388 | /** |
---|
389 | * Move the centroid to it's new coordinates. Generate the centroid coordinates based |
---|
390 | * on it's members (objects assigned to the cluster of the centroid) and the distance |
---|
391 | * function being used. |
---|
392 | * @param centroidIndex index of the centroid which the coordinates will be computed |
---|
393 | * @param members the objects that are assigned to the cluster of this centroid |
---|
394 | * @param updateClusterInfo if the method is supposed to update the m_Cluster arrays |
---|
395 | * @return the centroid coordinates |
---|
396 | */ |
---|
397 | protected double[] moveCentroid(int centroidIndex, Instances members, boolean updateClusterInfo){ |
---|
398 | double [] vals = new double[members.numAttributes()]; |
---|
399 | |
---|
400 | //used only for Manhattan Distance |
---|
401 | Instances sortedMembers = null; |
---|
402 | int middle = 0; |
---|
403 | boolean dataIsEven = false; |
---|
404 | |
---|
405 | if(m_DistanceFunction instanceof ManhattanDistance){ |
---|
406 | middle = (members.numInstances()-1)/2; |
---|
407 | dataIsEven = ((members.numInstances()%2)==0); |
---|
408 | if(m_PreserveOrder){ |
---|
409 | sortedMembers = members; |
---|
410 | }else{ |
---|
411 | sortedMembers = new Instances(members); |
---|
412 | } |
---|
413 | } |
---|
414 | |
---|
415 | for (int j = 0; j < members.numAttributes(); j++) { |
---|
416 | |
---|
417 | //in case of Euclidian distance the centroid is the mean point |
---|
418 | //in case of Manhattan distance the centroid is the median point |
---|
419 | //in both cases, if the attribute is nominal, the centroid is the mode |
---|
420 | if(m_DistanceFunction instanceof EuclideanDistance || |
---|
421 | members.attribute(j).isNominal()) |
---|
422 | { |
---|
423 | vals[j] = members.meanOrMode(j); |
---|
424 | }else if(m_DistanceFunction instanceof ManhattanDistance){ |
---|
425 | //singleton special case |
---|
426 | if(members.numInstances() == 1){ |
---|
427 | vals[j] = members.instance(0).value(j); |
---|
428 | }else{ |
---|
429 | sortedMembers.kthSmallestValue(j, middle+1); |
---|
430 | vals[j] = sortedMembers.instance(middle).value(j); |
---|
431 | if( dataIsEven ){ |
---|
432 | sortedMembers.kthSmallestValue(j, middle+2); |
---|
433 | vals[j] = (vals[j]+sortedMembers.instance(middle+1).value(j))/2; |
---|
434 | } |
---|
435 | } |
---|
436 | } |
---|
437 | |
---|
438 | if(updateClusterInfo){ |
---|
439 | m_ClusterMissingCounts[centroidIndex][j] = members.attributeStats(j).missingCount; |
---|
440 | m_ClusterNominalCounts[centroidIndex][j] = members.attributeStats(j).nominalCounts; |
---|
441 | if (members.attribute(j).isNominal()) { |
---|
442 | if (m_ClusterMissingCounts[centroidIndex][j] > |
---|
443 | m_ClusterNominalCounts[centroidIndex][j][Utils.maxIndex(m_ClusterNominalCounts[centroidIndex][j])]) |
---|
444 | { |
---|
445 | vals[j] = Utils.missingValue(); // mark mode as missing |
---|
446 | } |
---|
447 | } else { |
---|
448 | if (m_ClusterMissingCounts[centroidIndex][j] == members.numInstances()) { |
---|
449 | vals[j] = Utils.missingValue(); // mark mean as missing |
---|
450 | } |
---|
451 | } |
---|
452 | } |
---|
453 | } |
---|
454 | if(updateClusterInfo) |
---|
455 | m_ClusterCentroids.add(new DenseInstance(1.0, vals)); |
---|
456 | return vals; |
---|
457 | } |
---|
458 | |
---|
459 | /** |
---|
460 | * clusters an instance that has been through the filters |
---|
461 | * |
---|
462 | * @param instance the instance to assign a cluster to |
---|
463 | * @param updateErrors if true, update the within clusters sum of errors |
---|
464 | * @return a cluster number |
---|
465 | */ |
---|
466 | private int clusterProcessedInstance(Instance instance, boolean updateErrors) { |
---|
467 | double minDist = Integer.MAX_VALUE; |
---|
468 | int bestCluster = 0; |
---|
469 | for (int i = 0; i < m_NumClusters; i++) { |
---|
470 | double dist = m_DistanceFunction.distance(instance, m_ClusterCentroids.instance(i)); |
---|
471 | if (dist < minDist) { |
---|
472 | minDist = dist; |
---|
473 | bestCluster = i; |
---|
474 | } |
---|
475 | } |
---|
476 | if (updateErrors) { |
---|
477 | if(m_DistanceFunction instanceof EuclideanDistance){ |
---|
478 | //Euclidean distance to Squared Euclidean distance |
---|
479 | minDist *= minDist; |
---|
480 | } |
---|
481 | m_squaredErrors[bestCluster] += minDist; |
---|
482 | } |
---|
483 | return bestCluster; |
---|
484 | } |
---|
485 | |
---|
486 | /** |
---|
487 | * Classifies a given instance. |
---|
488 | * |
---|
489 | * @param instance the instance to be assigned to a cluster |
---|
490 | * @return the number of the assigned cluster as an interger |
---|
491 | * if the class is enumerated, otherwise the predicted value |
---|
492 | * @throws Exception if instance could not be classified |
---|
493 | * successfully |
---|
494 | */ |
---|
495 | public int clusterInstance(Instance instance) throws Exception { |
---|
496 | Instance inst = null; |
---|
497 | if (!m_dontReplaceMissing) { |
---|
498 | m_ReplaceMissingFilter.input(instance); |
---|
499 | m_ReplaceMissingFilter.batchFinished(); |
---|
500 | inst = m_ReplaceMissingFilter.output(); |
---|
501 | } else { |
---|
502 | inst = instance; |
---|
503 | } |
---|
504 | |
---|
505 | return clusterProcessedInstance(inst, false); |
---|
506 | } |
---|
507 | |
---|
508 | /** |
---|
509 | * Returns the number of clusters. |
---|
510 | * |
---|
511 | * @return the number of clusters generated for a training dataset. |
---|
512 | * @throws Exception if number of clusters could not be returned |
---|
513 | * successfully |
---|
514 | */ |
---|
515 | public int numberOfClusters() throws Exception { |
---|
516 | return m_NumClusters; |
---|
517 | } |
---|
518 | |
---|
519 | /** |
---|
520 | * Returns an enumeration describing the available options. |
---|
521 | * |
---|
522 | * @return an enumeration of all the available options. |
---|
523 | */ |
---|
524 | public Enumeration listOptions () { |
---|
525 | Vector result = new Vector(); |
---|
526 | |
---|
527 | result.addElement(new Option( |
---|
528 | "\tnumber of clusters.\n" |
---|
529 | + "\t(default 2).", |
---|
530 | "N", 1, "-N <num>")); |
---|
531 | result.addElement(new Option( |
---|
532 | "\tDisplay std. deviations for centroids.\n", |
---|
533 | "V", 0, "-V")); |
---|
534 | result.addElement(new Option( |
---|
535 | "\tReplace missing values with mean/mode.\n", |
---|
536 | "M", 0, "-M")); |
---|
537 | |
---|
538 | result.add(new Option( |
---|
539 | "\tDistance function to use.\n" |
---|
540 | + "\t(default: weka.core.EuclideanDistance)", |
---|
541 | "A", 1,"-A <classname and options>")); |
---|
542 | |
---|
543 | result.add(new Option( |
---|
544 | "\tMaximum number of iterations.\n", |
---|
545 | "I",1,"-I <num>")); |
---|
546 | |
---|
547 | result.addElement(new Option( |
---|
548 | "\tPreserve order of instances.\n", |
---|
549 | "O", 0, "-O")); |
---|
550 | |
---|
551 | Enumeration en = super.listOptions(); |
---|
552 | while (en.hasMoreElements()) |
---|
553 | result.addElement(en.nextElement()); |
---|
554 | |
---|
555 | return result.elements(); |
---|
556 | } |
---|
557 | |
---|
558 | /** |
---|
559 | * Returns the tip text for this property |
---|
560 | * @return tip text for this property suitable for |
---|
561 | * displaying in the explorer/experimenter gui |
---|
562 | */ |
---|
563 | public String numClustersTipText() { |
---|
564 | return "set number of clusters"; |
---|
565 | } |
---|
566 | |
---|
567 | /** |
---|
568 | * set the number of clusters to generate |
---|
569 | * |
---|
570 | * @param n the number of clusters to generate |
---|
571 | * @throws Exception if number of clusters is negative |
---|
572 | */ |
---|
573 | public void setNumClusters(int n) throws Exception { |
---|
574 | if (n <= 0) { |
---|
575 | throw new Exception("Number of clusters must be > 0"); |
---|
576 | } |
---|
577 | m_NumClusters = n; |
---|
578 | } |
---|
579 | |
---|
580 | /** |
---|
581 | * gets the number of clusters to generate |
---|
582 | * |
---|
583 | * @return the number of clusters to generate |
---|
584 | */ |
---|
585 | public int getNumClusters() { |
---|
586 | return m_NumClusters; |
---|
587 | } |
---|
588 | |
---|
589 | /** |
---|
590 | * Returns the tip text for this property |
---|
591 | * @return tip text for this property suitable for |
---|
592 | * displaying in the explorer/experimenter gui |
---|
593 | */ |
---|
594 | public String maxIterationsTipText() { |
---|
595 | return "set maximum number of iterations"; |
---|
596 | } |
---|
597 | |
---|
598 | /** |
---|
599 | * set the maximum number of iterations to be executed |
---|
600 | * |
---|
601 | * @param n the maximum number of iterations |
---|
602 | * @throws Exception if maximum number of iteration is smaller than 1 |
---|
603 | */ |
---|
604 | public void setMaxIterations(int n) throws Exception { |
---|
605 | if (n <= 0) { |
---|
606 | throw new Exception("Maximum number of iterations must be > 0"); |
---|
607 | } |
---|
608 | m_MaxIterations = n; |
---|
609 | } |
---|
610 | |
---|
611 | /** |
---|
612 | * gets the number of maximum iterations to be executed |
---|
613 | * |
---|
614 | * @return the number of clusters to generate |
---|
615 | */ |
---|
616 | public int getMaxIterations() { |
---|
617 | return m_MaxIterations; |
---|
618 | } |
---|
619 | |
---|
620 | |
---|
621 | /** |
---|
622 | * Returns the tip text for this property |
---|
623 | * @return tip text for this property suitable for |
---|
624 | * displaying in the explorer/experimenter gui |
---|
625 | */ |
---|
626 | public String displayStdDevsTipText() { |
---|
627 | return "Display std deviations of numeric attributes " |
---|
628 | + "and counts of nominal attributes."; |
---|
629 | } |
---|
630 | |
---|
631 | /** |
---|
632 | * Sets whether standard deviations and nominal count |
---|
633 | * Should be displayed in the clustering output |
---|
634 | * |
---|
635 | * @param stdD true if std. devs and counts should be |
---|
636 | * displayed |
---|
637 | */ |
---|
638 | public void setDisplayStdDevs(boolean stdD) { |
---|
639 | m_displayStdDevs = stdD; |
---|
640 | } |
---|
641 | |
---|
642 | /** |
---|
643 | * Gets whether standard deviations and nominal count |
---|
644 | * Should be displayed in the clustering output |
---|
645 | * |
---|
646 | * @return true if std. devs and counts should be |
---|
647 | * displayed |
---|
648 | */ |
---|
649 | public boolean getDisplayStdDevs() { |
---|
650 | return m_displayStdDevs; |
---|
651 | } |
---|
652 | |
---|
653 | /** |
---|
654 | * Returns the tip text for this property |
---|
655 | * @return tip text for this property suitable for |
---|
656 | * displaying in the explorer/experimenter gui |
---|
657 | */ |
---|
658 | public String dontReplaceMissingValuesTipText() { |
---|
659 | return "Replace missing values globally with mean/mode."; |
---|
660 | } |
---|
661 | |
---|
662 | /** |
---|
663 | * Sets whether missing values are to be replaced |
---|
664 | * |
---|
665 | * @param r true if missing values are to be |
---|
666 | * replaced |
---|
667 | */ |
---|
668 | public void setDontReplaceMissingValues(boolean r) { |
---|
669 | m_dontReplaceMissing = r; |
---|
670 | } |
---|
671 | |
---|
672 | /** |
---|
673 | * Gets whether missing values are to be replaced |
---|
674 | * |
---|
675 | * @return true if missing values are to be |
---|
676 | * replaced |
---|
677 | */ |
---|
678 | public boolean getDontReplaceMissingValues() { |
---|
679 | return m_dontReplaceMissing; |
---|
680 | } |
---|
681 | |
---|
682 | /** |
---|
683 | * Returns the tip text for this property. |
---|
684 | * |
---|
685 | * @return tip text for this property suitable for |
---|
686 | * displaying in the explorer/experimenter gui |
---|
687 | */ |
---|
688 | public String distanceFunctionTipText() { |
---|
689 | return "The distance function to use for instances comparison " + |
---|
690 | "(default: weka.core.EuclideanDistance). "; |
---|
691 | } |
---|
692 | |
---|
693 | /** |
---|
694 | * returns the distance function currently in use. |
---|
695 | * |
---|
696 | * @return the distance function |
---|
697 | */ |
---|
698 | public DistanceFunction getDistanceFunction() { |
---|
699 | return m_DistanceFunction; |
---|
700 | } |
---|
701 | |
---|
702 | /** |
---|
703 | * sets the distance function to use for instance comparison. |
---|
704 | * |
---|
705 | * @param df the new distance function to use |
---|
706 | * @throws Exception if instances cannot be processed |
---|
707 | */ |
---|
708 | public void setDistanceFunction(DistanceFunction df) throws Exception { |
---|
709 | if(!(df instanceof EuclideanDistance) && |
---|
710 | !(df instanceof ManhattanDistance)) |
---|
711 | { |
---|
712 | throw new Exception("SimpleKMeans currently only supports the Euclidean and Manhattan distances."); |
---|
713 | } |
---|
714 | m_DistanceFunction = df; |
---|
715 | } |
---|
716 | |
---|
717 | /** |
---|
718 | * Returns the tip text for this property |
---|
719 | * @return tip text for this property suitable for |
---|
720 | * displaying in the explorer/experimenter gui |
---|
721 | */ |
---|
722 | public String preserveInstancesOrderTipText() { |
---|
723 | return "Preserve order of instances."; |
---|
724 | } |
---|
725 | |
---|
726 | /** |
---|
727 | * Sets whether order of instances must be preserved |
---|
728 | * |
---|
729 | * @param r true if missing values are to be |
---|
730 | * replaced |
---|
731 | */ |
---|
732 | public void setPreserveInstancesOrder(boolean r) { |
---|
733 | m_PreserveOrder = r; |
---|
734 | } |
---|
735 | |
---|
736 | /** |
---|
737 | * Gets whether order of instances must be preserved |
---|
738 | * |
---|
739 | * @return true if missing values are to be |
---|
740 | * replaced |
---|
741 | */ |
---|
742 | public boolean getPreserveInstancesOrder() { |
---|
743 | return m_PreserveOrder; |
---|
744 | } |
---|
745 | |
---|
746 | |
---|
747 | /** |
---|
748 | * Parses a given list of options. <p/> |
---|
749 | * |
---|
750 | <!-- options-start --> |
---|
751 | * Valid options are: <p/> |
---|
752 | * |
---|
753 | * <pre> -N <num> |
---|
754 | * number of clusters. |
---|
755 | * (default 2).</pre> |
---|
756 | * |
---|
757 | * <pre> -V |
---|
758 | * Display std. deviations for centroids. |
---|
759 | * </pre> |
---|
760 | * |
---|
761 | * <pre> -M |
---|
762 | * Replace missing values with mean/mode. |
---|
763 | * </pre> |
---|
764 | * |
---|
765 | * <pre> -S <num> |
---|
766 | * Random number seed. |
---|
767 | * (default 10)</pre> |
---|
768 | * |
---|
769 | * <pre> -A <classname and options> |
---|
770 | * Distance function to be used for instance comparison |
---|
771 | * (default weka.core.EuclidianDistance)</pre> |
---|
772 | * |
---|
773 | * <pre> -I <num> |
---|
774 | * Maximum number of iterations. </pre> |
---|
775 | * |
---|
776 | * <pre> -O |
---|
777 | * Preserve order of instances. |
---|
778 | * </pre> |
---|
779 | * |
---|
780 | <!-- options-end --> |
---|
781 | * |
---|
782 | * @param options the list of options as an array of strings |
---|
783 | * @throws Exception if an option is not supported |
---|
784 | */ |
---|
785 | public void setOptions (String[] options) |
---|
786 | throws Exception { |
---|
787 | |
---|
788 | m_displayStdDevs = Utils.getFlag("V", options); |
---|
789 | m_dontReplaceMissing = Utils.getFlag("M", options); |
---|
790 | |
---|
791 | String optionString = Utils.getOption('N', options); |
---|
792 | |
---|
793 | if (optionString.length() != 0) { |
---|
794 | setNumClusters(Integer.parseInt(optionString)); |
---|
795 | } |
---|
796 | |
---|
797 | optionString = Utils.getOption("I", options); |
---|
798 | if (optionString.length() != 0) { |
---|
799 | setMaxIterations(Integer.parseInt(optionString)); |
---|
800 | } |
---|
801 | |
---|
802 | String distFunctionClass = Utils.getOption('A', options); |
---|
803 | if(distFunctionClass.length() != 0) { |
---|
804 | String distFunctionClassSpec[] = Utils.splitOptions(distFunctionClass); |
---|
805 | if(distFunctionClassSpec.length == 0) { |
---|
806 | throw new Exception("Invalid DistanceFunction specification string."); |
---|
807 | } |
---|
808 | String className = distFunctionClassSpec[0]; |
---|
809 | distFunctionClassSpec[0] = ""; |
---|
810 | |
---|
811 | setDistanceFunction( (DistanceFunction) |
---|
812 | Utils.forName( DistanceFunction.class, |
---|
813 | className, distFunctionClassSpec) ); |
---|
814 | } |
---|
815 | else { |
---|
816 | setDistanceFunction(new EuclideanDistance()); |
---|
817 | } |
---|
818 | |
---|
819 | m_PreserveOrder = Utils.getFlag("O", options); |
---|
820 | |
---|
821 | super.setOptions(options); |
---|
822 | } |
---|
823 | |
---|
824 | /** |
---|
825 | * Gets the current settings of SimpleKMeans |
---|
826 | * |
---|
827 | * @return an array of strings suitable for passing to setOptions() |
---|
828 | */ |
---|
829 | public String[] getOptions () { |
---|
830 | int i; |
---|
831 | Vector result; |
---|
832 | String[] options; |
---|
833 | |
---|
834 | result = new Vector(); |
---|
835 | |
---|
836 | if (m_displayStdDevs) { |
---|
837 | result.add("-V"); |
---|
838 | } |
---|
839 | |
---|
840 | if (m_dontReplaceMissing) { |
---|
841 | result.add("-M"); |
---|
842 | } |
---|
843 | |
---|
844 | result.add("-N"); |
---|
845 | result.add("" + getNumClusters()); |
---|
846 | |
---|
847 | result.add("-A"); |
---|
848 | result.add((m_DistanceFunction.getClass().getName() + " " + |
---|
849 | Utils.joinOptions(m_DistanceFunction.getOptions())).trim()); |
---|
850 | |
---|
851 | result.add("-I"); |
---|
852 | result.add(""+ getMaxIterations()); |
---|
853 | |
---|
854 | if(m_PreserveOrder){ |
---|
855 | result.add("-O"); |
---|
856 | } |
---|
857 | |
---|
858 | options = super.getOptions(); |
---|
859 | for (i = 0; i < options.length; i++) |
---|
860 | result.add(options[i]); |
---|
861 | |
---|
862 | return (String[]) result.toArray(new String[result.size()]); |
---|
863 | } |
---|
864 | |
---|
865 | /** |
---|
866 | * return a string describing this clusterer |
---|
867 | * |
---|
868 | * @return a description of the clusterer as a string |
---|
869 | */ |
---|
870 | public String toString() { |
---|
871 | if (m_ClusterCentroids == null) { |
---|
872 | return "No clusterer built yet!"; |
---|
873 | } |
---|
874 | |
---|
875 | int maxWidth = 0; |
---|
876 | int maxAttWidth = 0; |
---|
877 | boolean containsNumeric = false; |
---|
878 | for (int i = 0; i < m_NumClusters; i++) { |
---|
879 | for (int j = 0 ;j < m_ClusterCentroids.numAttributes(); j++) { |
---|
880 | if (m_ClusterCentroids.attribute(j).name().length() > maxAttWidth) { |
---|
881 | maxAttWidth = m_ClusterCentroids.attribute(j).name().length(); |
---|
882 | } |
---|
883 | if (m_ClusterCentroids.attribute(j).isNumeric()) { |
---|
884 | containsNumeric = true; |
---|
885 | double width = Math.log(Math.abs(m_ClusterCentroids.instance(i).value(j))) / |
---|
886 | Math.log(10.0); |
---|
887 | // System.err.println(m_ClusterCentroids.instance(i).value(j)+" "+width); |
---|
888 | if (width < 0) { |
---|
889 | width = 1; |
---|
890 | } |
---|
891 | // decimal + # decimal places + 1 |
---|
892 | width += 6.0; |
---|
893 | if ((int)width > maxWidth) { |
---|
894 | maxWidth = (int)width; |
---|
895 | } |
---|
896 | } |
---|
897 | } |
---|
898 | } |
---|
899 | |
---|
900 | for (int i = 0; i < m_ClusterCentroids.numAttributes(); i++) { |
---|
901 | if (m_ClusterCentroids.attribute(i).isNominal()) { |
---|
902 | Attribute a = m_ClusterCentroids.attribute(i); |
---|
903 | for (int j = 0; j < m_ClusterCentroids.numInstances(); j++) { |
---|
904 | String val = a.value((int)m_ClusterCentroids.instance(j).value(i)); |
---|
905 | if (val.length() > maxWidth) { |
---|
906 | maxWidth = val.length(); |
---|
907 | } |
---|
908 | } |
---|
909 | for (int j = 0; j < a.numValues(); j++) { |
---|
910 | String val = a.value(j) + " "; |
---|
911 | if (val.length() > maxAttWidth) { |
---|
912 | maxAttWidth = val.length(); |
---|
913 | } |
---|
914 | } |
---|
915 | } |
---|
916 | } |
---|
917 | |
---|
918 | if (m_displayStdDevs) { |
---|
919 | // check for maximum width of maximum frequency count |
---|
920 | for (int i = 0; i < m_ClusterCentroids.numAttributes(); i++) { |
---|
921 | if (m_ClusterCentroids.attribute(i).isNominal()) { |
---|
922 | int maxV = Utils.maxIndex(m_FullNominalCounts[i]); |
---|
923 | /* int percent = (int)((double)m_FullNominalCounts[i][maxV] / |
---|
924 | Utils.sum(m_ClusterSizes) * 100.0); */ |
---|
925 | int percent = 6; // max percent width (100%) |
---|
926 | String nomV = "" + m_FullNominalCounts[i][maxV]; |
---|
927 | // + " (" + percent + "%)"; |
---|
928 | if (nomV.length() + percent > maxWidth) { |
---|
929 | maxWidth = nomV.length() + 1; |
---|
930 | } |
---|
931 | } |
---|
932 | } |
---|
933 | } |
---|
934 | |
---|
935 | // check for size of cluster sizes |
---|
936 | for (int i = 0; i < m_ClusterSizes.length; i++) { |
---|
937 | String size = "(" + m_ClusterSizes[i] + ")"; |
---|
938 | if (size.length() > maxWidth) { |
---|
939 | maxWidth = size.length(); |
---|
940 | } |
---|
941 | } |
---|
942 | |
---|
943 | if (m_displayStdDevs && maxAttWidth < "missing".length()) { |
---|
944 | maxAttWidth = "missing".length(); |
---|
945 | } |
---|
946 | |
---|
947 | String plusMinus = "+/-"; |
---|
948 | maxAttWidth += 2; |
---|
949 | if (m_displayStdDevs && containsNumeric) { |
---|
950 | maxWidth += plusMinus.length(); |
---|
951 | } |
---|
952 | if (maxAttWidth < "Attribute".length() + 2) { |
---|
953 | maxAttWidth = "Attribute".length() + 2; |
---|
954 | } |
---|
955 | |
---|
956 | if (maxWidth < "Full Data".length()) { |
---|
957 | maxWidth = "Full Data".length() + 1; |
---|
958 | } |
---|
959 | |
---|
960 | if (maxWidth < "missing".length()) { |
---|
961 | maxWidth = "missing".length() + 1; |
---|
962 | } |
---|
963 | |
---|
964 | |
---|
965 | |
---|
966 | StringBuffer temp = new StringBuffer(); |
---|
967 | // String naString = "N/A"; |
---|
968 | |
---|
969 | |
---|
970 | /* for (int i = 0; i < maxWidth+2; i++) { |
---|
971 | naString += " "; |
---|
972 | } */ |
---|
973 | temp.append("\nkMeans\n======\n"); |
---|
974 | temp.append("\nNumber of iterations: " + m_Iterations+"\n"); |
---|
975 | |
---|
976 | if(m_DistanceFunction instanceof EuclideanDistance){ |
---|
977 | temp.append("Within cluster sum of squared errors: " + Utils.sum(m_squaredErrors)); |
---|
978 | }else{ |
---|
979 | temp.append("Sum of within cluster distances: " + Utils.sum(m_squaredErrors)); |
---|
980 | } |
---|
981 | |
---|
982 | |
---|
983 | if (!m_dontReplaceMissing) { |
---|
984 | temp.append("\nMissing values globally replaced with mean/mode"); |
---|
985 | } |
---|
986 | |
---|
987 | temp.append("\n\nCluster centroids:\n"); |
---|
988 | temp.append(pad("Cluster#", " ", (maxAttWidth + (maxWidth * 2 + 2)) - "Cluster#".length(), true)); |
---|
989 | |
---|
990 | temp.append("\n"); |
---|
991 | temp.append(pad("Attribute", " ", maxAttWidth - "Attribute".length(), false)); |
---|
992 | |
---|
993 | |
---|
994 | temp.append(pad("Full Data", " ", maxWidth + 1 - "Full Data".length(), true)); |
---|
995 | |
---|
996 | // cluster numbers |
---|
997 | for (int i = 0; i < m_NumClusters; i++) { |
---|
998 | String clustNum = "" + i; |
---|
999 | temp.append(pad(clustNum, " ", maxWidth + 1 - clustNum.length(), true)); |
---|
1000 | } |
---|
1001 | temp.append("\n"); |
---|
1002 | |
---|
1003 | // cluster sizes |
---|
1004 | String cSize = "(" + Utils.sum(m_ClusterSizes) + ")"; |
---|
1005 | temp.append(pad(cSize, " ", maxAttWidth + maxWidth + 1 - cSize.length(), true)); |
---|
1006 | for (int i = 0; i < m_NumClusters; i++) { |
---|
1007 | cSize = "(" + m_ClusterSizes[i] + ")"; |
---|
1008 | temp.append(pad(cSize, " ",maxWidth + 1 - cSize.length(), true)); |
---|
1009 | } |
---|
1010 | temp.append("\n"); |
---|
1011 | |
---|
1012 | temp.append(pad("", "=", maxAttWidth + |
---|
1013 | (maxWidth * (m_ClusterCentroids.numInstances()+1) |
---|
1014 | + m_ClusterCentroids.numInstances() + 1), true)); |
---|
1015 | temp.append("\n"); |
---|
1016 | |
---|
1017 | for (int i = 0; i < m_ClusterCentroids.numAttributes(); i++) { |
---|
1018 | String attName = m_ClusterCentroids.attribute(i).name(); |
---|
1019 | temp.append(attName); |
---|
1020 | for (int j = 0; j < maxAttWidth - attName.length(); j++) { |
---|
1021 | temp.append(" "); |
---|
1022 | } |
---|
1023 | |
---|
1024 | String strVal; |
---|
1025 | String valMeanMode; |
---|
1026 | // full data |
---|
1027 | if (m_ClusterCentroids.attribute(i).isNominal()) { |
---|
1028 | if (m_FullMeansOrMediansOrModes[i] == -1) { // missing |
---|
1029 | valMeanMode = pad("missing", " ", maxWidth + 1 - "missing".length(), true); |
---|
1030 | } else { |
---|
1031 | valMeanMode = |
---|
1032 | pad((strVal = m_ClusterCentroids.attribute(i).value((int)m_FullMeansOrMediansOrModes[i])), |
---|
1033 | " ", maxWidth + 1 - strVal.length(), true); |
---|
1034 | } |
---|
1035 | } else { |
---|
1036 | if (Double.isNaN(m_FullMeansOrMediansOrModes[i])) { |
---|
1037 | valMeanMode = pad("missing", " ", maxWidth + 1 - "missing".length(), true); |
---|
1038 | } else { |
---|
1039 | valMeanMode = pad((strVal = Utils.doubleToString(m_FullMeansOrMediansOrModes[i], |
---|
1040 | maxWidth,4).trim()), |
---|
1041 | " ", maxWidth + 1 - strVal.length(), true); |
---|
1042 | } |
---|
1043 | } |
---|
1044 | temp.append(valMeanMode); |
---|
1045 | |
---|
1046 | for (int j = 0; j < m_NumClusters; j++) { |
---|
1047 | if (m_ClusterCentroids.attribute(i).isNominal()) { |
---|
1048 | if (m_ClusterCentroids.instance(j).isMissing(i)) { |
---|
1049 | valMeanMode = pad("missing", " ", maxWidth + 1 - "missing".length(), true); |
---|
1050 | } else { |
---|
1051 | valMeanMode = |
---|
1052 | pad((strVal = m_ClusterCentroids.attribute(i).value((int)m_ClusterCentroids.instance(j).value(i))), |
---|
1053 | " ", maxWidth + 1 - strVal.length(), true); |
---|
1054 | } |
---|
1055 | } else { |
---|
1056 | if (m_ClusterCentroids.instance(j).isMissing(i)) { |
---|
1057 | valMeanMode = pad("missing", " ", maxWidth + 1 - "missing".length(), true); |
---|
1058 | } else { |
---|
1059 | valMeanMode = pad((strVal = Utils.doubleToString(m_ClusterCentroids.instance(j).value(i), |
---|
1060 | maxWidth,4).trim()), |
---|
1061 | " ", maxWidth + 1 - strVal.length(), true); |
---|
1062 | } |
---|
1063 | } |
---|
1064 | temp.append(valMeanMode); |
---|
1065 | } |
---|
1066 | temp.append("\n"); |
---|
1067 | |
---|
1068 | if (m_displayStdDevs) { |
---|
1069 | // Std devs/max nominal |
---|
1070 | String stdDevVal = ""; |
---|
1071 | |
---|
1072 | if (m_ClusterCentroids.attribute(i).isNominal()) { |
---|
1073 | // Do the values of the nominal attribute |
---|
1074 | Attribute a = m_ClusterCentroids.attribute(i); |
---|
1075 | for (int j = 0; j < a.numValues(); j++) { |
---|
1076 | // full data |
---|
1077 | String val = " " + a.value(j); |
---|
1078 | temp.append(pad(val, " ", maxAttWidth + 1 - val.length(), false)); |
---|
1079 | int count = m_FullNominalCounts[i][j]; |
---|
1080 | int percent = (int)((double)m_FullNominalCounts[i][j] / |
---|
1081 | Utils.sum(m_ClusterSizes) * 100.0); |
---|
1082 | String percentS = "" + percent + "%)"; |
---|
1083 | percentS = pad(percentS, " ", 5 - percentS.length(), true); |
---|
1084 | stdDevVal = "" + count + " (" + percentS; |
---|
1085 | stdDevVal = |
---|
1086 | pad(stdDevVal, " ", maxWidth + 1 - stdDevVal.length(), true); |
---|
1087 | temp.append(stdDevVal); |
---|
1088 | |
---|
1089 | // Clusters |
---|
1090 | for (int k = 0; k < m_NumClusters; k++) { |
---|
1091 | count = m_ClusterNominalCounts[k][i][j]; |
---|
1092 | percent = (int)((double)m_ClusterNominalCounts[k][i][j] / |
---|
1093 | m_ClusterSizes[k] * 100.0); |
---|
1094 | percentS = "" + percent + "%)"; |
---|
1095 | percentS = pad(percentS, " ", 5 - percentS.length(), true); |
---|
1096 | stdDevVal = "" + count + " (" + percentS; |
---|
1097 | stdDevVal = |
---|
1098 | pad(stdDevVal, " ", maxWidth + 1 - stdDevVal.length(), true); |
---|
1099 | temp.append(stdDevVal); |
---|
1100 | } |
---|
1101 | temp.append("\n"); |
---|
1102 | } |
---|
1103 | // missing (if any) |
---|
1104 | if (m_FullMissingCounts[i] > 0) { |
---|
1105 | // Full data |
---|
1106 | temp.append(pad(" missing", " ", maxAttWidth + 1 - " missing".length(), false)); |
---|
1107 | int count = m_FullMissingCounts[i]; |
---|
1108 | int percent = (int)((double)m_FullMissingCounts[i] / |
---|
1109 | Utils.sum(m_ClusterSizes) * 100.0); |
---|
1110 | String percentS = "" + percent + "%)"; |
---|
1111 | percentS = pad(percentS, " ", 5 - percentS.length(), true); |
---|
1112 | stdDevVal = "" + count + " (" + percentS; |
---|
1113 | stdDevVal = |
---|
1114 | pad(stdDevVal, " ", maxWidth + 1 - stdDevVal.length(), true); |
---|
1115 | temp.append(stdDevVal); |
---|
1116 | |
---|
1117 | // Clusters |
---|
1118 | for (int k = 0; k < m_NumClusters; k++) { |
---|
1119 | count = m_ClusterMissingCounts[k][i]; |
---|
1120 | percent = (int)((double)m_ClusterMissingCounts[k][i] / |
---|
1121 | m_ClusterSizes[k] * 100.0); |
---|
1122 | percentS = "" + percent + "%)"; |
---|
1123 | percentS = pad(percentS, " ", 5 - percentS.length(), true); |
---|
1124 | stdDevVal = "" + count + " (" + percentS; |
---|
1125 | stdDevVal = |
---|
1126 | pad(stdDevVal, " ", maxWidth + 1 - stdDevVal.length(), true); |
---|
1127 | temp.append(stdDevVal); |
---|
1128 | } |
---|
1129 | |
---|
1130 | temp.append("\n"); |
---|
1131 | } |
---|
1132 | |
---|
1133 | temp.append("\n"); |
---|
1134 | } else { |
---|
1135 | // Full data |
---|
1136 | if (Double.isNaN(m_FullMeansOrMediansOrModes[i])) { |
---|
1137 | stdDevVal = pad("--", " ", maxAttWidth + maxWidth + 1 - 2, true); |
---|
1138 | } else { |
---|
1139 | stdDevVal = pad((strVal = plusMinus |
---|
1140 | + Utils.doubleToString(m_FullStdDevs[i], |
---|
1141 | maxWidth,4).trim()), |
---|
1142 | " ", maxWidth + maxAttWidth + 1 - strVal.length(), true); |
---|
1143 | } |
---|
1144 | temp.append(stdDevVal); |
---|
1145 | |
---|
1146 | // Clusters |
---|
1147 | for (int j = 0; j < m_NumClusters; j++) { |
---|
1148 | if (m_ClusterCentroids.instance(j).isMissing(i)) { |
---|
1149 | stdDevVal = pad("--", " ", maxWidth + 1 - 2, true); |
---|
1150 | } else { |
---|
1151 | stdDevVal = |
---|
1152 | pad((strVal = plusMinus |
---|
1153 | + Utils.doubleToString(m_ClusterStdDevs.instance(j).value(i), |
---|
1154 | maxWidth,4).trim()), |
---|
1155 | " ", maxWidth + 1 - strVal.length(), true); |
---|
1156 | } |
---|
1157 | temp.append(stdDevVal); |
---|
1158 | } |
---|
1159 | temp.append("\n\n"); |
---|
1160 | } |
---|
1161 | } |
---|
1162 | } |
---|
1163 | |
---|
1164 | temp.append("\n\n"); |
---|
1165 | return temp.toString(); |
---|
1166 | } |
---|
1167 | |
---|
1168 | private String pad(String source, String padChar, |
---|
1169 | int length, boolean leftPad) { |
---|
1170 | StringBuffer temp = new StringBuffer(); |
---|
1171 | |
---|
1172 | if (leftPad) { |
---|
1173 | for (int i = 0; i< length; i++) { |
---|
1174 | temp.append(padChar); |
---|
1175 | } |
---|
1176 | temp.append(source); |
---|
1177 | } else { |
---|
1178 | temp.append(source); |
---|
1179 | for (int i = 0; i< length; i++) { |
---|
1180 | temp.append(padChar); |
---|
1181 | } |
---|
1182 | } |
---|
1183 | return temp.toString(); |
---|
1184 | } |
---|
1185 | |
---|
1186 | /** |
---|
1187 | * Gets the the cluster centroids |
---|
1188 | * |
---|
1189 | * @return the cluster centroids |
---|
1190 | */ |
---|
1191 | public Instances getClusterCentroids() { |
---|
1192 | return m_ClusterCentroids; |
---|
1193 | } |
---|
1194 | |
---|
1195 | /** |
---|
1196 | * Gets the standard deviations of the numeric attributes in each cluster |
---|
1197 | * |
---|
1198 | * @return the standard deviations of the numeric attributes |
---|
1199 | * in each cluster |
---|
1200 | */ |
---|
1201 | public Instances getClusterStandardDevs() { |
---|
1202 | return m_ClusterStdDevs; |
---|
1203 | } |
---|
1204 | |
---|
1205 | /** |
---|
1206 | * Returns for each cluster the frequency counts for the values of each |
---|
1207 | * nominal attribute |
---|
1208 | * |
---|
1209 | * @return the counts |
---|
1210 | */ |
---|
1211 | public int [][][] getClusterNominalCounts() { |
---|
1212 | return m_ClusterNominalCounts; |
---|
1213 | } |
---|
1214 | |
---|
1215 | /** |
---|
1216 | * Gets the squared error for all clusters |
---|
1217 | * |
---|
1218 | * @return the squared error |
---|
1219 | */ |
---|
1220 | public double getSquaredError() { |
---|
1221 | return Utils.sum(m_squaredErrors); |
---|
1222 | } |
---|
1223 | |
---|
1224 | /** |
---|
1225 | * Gets the number of instances in each cluster |
---|
1226 | * |
---|
1227 | * @return The number of instances in each cluster |
---|
1228 | */ |
---|
1229 | public int [] getClusterSizes() { |
---|
1230 | return m_ClusterSizes; |
---|
1231 | } |
---|
1232 | |
---|
1233 | /** |
---|
1234 | * Gets the assignments for each instance |
---|
1235 | * @return Array of indexes of the centroid assigned to each instance |
---|
1236 | * @throws Exception if order of instances wasn't preserved or no assignments were made |
---|
1237 | */ |
---|
1238 | public int [] getAssignments() throws Exception{ |
---|
1239 | if(!m_PreserveOrder){ |
---|
1240 | throw new Exception("The assignments are only available when order of instances is preserved (-O)"); |
---|
1241 | } |
---|
1242 | if(m_Assignments == null){ |
---|
1243 | throw new Exception("No assignments made."); |
---|
1244 | } |
---|
1245 | return m_Assignments; |
---|
1246 | } |
---|
1247 | |
---|
1248 | /** |
---|
1249 | * Returns the revision string. |
---|
1250 | * |
---|
1251 | * @return the revision |
---|
1252 | */ |
---|
1253 | public String getRevision() { |
---|
1254 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
1255 | } |
---|
1256 | |
---|
1257 | /** |
---|
1258 | * Main method for testing this class. |
---|
1259 | * |
---|
1260 | * @param argv should contain the following arguments: <p> |
---|
1261 | * -t training file [-N number of clusters] |
---|
1262 | */ |
---|
1263 | public static void main (String[] argv) { |
---|
1264 | runClusterer(new SimpleKMeans(), argv); |
---|
1265 | } |
---|
1266 | } |
---|
1267 | |
---|