[6] | 1 | package weka.clusterers; |
---|
| 2 | |
---|
[14] | 3 | import java.util.Enumeration; |
---|
| 4 | import java.util.HashMap; |
---|
| 5 | import java.util.Iterator; |
---|
| 6 | import java.util.Map; |
---|
| 7 | import java.util.Set; |
---|
| 8 | import java.util.Vector; |
---|
[6] | 9 | |
---|
| 10 | import weka.clusterers.forMetisMQI.GraphAlgorithms; |
---|
[14] | 11 | import weka.clusterers.forMetisMQI.graph.Node; |
---|
[11] | 12 | import weka.clusterers.forMetisMQI.graph.UndirectedGraph; |
---|
[14] | 13 | import weka.core.Attribute; |
---|
[6] | 14 | import weka.core.Capabilities; |
---|
| 15 | import weka.core.Instance; |
---|
| 16 | import weka.core.Instances; |
---|
[14] | 17 | import weka.core.Option; |
---|
| 18 | import weka.core.OptionHandler; |
---|
| 19 | import weka.core.Utils; |
---|
[6] | 20 | import weka.core.Capabilities.Capability; |
---|
| 21 | |
---|
[14] | 22 | public class MetisMQIClusterer extends AbstractClusterer implements |
---|
| 23 | OptionHandler { |
---|
[6] | 24 | |
---|
[14] | 25 | private int numberOfClusters = 2; |
---|
[6] | 26 | |
---|
[14] | 27 | private int sizeFinerGraph = 10; |
---|
| 28 | |
---|
[6] | 29 | /** |
---|
[14] | 30 | * It maps each cluster with an integer id. |
---|
| 31 | */ |
---|
| 32 | private Map<Set<Node>, Integer> clustersMap = null; |
---|
| 33 | |
---|
| 34 | /** |
---|
| 35 | * Holds the cluster membership for each node. |
---|
| 36 | */ |
---|
| 37 | private Map<Node, Integer> nodeMap = null; |
---|
[22] | 38 | |
---|
| 39 | /** |
---|
| 40 | * True if a random bisection must be used. |
---|
| 41 | */ |
---|
| 42 | private boolean randomBisection = false; |
---|
[14] | 43 | |
---|
| 44 | /** |
---|
[6] | 45 | * |
---|
| 46 | */ |
---|
| 47 | private static final long serialVersionUID = 1L; |
---|
| 48 | |
---|
| 49 | @Override |
---|
| 50 | public void buildClusterer(Instances data) throws Exception { |
---|
| 51 | getCapabilities().testWithFail(data); |
---|
[9] | 52 | UndirectedGraph g = new UndirectedGraph(); |
---|
| 53 | g.loadFromInstance(data); |
---|
[14] | 54 | Set<Set<Node>> clusters = GraphAlgorithms.metisMqi(g, numberOfClusters, |
---|
[22] | 55 | sizeFinerGraph, randomBisection); |
---|
[14] | 56 | setNumClusters(clusters.size()); |
---|
| 57 | int i = 0; |
---|
| 58 | Iterator<Set<Node>> clusterIterator = clusters.iterator(); |
---|
| 59 | clustersMap = new HashMap<Set<Node>, Integer>(); |
---|
| 60 | nodeMap = new HashMap<Node, Integer>(); |
---|
| 61 | while (clusterIterator.hasNext()) { |
---|
| 62 | Set<Node> cluster = clusterIterator.next(); |
---|
| 63 | clustersMap.put(cluster, i); |
---|
| 64 | Iterator<Node> nodeIterator = cluster.iterator(); |
---|
| 65 | while (nodeIterator.hasNext()) { |
---|
| 66 | Node n = nodeIterator.next(); |
---|
| 67 | if (nodeMap.get(n) == null) { |
---|
| 68 | nodeMap.put(n, i); |
---|
| 69 | } |
---|
| 70 | } |
---|
| 71 | i++; |
---|
| 72 | } |
---|
[6] | 73 | } |
---|
| 74 | |
---|
| 75 | @Override |
---|
| 76 | public int clusterInstance(Instance instance) throws Exception { |
---|
[14] | 77 | Attribute from = instance.dataset().attribute("from"); |
---|
| 78 | Attribute to = instance.dataset().attribute("to"); |
---|
| 79 | Instance edge = instance; |
---|
| 80 | Node node1 = new Node(Integer.toString(((int) Math.round(edge |
---|
| 81 | .value(from))))); |
---|
| 82 | Node node2 = new Node(Integer.toString(((int) Math |
---|
| 83 | .round(edge.value(to))))); |
---|
| 84 | if (nodeMap.get(node1) == nodeMap.get(node2)) |
---|
| 85 | return nodeMap.get(node1); |
---|
| 86 | else |
---|
| 87 | throw new Exception(); |
---|
[6] | 88 | } |
---|
| 89 | |
---|
[14] | 90 | /** |
---|
| 91 | * Parses a given list of options. |
---|
| 92 | * <p/> |
---|
| 93 | * |
---|
| 94 | * <!-- options-start --> Valid options are: |
---|
| 95 | * <p/> |
---|
| 96 | * |
---|
| 97 | * <pre> |
---|
| 98 | * -N <num> |
---|
| 99 | * number of clusters. |
---|
| 100 | * (default 2). |
---|
| 101 | * </pre> |
---|
| 102 | * |
---|
| 103 | * <pre> |
---|
| 104 | * -S |
---|
| 105 | * Maximum size of the finer graph during the coarsening phase. |
---|
| 106 | * </pre> |
---|
| 107 | * |
---|
| 108 | * <!-- options-end --> |
---|
| 109 | * |
---|
| 110 | * @param options |
---|
| 111 | * the list of options as an array of strings |
---|
| 112 | * @throws Exception |
---|
| 113 | * if an option is not supported |
---|
| 114 | */ |
---|
[6] | 115 | @Override |
---|
[14] | 116 | public void setOptions(String[] options) throws Exception { |
---|
| 117 | String optionString = Utils.getOption('N', options); |
---|
| 118 | if (optionString.length() != 0) { |
---|
| 119 | setNumClusters(Integer.parseInt(optionString)); |
---|
| 120 | } |
---|
| 121 | optionString = Utils.getOption('S', options); |
---|
| 122 | if (optionString.length() != 0) { |
---|
| 123 | setSizeFinerGraph(Integer.parseInt(optionString)); |
---|
| 124 | } |
---|
[22] | 125 | optionString = Utils.getOption('R', options); |
---|
| 126 | setRandomBisection(Boolean.parseBoolean(optionString)); |
---|
[14] | 127 | } |
---|
| 128 | |
---|
[22] | 129 | private void setRandomBisection(boolean b) { |
---|
| 130 | this.randomBisection = b; |
---|
| 131 | } |
---|
| 132 | |
---|
[14] | 133 | /** |
---|
| 134 | * Gets the current settings of MetisMQIClusterer |
---|
| 135 | * |
---|
| 136 | * @return an array of strings suitable for passing to setOptions() |
---|
| 137 | */ |
---|
| 138 | @SuppressWarnings("unchecked") |
---|
| 139 | @Override |
---|
| 140 | public String[] getOptions() { |
---|
| 141 | Vector result; |
---|
| 142 | result = new Vector(); |
---|
| 143 | result.add("-N"); |
---|
| 144 | result.add("" + getNumClusters()); |
---|
| 145 | result.add("-S"); |
---|
| 146 | result.add("" + getSizeFinerGraph()); |
---|
[22] | 147 | result.add("-R"); |
---|
[14] | 148 | return (String[]) result.toArray(new String[result.size()]); |
---|
| 149 | } |
---|
| 150 | |
---|
| 151 | private int getSizeFinerGraph() { |
---|
| 152 | return sizeFinerGraph; |
---|
| 153 | } |
---|
| 154 | |
---|
| 155 | private int getNumClusters() { |
---|
| 156 | return numberOfClusters; |
---|
| 157 | } |
---|
| 158 | |
---|
| 159 | /** |
---|
| 160 | * Returns an enumeration describing the available options. |
---|
| 161 | * |
---|
| 162 | * @return an enumeration of all the available options. |
---|
| 163 | */ |
---|
| 164 | @SuppressWarnings("unchecked") |
---|
| 165 | @Override |
---|
| 166 | public Enumeration listOptions() { |
---|
| 167 | Vector result = new Vector(); |
---|
| 168 | result.addElement(new Option("\tnumber of clusters.\n" |
---|
| 169 | + "\t(default 2).", "N", 1, "-N <num>")); |
---|
| 170 | result.addElement(new Option("\tsize of finer graph.\n" |
---|
| 171 | + "\t(default 10).", "S", 1, "-S <num>")); |
---|
| 172 | return result.elements(); |
---|
| 173 | } |
---|
| 174 | |
---|
| 175 | private void setSizeFinerGraph(int size) { |
---|
| 176 | this.sizeFinerGraph = size; |
---|
| 177 | } |
---|
| 178 | |
---|
| 179 | private void setNumClusters(int n) { |
---|
| 180 | this.numberOfClusters = n; |
---|
| 181 | } |
---|
| 182 | |
---|
| 183 | @Override |
---|
| 184 | public double[] distributionForInstance(Instance instance) throws Exception { |
---|
[6] | 185 | double[] d = new double[numberOfClusters()]; |
---|
| 186 | d[clusterInstance(instance)] = 1.0; |
---|
| 187 | return d; |
---|
| 188 | } |
---|
| 189 | |
---|
| 190 | @Override |
---|
| 191 | public Capabilities getCapabilities() { |
---|
| 192 | Capabilities result = super.getCapabilities(); |
---|
| 193 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 194 | result.enable(Capability.NO_CLASS); |
---|
| 195 | return result; |
---|
| 196 | } |
---|
| 197 | |
---|
| 198 | @Override |
---|
| 199 | public int numberOfClusters() throws Exception { |
---|
| 200 | return numberOfClusters; |
---|
| 201 | } |
---|
| 202 | |
---|
| 203 | /** |
---|
| 204 | * Main method for executing this clusterer. |
---|
| 205 | * |
---|
| 206 | * @param args |
---|
| 207 | * the options, use "-h" to display options |
---|
| 208 | */ |
---|
| 209 | public static void main(String[] args) { |
---|
[14] | 210 | AbstractClusterer.runClusterer(new MetisMQIClusterer(), args); |
---|
[6] | 211 | } |
---|
| 212 | |
---|
| 213 | } |
---|