1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * MakeDensityBasedClusterer.java |
---|
19 | * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.clusterers; |
---|
24 | |
---|
25 | import weka.core.Capabilities; |
---|
26 | import weka.core.Instance; |
---|
27 | import weka.core.Instances; |
---|
28 | import weka.core.Option; |
---|
29 | import weka.core.OptionHandler; |
---|
30 | import weka.core.RevisionUtils; |
---|
31 | import weka.core.Utils; |
---|
32 | import weka.core.WeightedInstancesHandler; |
---|
33 | import weka.core.Capabilities.Capability; |
---|
34 | import weka.estimators.DiscreteEstimator; |
---|
35 | import weka.filters.unsupervised.attribute.ReplaceMissingValues; |
---|
36 | |
---|
37 | import java.util.Enumeration; |
---|
38 | import java.util.Vector; |
---|
39 | |
---|
40 | /** |
---|
41 | <!-- globalinfo-start --> |
---|
42 | * Class for wrapping a Clusterer to make it return a distribution and density. Fits normal distributions and discrete distributions within each cluster produced by the wrapped clusterer. Supports the NumberOfClustersRequestable interface only if the wrapped Clusterer does. |
---|
43 | * <p/> |
---|
44 | <!-- globalinfo-end --> |
---|
45 | * |
---|
46 | <!-- options-start --> |
---|
47 | * Valid options are: <p/> |
---|
48 | * |
---|
49 | * <pre> -M <num> |
---|
50 | * minimum allowable standard deviation for normal density computation |
---|
51 | * (default 1e-6)</pre> |
---|
52 | * |
---|
53 | * <pre> -W <clusterer name> |
---|
54 | * Clusterer to wrap. |
---|
55 | * (default weka.clusterers.SimpleKMeans)</pre> |
---|
56 | * |
---|
57 | * <pre> |
---|
58 | * Options specific to clusterer weka.clusterers.SimpleKMeans: |
---|
59 | * </pre> |
---|
60 | * |
---|
61 | * <pre> -N <num> |
---|
62 | * number of clusters. |
---|
63 | * (default 2).</pre> |
---|
64 | * |
---|
65 | * <pre> -V |
---|
66 | * Display std. deviations for centroids. |
---|
67 | * </pre> |
---|
68 | * |
---|
69 | * <pre> -M |
---|
70 | * Replace missing values with mean/mode. |
---|
71 | * </pre> |
---|
72 | * |
---|
73 | * <pre> -S <num> |
---|
74 | * Random number seed. |
---|
75 | * (default 10)</pre> |
---|
76 | * |
---|
77 | <!-- options-end --> |
---|
78 | * |
---|
79 | * Options after "--" are passed on to the base clusterer. |
---|
80 | * |
---|
81 | * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) |
---|
82 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
83 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
84 | * @version $Revision: 5488 $ |
---|
85 | */ |
---|
86 | public class MakeDensityBasedClusterer |
---|
87 | extends AbstractDensityBasedClusterer |
---|
88 | implements NumberOfClustersRequestable, |
---|
89 | OptionHandler, |
---|
90 | WeightedInstancesHandler { |
---|
91 | |
---|
92 | /** for serialization */ |
---|
93 | static final long serialVersionUID = -5643302427972186631L; |
---|
94 | |
---|
95 | /** holds training instances header information */ |
---|
96 | private Instances m_theInstances; |
---|
97 | /** prior probabilities for the fitted clusters */ |
---|
98 | private double [] m_priors; |
---|
99 | /** normal distributions fitted to each numeric attribute in each cluster */ |
---|
100 | private double [][][] m_modelNormal; |
---|
101 | /** discrete distributions fitted to each discrete attribute in each cluster */ |
---|
102 | private DiscreteEstimator [][] m_model; |
---|
103 | /** default minimum standard deviation */ |
---|
104 | private double m_minStdDev = 1e-6; |
---|
105 | /** The clusterer being wrapped */ |
---|
106 | private Clusterer m_wrappedClusterer = new weka.clusterers.SimpleKMeans(); |
---|
107 | /** globally replace missing values */ |
---|
108 | private ReplaceMissingValues m_replaceMissing; |
---|
109 | |
---|
110 | /** |
---|
111 | * Default constructor. |
---|
112 | * |
---|
113 | */ |
---|
114 | public MakeDensityBasedClusterer() { |
---|
115 | super(); |
---|
116 | } |
---|
117 | |
---|
118 | /** |
---|
119 | * Contructs a MakeDensityBasedClusterer wrapping a given Clusterer. |
---|
120 | * |
---|
121 | * @param toWrap the clusterer to wrap around |
---|
122 | */ |
---|
123 | public MakeDensityBasedClusterer(Clusterer toWrap) { |
---|
124 | |
---|
125 | setClusterer(toWrap); |
---|
126 | } |
---|
127 | |
---|
128 | /** |
---|
129 | * Returns a string describing classifier |
---|
130 | * @return a description suitable for |
---|
131 | * displaying in the explorer/experimenter gui |
---|
132 | */ |
---|
133 | public String globalInfo() { |
---|
134 | return |
---|
135 | "Class for wrapping a Clusterer to make it return a distribution " |
---|
136 | + "and density. Fits normal distributions and discrete distributions " |
---|
137 | + "within each cluster produced by the wrapped clusterer. Supports the " |
---|
138 | + "NumberOfClustersRequestable interface only if the wrapped Clusterer " |
---|
139 | + "does."; |
---|
140 | } |
---|
141 | |
---|
142 | /** |
---|
143 | * String describing default clusterer. |
---|
144 | * |
---|
145 | * @return the default clusterer classname |
---|
146 | */ |
---|
147 | protected String defaultClustererString() { |
---|
148 | return SimpleKMeans.class.getName(); |
---|
149 | } |
---|
150 | |
---|
151 | /** |
---|
152 | * Set the number of clusters to generate. |
---|
153 | * |
---|
154 | * @param n the number of clusters to generate |
---|
155 | * @throws Exception if the wrapped clusterer has not been set, or if |
---|
156 | * the wrapped clusterer does not implement this facility. |
---|
157 | */ |
---|
158 | public void setNumClusters(int n) throws Exception { |
---|
159 | if (m_wrappedClusterer == null) { |
---|
160 | throw new Exception("Can't set the number of clusters to generate - " |
---|
161 | +"no clusterer has been set yet."); |
---|
162 | } |
---|
163 | if (!(m_wrappedClusterer instanceof NumberOfClustersRequestable)) { |
---|
164 | throw new Exception("Can't set the number of clusters to generate - " |
---|
165 | +"wrapped clusterer does not support this facility."); |
---|
166 | } |
---|
167 | |
---|
168 | ((NumberOfClustersRequestable)m_wrappedClusterer).setNumClusters(n); |
---|
169 | } |
---|
170 | |
---|
171 | /** |
---|
172 | * Returns default capabilities of the clusterer (i.e., of the wrapper |
---|
173 | * clusterer). |
---|
174 | * |
---|
175 | * @return the capabilities of this clusterer |
---|
176 | */ |
---|
177 | public Capabilities getCapabilities() { |
---|
178 | if (m_wrappedClusterer != null) { |
---|
179 | return m_wrappedClusterer.getCapabilities(); |
---|
180 | } |
---|
181 | Capabilities result = super.getCapabilities(); |
---|
182 | result.disableAll(); |
---|
183 | result.enable(Capability.NO_CLASS); |
---|
184 | |
---|
185 | return result; |
---|
186 | } |
---|
187 | |
---|
188 | /** |
---|
189 | * Builds a clusterer for a set of instances. |
---|
190 | * |
---|
191 | * @param data the instances to train the clusterer with |
---|
192 | * @throws Exception if the clusterer hasn't been set or something goes wrong |
---|
193 | */ |
---|
194 | public void buildClusterer(Instances data) throws Exception { |
---|
195 | // can clusterer handle the data? |
---|
196 | getCapabilities().testWithFail(data); |
---|
197 | |
---|
198 | m_replaceMissing = new ReplaceMissingValues(); |
---|
199 | m_replaceMissing.setInputFormat(data); |
---|
200 | data = weka.filters.Filter.useFilter(data, m_replaceMissing); |
---|
201 | |
---|
202 | m_theInstances = new Instances(data, 0); |
---|
203 | if (m_wrappedClusterer == null) { |
---|
204 | throw new Exception("No clusterer has been set"); |
---|
205 | } |
---|
206 | m_wrappedClusterer.buildClusterer(data); |
---|
207 | m_model = |
---|
208 | new DiscreteEstimator[m_wrappedClusterer.numberOfClusters()][data.numAttributes()]; |
---|
209 | m_modelNormal = |
---|
210 | new double[m_wrappedClusterer.numberOfClusters()][data.numAttributes()][2]; |
---|
211 | double[][] weights = new double[m_wrappedClusterer.numberOfClusters()][data.numAttributes()]; |
---|
212 | m_priors = new double[m_wrappedClusterer.numberOfClusters()]; |
---|
213 | for (int i = 0; i < m_wrappedClusterer.numberOfClusters(); i++) { |
---|
214 | m_priors[i] = 1.0; // laplace correction |
---|
215 | for (int j = 0; j < data.numAttributes(); j++) { |
---|
216 | if (data.attribute(j).isNominal()) { |
---|
217 | m_model[i][j] = new DiscreteEstimator(data.attribute(j).numValues(), |
---|
218 | true); |
---|
219 | } |
---|
220 | } |
---|
221 | } |
---|
222 | |
---|
223 | Instance inst = null; |
---|
224 | |
---|
225 | // Compute mean, etc. |
---|
226 | int[] clusterIndex = new int[data.numInstances()]; |
---|
227 | for (int i = 0; i < data.numInstances(); i++) { |
---|
228 | inst = data.instance(i); |
---|
229 | int cluster = m_wrappedClusterer.clusterInstance(inst); |
---|
230 | m_priors[cluster] += inst.weight(); |
---|
231 | for (int j = 0; j < data.numAttributes(); j++) { |
---|
232 | if (!inst.isMissing(j)) { |
---|
233 | if (data.attribute(j).isNominal()) { |
---|
234 | m_model[cluster][j].addValue(inst.value(j),inst.weight()); |
---|
235 | } else { |
---|
236 | m_modelNormal[cluster][j][0] += inst.weight() * inst.value(j); |
---|
237 | weights[cluster][j] += inst.weight(); |
---|
238 | } |
---|
239 | } |
---|
240 | } |
---|
241 | clusterIndex[i] = cluster; |
---|
242 | } |
---|
243 | |
---|
244 | for (int j = 0; j < data.numAttributes(); j++) { |
---|
245 | if (data.attribute(j).isNumeric()) { |
---|
246 | for (int i = 0; i < m_wrappedClusterer.numberOfClusters(); i++) { |
---|
247 | if (weights[i][j] > 0) { |
---|
248 | m_modelNormal[i][j][0] /= weights[i][j]; |
---|
249 | } |
---|
250 | } |
---|
251 | } |
---|
252 | } |
---|
253 | |
---|
254 | // Compute standard deviations |
---|
255 | for (int i = 0; i < data.numInstances(); i++) { |
---|
256 | inst = data.instance(i); |
---|
257 | for (int j = 0; j < data.numAttributes(); j++) { |
---|
258 | if (!inst.isMissing(j)) { |
---|
259 | if (data.attribute(j).isNumeric()) { |
---|
260 | double diff = m_modelNormal[clusterIndex[i]][j][0] - inst.value(j); |
---|
261 | m_modelNormal[clusterIndex[i]][j][1] += inst.weight() * diff * diff; |
---|
262 | } |
---|
263 | } |
---|
264 | } |
---|
265 | } |
---|
266 | |
---|
267 | for (int j = 0; j < data.numAttributes(); j++) { |
---|
268 | if (data.attribute(j).isNumeric()) { |
---|
269 | for (int i = 0; i < m_wrappedClusterer.numberOfClusters(); i++) { |
---|
270 | if (weights[i][j] > 0) { |
---|
271 | m_modelNormal[i][j][1] = |
---|
272 | Math.sqrt(m_modelNormal[i][j][1] / weights[i][j]); |
---|
273 | } else if (weights[i][j] <= 0) { |
---|
274 | m_modelNormal[i][j][1] = Double.MAX_VALUE; |
---|
275 | } |
---|
276 | if (m_modelNormal[i][j][1] <= m_minStdDev) { |
---|
277 | m_modelNormal[i][j][1] = data.attributeStats(j).numericStats.stdDev; |
---|
278 | if (m_modelNormal[i][j][1] <= m_minStdDev) { |
---|
279 | m_modelNormal[i][j][1] = m_minStdDev; |
---|
280 | } |
---|
281 | } |
---|
282 | } |
---|
283 | } |
---|
284 | } |
---|
285 | |
---|
286 | Utils.normalize(m_priors); |
---|
287 | } |
---|
288 | |
---|
289 | /** |
---|
290 | * Returns the cluster priors. |
---|
291 | * |
---|
292 | * @return the cluster priors |
---|
293 | */ |
---|
294 | public double[] clusterPriors() { |
---|
295 | |
---|
296 | double[] n = new double[m_priors.length]; |
---|
297 | |
---|
298 | System.arraycopy(m_priors, 0, n, 0, n.length); |
---|
299 | return n; |
---|
300 | } |
---|
301 | |
---|
302 | /** |
---|
303 | * Computes the log of the conditional density (per cluster) for a given instance. |
---|
304 | * |
---|
305 | * @param inst the instance to compute the density for |
---|
306 | * @return an array containing the estimated densities |
---|
307 | * @throws Exception if the density could not be computed |
---|
308 | * successfully |
---|
309 | */ |
---|
310 | public double[] logDensityPerClusterForInstance(Instance inst) throws Exception { |
---|
311 | |
---|
312 | int i, j; |
---|
313 | double logprob; |
---|
314 | double[] wghts = new double[m_wrappedClusterer.numberOfClusters()]; |
---|
315 | |
---|
316 | m_replaceMissing.input(inst); |
---|
317 | inst = m_replaceMissing.output(); |
---|
318 | |
---|
319 | for (i = 0; i < m_wrappedClusterer.numberOfClusters(); i++) { |
---|
320 | logprob = 0; |
---|
321 | for (j = 0; j < inst.numAttributes(); j++) { |
---|
322 | if (!inst.isMissing(j)) { |
---|
323 | if (inst.attribute(j).isNominal()) { |
---|
324 | logprob += Math.log(m_model[i][j].getProbability(inst.value(j))); |
---|
325 | } else { // numeric attribute |
---|
326 | logprob += logNormalDens(inst.value(j), |
---|
327 | m_modelNormal[i][j][0], |
---|
328 | m_modelNormal[i][j][1]); |
---|
329 | } |
---|
330 | } |
---|
331 | } |
---|
332 | wghts[i] = logprob; |
---|
333 | } |
---|
334 | return wghts; |
---|
335 | } |
---|
336 | |
---|
337 | /** Constant for normal distribution. */ |
---|
338 | private static double m_normConst = 0.5 * Math.log(2 * Math.PI); |
---|
339 | |
---|
340 | /** |
---|
341 | * Density function of normal distribution. |
---|
342 | * @param x input value |
---|
343 | * @param mean mean of distribution |
---|
344 | * @param stdDev standard deviation of distribution |
---|
345 | * @return the density |
---|
346 | */ |
---|
347 | private double logNormalDens (double x, double mean, double stdDev) { |
---|
348 | |
---|
349 | double diff = x - mean; |
---|
350 | |
---|
351 | return - (diff * diff / (2 * stdDev * stdDev)) - m_normConst - Math.log(stdDev); |
---|
352 | } |
---|
353 | |
---|
354 | /** |
---|
355 | * Returns the number of clusters. |
---|
356 | * |
---|
357 | * @return the number of clusters generated for a training dataset. |
---|
358 | * @throws Exception if number of clusters could not be returned successfully |
---|
359 | */ |
---|
360 | public int numberOfClusters() throws Exception { |
---|
361 | |
---|
362 | return m_wrappedClusterer.numberOfClusters(); |
---|
363 | } |
---|
364 | |
---|
365 | /** |
---|
366 | * Returns a description of the clusterer. |
---|
367 | * |
---|
368 | * @return a string containing a description of the clusterer |
---|
369 | */ |
---|
370 | public String toString() { |
---|
371 | if (m_priors == null) { |
---|
372 | return "No clusterer built yet!"; |
---|
373 | } |
---|
374 | |
---|
375 | StringBuffer text = new StringBuffer(); |
---|
376 | text.append("MakeDensityBasedClusterer: \n\nWrapped clusterer: " |
---|
377 | + m_wrappedClusterer.toString()); |
---|
378 | |
---|
379 | text.append("\nFitted estimators (with ML estimates of variance):\n"); |
---|
380 | |
---|
381 | for (int j = 0; j < m_priors.length; j++) { |
---|
382 | text.append("\nCluster: " + j + " Prior probability: " |
---|
383 | + Utils.doubleToString(m_priors[j], 4) + "\n\n"); |
---|
384 | |
---|
385 | for (int i = 0; i < m_model[0].length; i++) { |
---|
386 | text.append("Attribute: " + m_theInstances.attribute(i).name() + "\n"); |
---|
387 | |
---|
388 | if (m_theInstances.attribute(i).isNominal()) { |
---|
389 | if (m_model[j][i] != null) { |
---|
390 | text.append(m_model[j][i].toString()); |
---|
391 | } |
---|
392 | } |
---|
393 | else { |
---|
394 | text.append("Normal Distribution. Mean = " |
---|
395 | + Utils.doubleToString(m_modelNormal[j][i][0], 4) |
---|
396 | + " StdDev = " |
---|
397 | + Utils.doubleToString(m_modelNormal[j][i][1], 4) |
---|
398 | + "\n"); |
---|
399 | } |
---|
400 | } |
---|
401 | } |
---|
402 | |
---|
403 | return text.toString(); |
---|
404 | } |
---|
405 | |
---|
406 | /** |
---|
407 | * Returns the tip text for this property |
---|
408 | * @return tip text for this property suitable for |
---|
409 | * displaying in the explorer/experimenter gui |
---|
410 | */ |
---|
411 | public String clustererTipText() { |
---|
412 | return "the clusterer to wrap"; |
---|
413 | } |
---|
414 | |
---|
415 | /** |
---|
416 | * Sets the clusterer to wrap. |
---|
417 | * |
---|
418 | * @param toWrap the clusterer |
---|
419 | */ |
---|
420 | public void setClusterer(Clusterer toWrap) { |
---|
421 | |
---|
422 | m_wrappedClusterer = toWrap; |
---|
423 | } |
---|
424 | |
---|
425 | /** |
---|
426 | * Gets the clusterer being wrapped. |
---|
427 | * |
---|
428 | * @return the clusterer |
---|
429 | */ |
---|
430 | public Clusterer getClusterer() { |
---|
431 | |
---|
432 | return m_wrappedClusterer; |
---|
433 | } |
---|
434 | |
---|
435 | /** |
---|
436 | * Returns the tip text for this property |
---|
437 | * @return tip text for this property suitable for |
---|
438 | * displaying in the explorer/experimenter gui |
---|
439 | */ |
---|
440 | public String minStdDevTipText() { |
---|
441 | return "set minimum allowable standard deviation"; |
---|
442 | } |
---|
443 | |
---|
444 | /** |
---|
445 | * Set the minimum value for standard deviation when calculating |
---|
446 | * normal density. Reducing this value can help prevent arithmetic |
---|
447 | * overflow resulting from multiplying large densities (arising from small |
---|
448 | * standard deviations) when there are many singleton or near singleton |
---|
449 | * values. |
---|
450 | * @param m minimum value for standard deviation |
---|
451 | */ |
---|
452 | public void setMinStdDev(double m) { |
---|
453 | m_minStdDev = m; |
---|
454 | } |
---|
455 | |
---|
456 | /** |
---|
457 | * Get the minimum allowable standard deviation. |
---|
458 | * @return the minumum allowable standard deviation |
---|
459 | */ |
---|
460 | public double getMinStdDev() { |
---|
461 | return m_minStdDev; |
---|
462 | } |
---|
463 | |
---|
464 | /** |
---|
465 | * Returns an enumeration describing the available options.. |
---|
466 | * |
---|
467 | * @return an enumeration of all the available options. |
---|
468 | */ |
---|
469 | public Enumeration listOptions() { |
---|
470 | Vector result = new Vector(); |
---|
471 | |
---|
472 | result.addElement(new Option( |
---|
473 | "\tminimum allowable standard deviation for normal density computation " |
---|
474 | +"\n\t(default 1e-6)" |
---|
475 | ,"M",1,"-M <num>")); |
---|
476 | |
---|
477 | result.addElement(new Option( |
---|
478 | "\tClusterer to wrap.\n" |
---|
479 | + "\t(default " + defaultClustererString() + ")", |
---|
480 | "W", 1,"-W <clusterer name>")); |
---|
481 | |
---|
482 | if ((m_wrappedClusterer != null) && |
---|
483 | (m_wrappedClusterer instanceof OptionHandler)) { |
---|
484 | result.addElement(new Option( |
---|
485 | "", |
---|
486 | "", 0, "\nOptions specific to clusterer " |
---|
487 | + m_wrappedClusterer.getClass().getName() + ":")); |
---|
488 | Enumeration enu = ((OptionHandler)m_wrappedClusterer).listOptions(); |
---|
489 | while (enu.hasMoreElements()) { |
---|
490 | result.addElement(enu.nextElement()); |
---|
491 | } |
---|
492 | } |
---|
493 | |
---|
494 | return result.elements(); |
---|
495 | } |
---|
496 | |
---|
497 | /** |
---|
498 | * Parses a given list of options. <p/> |
---|
499 | * |
---|
500 | <!-- options-start --> |
---|
501 | * Valid options are: <p/> |
---|
502 | * |
---|
503 | * <pre> -M <num> |
---|
504 | * minimum allowable standard deviation for normal density computation |
---|
505 | * (default 1e-6)</pre> |
---|
506 | * |
---|
507 | * <pre> -W <clusterer name> |
---|
508 | * Clusterer to wrap. |
---|
509 | * (default weka.clusterers.SimpleKMeans)</pre> |
---|
510 | * |
---|
511 | * <pre> |
---|
512 | * Options specific to clusterer weka.clusterers.SimpleKMeans: |
---|
513 | * </pre> |
---|
514 | * |
---|
515 | * <pre> -N <num> |
---|
516 | * number of clusters. |
---|
517 | * (default 2).</pre> |
---|
518 | * |
---|
519 | * <pre> -V |
---|
520 | * Display std. deviations for centroids. |
---|
521 | * </pre> |
---|
522 | * |
---|
523 | * <pre> -M |
---|
524 | * Replace missing values with mean/mode. |
---|
525 | * </pre> |
---|
526 | * |
---|
527 | * <pre> -S <num> |
---|
528 | * Random number seed. |
---|
529 | * (default 10)</pre> |
---|
530 | * |
---|
531 | <!-- options-end --> |
---|
532 | * |
---|
533 | * @param options the list of options as an array of strings |
---|
534 | * @throws Exception if an option is not supported |
---|
535 | */ |
---|
536 | public void setOptions(String[] options) throws Exception { |
---|
537 | |
---|
538 | String optionString = Utils.getOption('M', options); |
---|
539 | if (optionString.length() != 0) |
---|
540 | setMinStdDev((new Double(optionString)).doubleValue()); |
---|
541 | else |
---|
542 | setMinStdDev(1e-6); |
---|
543 | |
---|
544 | String wString = Utils.getOption('W', options); |
---|
545 | if (wString.length() == 0) |
---|
546 | wString = defaultClustererString(); |
---|
547 | setClusterer(AbstractClusterer.forName(wString, Utils.partitionOptions(options))); |
---|
548 | } |
---|
549 | |
---|
550 | /** |
---|
551 | * Gets the current settings of the clusterer. |
---|
552 | * |
---|
553 | * @return an array of strings suitable for passing to setOptions() |
---|
554 | */ |
---|
555 | public String[] getOptions() { |
---|
556 | |
---|
557 | String [] clustererOptions = new String [0]; |
---|
558 | if ((m_wrappedClusterer != null) && |
---|
559 | (m_wrappedClusterer instanceof OptionHandler)) { |
---|
560 | clustererOptions = ((OptionHandler)m_wrappedClusterer).getOptions(); |
---|
561 | } |
---|
562 | String [] options = new String [clustererOptions.length + 5]; |
---|
563 | int current = 0; |
---|
564 | |
---|
565 | options[current++] = "-M"; |
---|
566 | options[current++] = ""+getMinStdDev(); |
---|
567 | |
---|
568 | if (getClusterer() != null) { |
---|
569 | options[current++] = "-W"; |
---|
570 | options[current++] = getClusterer().getClass().getName(); |
---|
571 | } |
---|
572 | options[current++] = "--"; |
---|
573 | |
---|
574 | System.arraycopy(clustererOptions, 0, options, current, |
---|
575 | clustererOptions.length); |
---|
576 | current += clustererOptions.length; |
---|
577 | while (current < options.length) { |
---|
578 | options[current++] = ""; |
---|
579 | } |
---|
580 | return options; |
---|
581 | } |
---|
582 | |
---|
583 | /** |
---|
584 | * Returns the revision string. |
---|
585 | * |
---|
586 | * @return the revision |
---|
587 | */ |
---|
588 | public String getRevision() { |
---|
589 | return RevisionUtils.extract("$Revision: 5488 $"); |
---|
590 | } |
---|
591 | |
---|
592 | /** |
---|
593 | * Main method for testing this class. |
---|
594 | * |
---|
595 | * @param argv the options |
---|
596 | */ |
---|
597 | public static void main(String [] argv) { |
---|
598 | runClusterer(new MakeDensityBasedClusterer(), argv); |
---|
599 | } |
---|
600 | } |
---|
601 | |
---|