1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * FarthestFirst.java |
---|
19 | * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | package weka.clusterers; |
---|
23 | |
---|
24 | import weka.core.Attribute; |
---|
25 | import weka.core.Capabilities; |
---|
26 | import weka.core.Instance; |
---|
27 | import weka.core.Instances; |
---|
28 | import weka.core.Option; |
---|
29 | import weka.core.RevisionUtils; |
---|
30 | import weka.core.TechnicalInformation; |
---|
31 | import weka.core.TechnicalInformationHandler; |
---|
32 | import weka.core.Utils; |
---|
33 | import weka.core.Capabilities.Capability; |
---|
34 | import weka.core.TechnicalInformation.Field; |
---|
35 | import weka.core.TechnicalInformation.Type; |
---|
36 | import weka.filters.Filter; |
---|
37 | import weka.filters.unsupervised.attribute.ReplaceMissingValues; |
---|
38 | |
---|
39 | import java.util.Enumeration; |
---|
40 | import java.util.Random; |
---|
41 | import java.util.Vector; |
---|
42 | |
---|
43 | /** |
---|
44 | <!-- globalinfo-start --> |
---|
45 | * Cluster data using the FarthestFirst algorithm.<br/> |
---|
46 | * <br/> |
---|
47 | * For more information see:<br/> |
---|
48 | * <br/> |
---|
49 | * Hochbaum, Shmoys (1985). A best possible heuristic for the k-center problem. Mathematics of Operations Research. 10(2):180-184.<br/> |
---|
50 | * <br/> |
---|
51 | * Sanjoy Dasgupta: Performance Guarantees for Hierarchical Clustering. In: 15th Annual Conference on Computational Learning Theory, 351-363, 2002.<br/> |
---|
52 | * <br/> |
---|
53 | * Notes:<br/> |
---|
54 | * - works as a fast simple approximate clusterer<br/> |
---|
55 | * - modelled after SimpleKMeans, might be a useful initializer for it |
---|
56 | * <p/> |
---|
57 | <!-- globalinfo-end --> |
---|
58 | * |
---|
59 | <!-- technical-bibtex-start --> |
---|
60 | * BibTeX: |
---|
61 | * <pre> |
---|
62 | * @article{Hochbaum1985, |
---|
63 | * author = {Hochbaum and Shmoys}, |
---|
64 | * journal = {Mathematics of Operations Research}, |
---|
65 | * number = {2}, |
---|
66 | * pages = {180-184}, |
---|
67 | * title = {A best possible heuristic for the k-center problem}, |
---|
68 | * volume = {10}, |
---|
69 | * year = {1985} |
---|
70 | * } |
---|
71 | * |
---|
72 | * @inproceedings{Dasgupta2002, |
---|
73 | * author = {Sanjoy Dasgupta}, |
---|
74 | * booktitle = {15th Annual Conference on Computational Learning Theory}, |
---|
75 | * pages = {351-363}, |
---|
76 | * publisher = {Springer}, |
---|
77 | * title = {Performance Guarantees for Hierarchical Clustering}, |
---|
78 | * year = {2002} |
---|
79 | * } |
---|
80 | * </pre> |
---|
81 | * <p/> |
---|
82 | <!-- technical-bibtex-end --> |
---|
83 | * |
---|
84 | <!-- options-start --> |
---|
85 | * Valid options are: <p/> |
---|
86 | * |
---|
87 | * <pre> -N <num> |
---|
88 | * number of clusters. (default = 2).</pre> |
---|
89 | * |
---|
90 | * <pre> -S <num> |
---|
91 | * Random number seed. |
---|
92 | * (default 1)</pre> |
---|
93 | * |
---|
94 | <!-- options-end --> |
---|
95 | * |
---|
96 | * @author Bernhard Pfahringer (bernhard@cs.waikato.ac.nz) |
---|
97 | * @version $Revision: 5987 $ |
---|
98 | * @see RandomizableClusterer |
---|
99 | */ |
---|
100 | public class FarthestFirst |
---|
101 | extends RandomizableClusterer |
---|
102 | implements TechnicalInformationHandler { |
---|
103 | |
---|
104 | //Todo: rewrite to be fully incremental |
---|
105 | // cleanup, like deleting m_instances |
---|
106 | |
---|
107 | /** for serialization */ |
---|
108 | static final long serialVersionUID = 7499838100631329509L; |
---|
109 | |
---|
110 | /** |
---|
111 | * training instances, not necessary to keep, |
---|
112 | * could be replaced by m_ClusterCentroids where needed for header info |
---|
113 | */ |
---|
114 | protected Instances m_instances; |
---|
115 | |
---|
116 | /** |
---|
117 | * replace missing values in training instances |
---|
118 | */ |
---|
119 | protected ReplaceMissingValues m_ReplaceMissingFilter; |
---|
120 | |
---|
121 | /** |
---|
122 | * number of clusters to generate |
---|
123 | */ |
---|
124 | protected int m_NumClusters = 2; |
---|
125 | |
---|
126 | /** |
---|
127 | * holds the cluster centroids |
---|
128 | */ |
---|
129 | protected Instances m_ClusterCentroids; |
---|
130 | |
---|
131 | /** |
---|
132 | * attribute min values |
---|
133 | */ |
---|
134 | private double [] m_Min; |
---|
135 | |
---|
136 | /** |
---|
137 | * attribute max values |
---|
138 | */ |
---|
139 | private double [] m_Max; |
---|
140 | |
---|
141 | /** |
---|
142 | * Returns a string describing this clusterer |
---|
143 | * @return a description of the evaluator suitable for |
---|
144 | * displaying in the explorer/experimenter gui |
---|
145 | */ |
---|
146 | public String globalInfo() { |
---|
147 | return "Cluster data using the FarthestFirst algorithm.\n\n" |
---|
148 | + "For more information see:\n\n" |
---|
149 | + getTechnicalInformation().toString() + "\n\n" |
---|
150 | + "Notes:\n" |
---|
151 | + "- works as a fast simple approximate clusterer\n" |
---|
152 | + "- modelled after SimpleKMeans, might be a useful initializer for it"; |
---|
153 | } |
---|
154 | |
---|
155 | /** |
---|
156 | * Returns an instance of a TechnicalInformation object, containing |
---|
157 | * detailed information about the technical background of this class, |
---|
158 | * e.g., paper reference or book this class is based on. |
---|
159 | * |
---|
160 | * @return the technical information about this class |
---|
161 | */ |
---|
162 | public TechnicalInformation getTechnicalInformation() { |
---|
163 | TechnicalInformation result; |
---|
164 | TechnicalInformation additional; |
---|
165 | |
---|
166 | result = new TechnicalInformation(Type.ARTICLE); |
---|
167 | result.setValue(Field.AUTHOR, "Hochbaum and Shmoys"); |
---|
168 | result.setValue(Field.YEAR, "1985"); |
---|
169 | result.setValue(Field.TITLE, "A best possible heuristic for the k-center problem"); |
---|
170 | result.setValue(Field.JOURNAL, "Mathematics of Operations Research"); |
---|
171 | result.setValue(Field.VOLUME, "10"); |
---|
172 | result.setValue(Field.NUMBER, "2"); |
---|
173 | result.setValue(Field.PAGES, "180-184"); |
---|
174 | |
---|
175 | additional = result.add(Type.INPROCEEDINGS); |
---|
176 | additional.setValue(Field.AUTHOR, "Sanjoy Dasgupta"); |
---|
177 | additional.setValue(Field.TITLE, "Performance Guarantees for Hierarchical Clustering"); |
---|
178 | additional.setValue(Field.BOOKTITLE, "15th Annual Conference on Computational Learning Theory"); |
---|
179 | additional.setValue(Field.YEAR, "2002"); |
---|
180 | additional.setValue(Field.PAGES, "351-363"); |
---|
181 | additional.setValue(Field.PUBLISHER, "Springer"); |
---|
182 | |
---|
183 | return result; |
---|
184 | } |
---|
185 | |
---|
186 | /** |
---|
187 | * Returns default capabilities of the clusterer. |
---|
188 | * |
---|
189 | * @return the capabilities of this clusterer |
---|
190 | */ |
---|
191 | public Capabilities getCapabilities() { |
---|
192 | Capabilities result = super.getCapabilities(); |
---|
193 | result.disableAll(); |
---|
194 | result.enable(Capability.NO_CLASS); |
---|
195 | |
---|
196 | // attributes |
---|
197 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
198 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
199 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
200 | result.enable(Capability.MISSING_VALUES); |
---|
201 | |
---|
202 | return result; |
---|
203 | } |
---|
204 | |
---|
205 | /** |
---|
206 | * Generates a clusterer. Has to initialize all fields of the clusterer |
---|
207 | * that are not being set via options. |
---|
208 | * |
---|
209 | * @param data set of instances serving as training data |
---|
210 | * @throws Exception if the clusterer has not been |
---|
211 | * generated successfully |
---|
212 | */ |
---|
213 | public void buildClusterer(Instances data) throws Exception { |
---|
214 | |
---|
215 | // can clusterer handle the data? |
---|
216 | getCapabilities().testWithFail(data); |
---|
217 | |
---|
218 | //long start = System.currentTimeMillis(); |
---|
219 | |
---|
220 | m_ReplaceMissingFilter = new ReplaceMissingValues(); |
---|
221 | m_ReplaceMissingFilter.setInputFormat(data); |
---|
222 | m_instances = Filter.useFilter(data, m_ReplaceMissingFilter); |
---|
223 | |
---|
224 | initMinMax(m_instances); |
---|
225 | |
---|
226 | m_ClusterCentroids = new Instances(m_instances, m_NumClusters); |
---|
227 | |
---|
228 | int n = m_instances.numInstances(); |
---|
229 | Random r = new Random(getSeed()); |
---|
230 | boolean[] selected = new boolean[n]; |
---|
231 | double[] minDistance = new double[n]; |
---|
232 | |
---|
233 | for(int i = 0; i<n; i++) minDistance[i] = Double.MAX_VALUE; |
---|
234 | |
---|
235 | int firstI = r.nextInt(n); |
---|
236 | m_ClusterCentroids.add(m_instances.instance(firstI)); |
---|
237 | selected[firstI] = true; |
---|
238 | |
---|
239 | updateMinDistance(minDistance,selected,m_instances,m_instances.instance(firstI)); |
---|
240 | |
---|
241 | if (m_NumClusters > n) m_NumClusters = n; |
---|
242 | |
---|
243 | for(int i = 1; i < m_NumClusters; i++) { |
---|
244 | int nextI = farthestAway(minDistance, selected); |
---|
245 | m_ClusterCentroids.add(m_instances.instance(nextI)); |
---|
246 | selected[nextI] = true; |
---|
247 | updateMinDistance(minDistance,selected,m_instances,m_instances.instance(nextI)); |
---|
248 | } |
---|
249 | |
---|
250 | m_instances = new Instances(m_instances,0); |
---|
251 | //long end = System.currentTimeMillis(); |
---|
252 | //System.out.println("Clustering Time = " + (end-start)); |
---|
253 | } |
---|
254 | |
---|
255 | |
---|
256 | protected void updateMinDistance(double[] minDistance, boolean[] selected, |
---|
257 | Instances data, Instance center) { |
---|
258 | for(int i = 0; i<selected.length; i++) |
---|
259 | if (!selected[i]) { |
---|
260 | double d = distance(center,data.instance(i)); |
---|
261 | if (d<minDistance[i]) |
---|
262 | minDistance[i] = d; |
---|
263 | } |
---|
264 | } |
---|
265 | |
---|
266 | protected int farthestAway(double[] minDistance, boolean[] selected) { |
---|
267 | double maxDistance = -1.0; |
---|
268 | int maxI = -1; |
---|
269 | for(int i = 0; i<selected.length; i++) |
---|
270 | if (!selected[i]) |
---|
271 | if (maxDistance < minDistance[i]) { |
---|
272 | maxDistance = minDistance[i]; |
---|
273 | maxI = i; |
---|
274 | } |
---|
275 | return maxI; |
---|
276 | } |
---|
277 | |
---|
278 | protected void initMinMax(Instances data) { |
---|
279 | m_Min = new double [data.numAttributes()]; |
---|
280 | m_Max = new double [data.numAttributes()]; |
---|
281 | for (int i = 0; i < data.numAttributes(); i++) { |
---|
282 | m_Min[i] = m_Max[i] = Double.NaN; |
---|
283 | } |
---|
284 | |
---|
285 | for (int i = 0; i < data.numInstances(); i++) { |
---|
286 | updateMinMax(data.instance(i)); |
---|
287 | } |
---|
288 | } |
---|
289 | |
---|
290 | |
---|
291 | /** |
---|
292 | * Updates the minimum and maximum values for all the attributes |
---|
293 | * based on a new instance. |
---|
294 | * |
---|
295 | * @param instance the new instance |
---|
296 | */ |
---|
297 | private void updateMinMax(Instance instance) { |
---|
298 | |
---|
299 | for (int j = 0;j < instance.numAttributes(); j++) { |
---|
300 | if (Double.isNaN(m_Min[j])) { |
---|
301 | m_Min[j] = instance.value(j); |
---|
302 | m_Max[j] = instance.value(j); |
---|
303 | } else { |
---|
304 | if (instance.value(j) < m_Min[j]) { |
---|
305 | m_Min[j] = instance.value(j); |
---|
306 | } else { |
---|
307 | if (instance.value(j) > m_Max[j]) { |
---|
308 | m_Max[j] = instance.value(j); |
---|
309 | } |
---|
310 | } |
---|
311 | } |
---|
312 | } |
---|
313 | } |
---|
314 | |
---|
315 | |
---|
316 | /** |
---|
317 | * clusters an instance that has been through the filters |
---|
318 | * |
---|
319 | * @param instance the instance to assign a cluster to |
---|
320 | * @return a cluster number |
---|
321 | */ |
---|
322 | protected int clusterProcessedInstance(Instance instance) { |
---|
323 | double minDist = Double.MAX_VALUE; |
---|
324 | int bestCluster = 0; |
---|
325 | for (int i = 0; i < m_NumClusters; i++) { |
---|
326 | double dist = distance(instance, m_ClusterCentroids.instance(i)); |
---|
327 | if (dist < minDist) { |
---|
328 | minDist = dist; |
---|
329 | bestCluster = i; |
---|
330 | } |
---|
331 | } |
---|
332 | return bestCluster; |
---|
333 | } |
---|
334 | |
---|
335 | /** |
---|
336 | * Classifies a given instance. |
---|
337 | * |
---|
338 | * @param instance the instance to be assigned to a cluster |
---|
339 | * @return the number of the assigned cluster as an integer |
---|
340 | * if the class is enumerated, otherwise the predicted value |
---|
341 | * @throws Exception if instance could not be classified |
---|
342 | * successfully |
---|
343 | */ |
---|
344 | public int clusterInstance(Instance instance) throws Exception { |
---|
345 | m_ReplaceMissingFilter.input(instance); |
---|
346 | m_ReplaceMissingFilter.batchFinished(); |
---|
347 | Instance inst = m_ReplaceMissingFilter.output(); |
---|
348 | |
---|
349 | return clusterProcessedInstance(inst); |
---|
350 | } |
---|
351 | |
---|
352 | /** |
---|
353 | * Calculates the distance between two instances |
---|
354 | * |
---|
355 | * @param first the first instance |
---|
356 | * @param second the second instance |
---|
357 | * @return the distance between the two given instances, between 0 and 1 |
---|
358 | */ |
---|
359 | protected double distance(Instance first, Instance second) { |
---|
360 | |
---|
361 | double distance = 0; |
---|
362 | int firstI, secondI; |
---|
363 | |
---|
364 | for (int p1 = 0, p2 = 0; |
---|
365 | p1 < first.numValues() || p2 < second.numValues();) { |
---|
366 | if (p1 >= first.numValues()) { |
---|
367 | firstI = m_instances.numAttributes(); |
---|
368 | } else { |
---|
369 | firstI = first.index(p1); |
---|
370 | } |
---|
371 | if (p2 >= second.numValues()) { |
---|
372 | secondI = m_instances.numAttributes(); |
---|
373 | } else { |
---|
374 | secondI = second.index(p2); |
---|
375 | } |
---|
376 | if (firstI == m_instances.classIndex()) { |
---|
377 | p1++; continue; |
---|
378 | } |
---|
379 | if (secondI == m_instances.classIndex()) { |
---|
380 | p2++; continue; |
---|
381 | } |
---|
382 | double diff; |
---|
383 | if (firstI == secondI) { |
---|
384 | diff = difference(firstI, |
---|
385 | first.valueSparse(p1), |
---|
386 | second.valueSparse(p2)); |
---|
387 | p1++; p2++; |
---|
388 | } else if (firstI > secondI) { |
---|
389 | diff = difference(secondI, |
---|
390 | 0, second.valueSparse(p2)); |
---|
391 | p2++; |
---|
392 | } else { |
---|
393 | diff = difference(firstI, |
---|
394 | first.valueSparse(p1), 0); |
---|
395 | p1++; |
---|
396 | } |
---|
397 | distance += diff * diff; |
---|
398 | } |
---|
399 | |
---|
400 | return Math.sqrt(distance / m_instances.numAttributes()); |
---|
401 | } |
---|
402 | |
---|
403 | /** |
---|
404 | * Computes the difference between two given attribute |
---|
405 | * values. |
---|
406 | */ |
---|
407 | protected double difference(int index, double val1, double val2) { |
---|
408 | |
---|
409 | switch (m_instances.attribute(index).type()) { |
---|
410 | case Attribute.NOMINAL: |
---|
411 | |
---|
412 | // If attribute is nominal |
---|
413 | if (Utils.isMissingValue(val1) || |
---|
414 | Utils.isMissingValue(val2) || |
---|
415 | ((int)val1 != (int)val2)) { |
---|
416 | return 1; |
---|
417 | } else { |
---|
418 | return 0; |
---|
419 | } |
---|
420 | case Attribute.NUMERIC: |
---|
421 | |
---|
422 | // If attribute is numeric |
---|
423 | if (Utils.isMissingValue(val1) || |
---|
424 | Utils.isMissingValue(val2)) { |
---|
425 | if (Utils.isMissingValue(val1) && |
---|
426 | Utils.isMissingValue(val2)) { |
---|
427 | return 1; |
---|
428 | } else { |
---|
429 | double diff; |
---|
430 | if (Utils.isMissingValue(val2)) { |
---|
431 | diff = norm(val1, index); |
---|
432 | } else { |
---|
433 | diff = norm(val2, index); |
---|
434 | } |
---|
435 | if (diff < 0.5) { |
---|
436 | diff = 1.0 - diff; |
---|
437 | } |
---|
438 | return diff; |
---|
439 | } |
---|
440 | } else { |
---|
441 | return norm(val1, index) - norm(val2, index); |
---|
442 | } |
---|
443 | default: |
---|
444 | return 0; |
---|
445 | } |
---|
446 | } |
---|
447 | |
---|
448 | /** |
---|
449 | * Normalizes a given value of a numeric attribute. |
---|
450 | * |
---|
451 | * @param x the value to be normalized |
---|
452 | * @param i the attribute's index |
---|
453 | * @return the normalized value |
---|
454 | */ |
---|
455 | protected double norm(double x, int i) { |
---|
456 | |
---|
457 | if (Double.isNaN(m_Min[i]) || Utils.eq(m_Max[i],m_Min[i])) { |
---|
458 | return 0; |
---|
459 | } else { |
---|
460 | return (x - m_Min[i]) / (m_Max[i] - m_Min[i]); |
---|
461 | } |
---|
462 | } |
---|
463 | |
---|
464 | /** |
---|
465 | * Returns the number of clusters. |
---|
466 | * |
---|
467 | * @return the number of clusters generated for a training dataset. |
---|
468 | * @throws Exception if number of clusters could not be returned |
---|
469 | * successfully |
---|
470 | */ |
---|
471 | public int numberOfClusters() throws Exception { |
---|
472 | return m_NumClusters; |
---|
473 | } |
---|
474 | |
---|
475 | /** |
---|
476 | * Returns an enumeration describing the available options. |
---|
477 | * |
---|
478 | * @return an enumeration of all the available options. |
---|
479 | */ |
---|
480 | public Enumeration listOptions () { |
---|
481 | Vector result = new Vector(); |
---|
482 | |
---|
483 | result.addElement(new Option( |
---|
484 | "\tnumber of clusters. (default = 2).", |
---|
485 | "N", 1, "-N <num>")); |
---|
486 | |
---|
487 | Enumeration en = super.listOptions(); |
---|
488 | while (en.hasMoreElements()) |
---|
489 | result.addElement(en.nextElement()); |
---|
490 | |
---|
491 | return result.elements(); |
---|
492 | } |
---|
493 | |
---|
494 | /** |
---|
495 | * Returns the tip text for this property |
---|
496 | * @return tip text for this property suitable for |
---|
497 | * displaying in the explorer/experimenter gui |
---|
498 | */ |
---|
499 | public String numClustersTipText() { |
---|
500 | return "set number of clusters"; |
---|
501 | } |
---|
502 | |
---|
503 | /** |
---|
504 | * set the number of clusters to generate |
---|
505 | * |
---|
506 | * @param n the number of clusters to generate |
---|
507 | * @throws Exception if number of clusters is negative |
---|
508 | */ |
---|
509 | public void setNumClusters(int n) throws Exception { |
---|
510 | if (n < 0) { |
---|
511 | throw new Exception("Number of clusters must be > 0"); |
---|
512 | } |
---|
513 | m_NumClusters = n; |
---|
514 | } |
---|
515 | |
---|
516 | /** |
---|
517 | * gets the number of clusters to generate |
---|
518 | * |
---|
519 | * @return the number of clusters to generate |
---|
520 | */ |
---|
521 | public int getNumClusters() { |
---|
522 | return m_NumClusters; |
---|
523 | } |
---|
524 | |
---|
525 | /** |
---|
526 | * Parses a given list of options. <p/> |
---|
527 | * |
---|
528 | <!-- options-start --> |
---|
529 | * Valid options are: <p/> |
---|
530 | * |
---|
531 | * <pre> -N <num> |
---|
532 | * number of clusters. (default = 2).</pre> |
---|
533 | * |
---|
534 | * <pre> -S <num> |
---|
535 | * Random number seed. |
---|
536 | * (default 1)</pre> |
---|
537 | * |
---|
538 | <!-- options-end --> |
---|
539 | * |
---|
540 | * @param options the list of options as an array of strings |
---|
541 | * @throws Exception if an option is not supported |
---|
542 | */ |
---|
543 | public void setOptions (String[] options) |
---|
544 | throws Exception { |
---|
545 | |
---|
546 | String optionString = Utils.getOption('N', options); |
---|
547 | |
---|
548 | if (optionString.length() != 0) { |
---|
549 | setNumClusters(Integer.parseInt(optionString)); |
---|
550 | } |
---|
551 | |
---|
552 | super.setOptions(options); |
---|
553 | } |
---|
554 | |
---|
555 | /** |
---|
556 | * Gets the current settings of FarthestFirst |
---|
557 | * |
---|
558 | * @return an array of strings suitable for passing to setOptions() |
---|
559 | */ |
---|
560 | public String[] getOptions () { |
---|
561 | int i; |
---|
562 | Vector result; |
---|
563 | String[] options; |
---|
564 | |
---|
565 | result = new Vector(); |
---|
566 | |
---|
567 | result.add("-N"); |
---|
568 | result.add("" + getNumClusters()); |
---|
569 | |
---|
570 | options = super.getOptions(); |
---|
571 | for (i = 0; i < options.length; i++) |
---|
572 | result.add(options[i]); |
---|
573 | |
---|
574 | return (String[]) result.toArray(new String[result.size()]); |
---|
575 | } |
---|
576 | |
---|
577 | /** |
---|
578 | * return a string describing this clusterer |
---|
579 | * |
---|
580 | * @return a description of the clusterer as a string |
---|
581 | */ |
---|
582 | public String toString() { |
---|
583 | StringBuffer temp = new StringBuffer(); |
---|
584 | |
---|
585 | temp.append("\n FarthestFirst\n==============\n"); |
---|
586 | |
---|
587 | temp.append("\nCluster centroids:\n"); |
---|
588 | for (int i = 0; i < m_NumClusters; i++) { |
---|
589 | temp.append("\nCluster "+i+"\n\t"); |
---|
590 | for (int j = 0; j < m_ClusterCentroids.numAttributes(); j++) { |
---|
591 | if (m_ClusterCentroids.attribute(j).isNominal()) { |
---|
592 | temp.append(" "+m_ClusterCentroids.attribute(j). |
---|
593 | value((int)m_ClusterCentroids.instance(i).value(j))); |
---|
594 | } else { |
---|
595 | temp.append(" "+m_ClusterCentroids.instance(i).value(j)); |
---|
596 | } |
---|
597 | } |
---|
598 | } |
---|
599 | temp.append("\n\n"); |
---|
600 | return temp.toString(); |
---|
601 | } |
---|
602 | |
---|
603 | /** |
---|
604 | * Returns the revision string. |
---|
605 | * |
---|
606 | * @return the revision |
---|
607 | */ |
---|
608 | public String getRevision() { |
---|
609 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
610 | } |
---|
611 | |
---|
612 | /** |
---|
613 | * Main method for testing this class. |
---|
614 | * |
---|
615 | * @param argv should contain the following arguments: <p> |
---|
616 | * -t training file [-N number of clusters] |
---|
617 | */ |
---|
618 | public static void main (String[] argv) { |
---|
619 | runClusterer(new FarthestFirst(), argv); |
---|
620 | } |
---|
621 | } |
---|