/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * FarthestFirst.java * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand * */ package weka.clusterers; import weka.core.Attribute; import weka.core.Capabilities; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.RevisionUtils; import weka.core.TechnicalInformation; import weka.core.TechnicalInformationHandler; import weka.core.Utils; import weka.core.Capabilities.Capability; import weka.core.TechnicalInformation.Field; import weka.core.TechnicalInformation.Type; import weka.filters.Filter; import weka.filters.unsupervised.attribute.ReplaceMissingValues; import java.util.Enumeration; import java.util.Random; import java.util.Vector; /** * Cluster data using the FarthestFirst algorithm.
*
* For more information see:
*
* Hochbaum, Shmoys (1985). A best possible heuristic for the k-center problem. Mathematics of Operations Research. 10(2):180-184.
*
* Sanjoy Dasgupta: Performance Guarantees for Hierarchical Clustering. In: 15th Annual Conference on Computational Learning Theory, 351-363, 2002.
*
* Notes:
* - works as a fast simple approximate clusterer
* - modelled after SimpleKMeans, might be a useful initializer for it *

* * BibTeX: *

 * @article{Hochbaum1985,
 *    author = {Hochbaum and Shmoys},
 *    journal = {Mathematics of Operations Research},
 *    number = {2},
 *    pages = {180-184},
 *    title = {A best possible heuristic for the k-center problem},
 *    volume = {10},
 *    year = {1985}
 * }
 * 
 * @inproceedings{Dasgupta2002,
 *    author = {Sanjoy Dasgupta},
 *    booktitle = {15th Annual Conference on Computational Learning Theory},
 *    pages = {351-363},
 *    publisher = {Springer},
 *    title = {Performance Guarantees for Hierarchical Clustering},
 *    year = {2002}
 * }
 * 
*

* * Valid options are:

* *

 -N <num>
 *  number of clusters. (default = 2).
* *
 -S <num>
 *  Random number seed.
 *  (default 1)
* * * @author Bernhard Pfahringer (bernhard@cs.waikato.ac.nz) * @version $Revision: 5987 $ * @see RandomizableClusterer */ public class FarthestFirst extends RandomizableClusterer implements TechnicalInformationHandler { //Todo: rewrite to be fully incremental // cleanup, like deleting m_instances /** for serialization */ static final long serialVersionUID = 7499838100631329509L; /** * training instances, not necessary to keep, * could be replaced by m_ClusterCentroids where needed for header info */ protected Instances m_instances; /** * replace missing values in training instances */ protected ReplaceMissingValues m_ReplaceMissingFilter; /** * number of clusters to generate */ protected int m_NumClusters = 2; /** * holds the cluster centroids */ protected Instances m_ClusterCentroids; /** * attribute min values */ private double [] m_Min; /** * attribute max values */ private double [] m_Max; /** * Returns a string describing this clusterer * @return a description of the evaluator suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Cluster data using the FarthestFirst algorithm.\n\n" + "For more information see:\n\n" + getTechnicalInformation().toString() + "\n\n" + "Notes:\n" + "- works as a fast simple approximate clusterer\n" + "- modelled after SimpleKMeans, might be a useful initializer for it"; } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; TechnicalInformation additional; result = new TechnicalInformation(Type.ARTICLE); result.setValue(Field.AUTHOR, "Hochbaum and Shmoys"); result.setValue(Field.YEAR, "1985"); result.setValue(Field.TITLE, "A best possible heuristic for the k-center problem"); result.setValue(Field.JOURNAL, "Mathematics of Operations Research"); result.setValue(Field.VOLUME, "10"); result.setValue(Field.NUMBER, "2"); result.setValue(Field.PAGES, "180-184"); additional = result.add(Type.INPROCEEDINGS); additional.setValue(Field.AUTHOR, "Sanjoy Dasgupta"); additional.setValue(Field.TITLE, "Performance Guarantees for Hierarchical Clustering"); additional.setValue(Field.BOOKTITLE, "15th Annual Conference on Computational Learning Theory"); additional.setValue(Field.YEAR, "2002"); additional.setValue(Field.PAGES, "351-363"); additional.setValue(Field.PUBLISHER, "Springer"); return result; } /** * Returns default capabilities of the clusterer. * * @return the capabilities of this clusterer */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); result.enable(Capability.NO_CLASS); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); return result; } /** * Generates a clusterer. Has to initialize all fields of the clusterer * that are not being set via options. * * @param data set of instances serving as training data * @throws Exception if the clusterer has not been * generated successfully */ public void buildClusterer(Instances data) throws Exception { // can clusterer handle the data? getCapabilities().testWithFail(data); //long start = System.currentTimeMillis(); m_ReplaceMissingFilter = new ReplaceMissingValues(); m_ReplaceMissingFilter.setInputFormat(data); m_instances = Filter.useFilter(data, m_ReplaceMissingFilter); initMinMax(m_instances); m_ClusterCentroids = new Instances(m_instances, m_NumClusters); int n = m_instances.numInstances(); Random r = new Random(getSeed()); boolean[] selected = new boolean[n]; double[] minDistance = new double[n]; for(int i = 0; i n) m_NumClusters = n; for(int i = 1; i < m_NumClusters; i++) { int nextI = farthestAway(minDistance, selected); m_ClusterCentroids.add(m_instances.instance(nextI)); selected[nextI] = true; updateMinDistance(minDistance,selected,m_instances,m_instances.instance(nextI)); } m_instances = new Instances(m_instances,0); //long end = System.currentTimeMillis(); //System.out.println("Clustering Time = " + (end-start)); } protected void updateMinDistance(double[] minDistance, boolean[] selected, Instances data, Instance center) { for(int i = 0; i m_Max[j]) { m_Max[j] = instance.value(j); } } } } } /** * clusters an instance that has been through the filters * * @param instance the instance to assign a cluster to * @return a cluster number */ protected int clusterProcessedInstance(Instance instance) { double minDist = Double.MAX_VALUE; int bestCluster = 0; for (int i = 0; i < m_NumClusters; i++) { double dist = distance(instance, m_ClusterCentroids.instance(i)); if (dist < minDist) { minDist = dist; bestCluster = i; } } return bestCluster; } /** * Classifies a given instance. * * @param instance the instance to be assigned to a cluster * @return the number of the assigned cluster as an integer * if the class is enumerated, otherwise the predicted value * @throws Exception if instance could not be classified * successfully */ public int clusterInstance(Instance instance) throws Exception { m_ReplaceMissingFilter.input(instance); m_ReplaceMissingFilter.batchFinished(); Instance inst = m_ReplaceMissingFilter.output(); return clusterProcessedInstance(inst); } /** * Calculates the distance between two instances * * @param first the first instance * @param second the second instance * @return the distance between the two given instances, between 0 and 1 */ protected double distance(Instance first, Instance second) { double distance = 0; int firstI, secondI; for (int p1 = 0, p2 = 0; p1 < first.numValues() || p2 < second.numValues();) { if (p1 >= first.numValues()) { firstI = m_instances.numAttributes(); } else { firstI = first.index(p1); } if (p2 >= second.numValues()) { secondI = m_instances.numAttributes(); } else { secondI = second.index(p2); } if (firstI == m_instances.classIndex()) { p1++; continue; } if (secondI == m_instances.classIndex()) { p2++; continue; } double diff; if (firstI == secondI) { diff = difference(firstI, first.valueSparse(p1), second.valueSparse(p2)); p1++; p2++; } else if (firstI > secondI) { diff = difference(secondI, 0, second.valueSparse(p2)); p2++; } else { diff = difference(firstI, first.valueSparse(p1), 0); p1++; } distance += diff * diff; } return Math.sqrt(distance / m_instances.numAttributes()); } /** * Computes the difference between two given attribute * values. */ protected double difference(int index, double val1, double val2) { switch (m_instances.attribute(index).type()) { case Attribute.NOMINAL: // If attribute is nominal if (Utils.isMissingValue(val1) || Utils.isMissingValue(val2) || ((int)val1 != (int)val2)) { return 1; } else { return 0; } case Attribute.NUMERIC: // If attribute is numeric if (Utils.isMissingValue(val1) || Utils.isMissingValue(val2)) { if (Utils.isMissingValue(val1) && Utils.isMissingValue(val2)) { return 1; } else { double diff; if (Utils.isMissingValue(val2)) { diff = norm(val1, index); } else { diff = norm(val2, index); } if (diff < 0.5) { diff = 1.0 - diff; } return diff; } } else { return norm(val1, index) - norm(val2, index); } default: return 0; } } /** * Normalizes a given value of a numeric attribute. * * @param x the value to be normalized * @param i the attribute's index * @return the normalized value */ protected double norm(double x, int i) { if (Double.isNaN(m_Min[i]) || Utils.eq(m_Max[i],m_Min[i])) { return 0; } else { return (x - m_Min[i]) / (m_Max[i] - m_Min[i]); } } /** * Returns the number of clusters. * * @return the number of clusters generated for a training dataset. * @throws Exception if number of clusters could not be returned * successfully */ public int numberOfClusters() throws Exception { return m_NumClusters; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions () { Vector result = new Vector(); result.addElement(new Option( "\tnumber of clusters. (default = 2).", "N", 1, "-N ")); Enumeration en = super.listOptions(); while (en.hasMoreElements()) result.addElement(en.nextElement()); return result.elements(); } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numClustersTipText() { return "set number of clusters"; } /** * set the number of clusters to generate * * @param n the number of clusters to generate * @throws Exception if number of clusters is negative */ public void setNumClusters(int n) throws Exception { if (n < 0) { throw new Exception("Number of clusters must be > 0"); } m_NumClusters = n; } /** * gets the number of clusters to generate * * @return the number of clusters to generate */ public int getNumClusters() { return m_NumClusters; } /** * Parses a given list of options.

* * Valid options are:

* *

 -N <num>
   *  number of clusters. (default = 2).
* *
 -S <num>
   *  Random number seed.
   *  (default 1)
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions (String[] options) throws Exception { String optionString = Utils.getOption('N', options); if (optionString.length() != 0) { setNumClusters(Integer.parseInt(optionString)); } super.setOptions(options); } /** * Gets the current settings of FarthestFirst * * @return an array of strings suitable for passing to setOptions() */ public String[] getOptions () { int i; Vector result; String[] options; result = new Vector(); result.add("-N"); result.add("" + getNumClusters()); options = super.getOptions(); for (i = 0; i < options.length; i++) result.add(options[i]); return (String[]) result.toArray(new String[result.size()]); } /** * return a string describing this clusterer * * @return a description of the clusterer as a string */ public String toString() { StringBuffer temp = new StringBuffer(); temp.append("\n FarthestFirst\n==============\n"); temp.append("\nCluster centroids:\n"); for (int i = 0; i < m_NumClusters; i++) { temp.append("\nCluster "+i+"\n\t"); for (int j = 0; j < m_ClusterCentroids.numAttributes(); j++) { if (m_ClusterCentroids.attribute(j).isNominal()) { temp.append(" "+m_ClusterCentroids.attribute(j). value((int)m_ClusterCentroids.instance(i).value(j))); } else { temp.append(" "+m_ClusterCentroids.instance(i).value(j)); } } } temp.append("\n\n"); return temp.toString(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5987 $"); } /** * Main method for testing this class. * * @param argv should contain the following arguments:

* -t training file [-N number of clusters] */ public static void main (String[] argv) { runClusterer(new FarthestFirst(), argv); } }