1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * Clusterer.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.clusterers; |
---|
24 | |
---|
25 | import weka.core.Capabilities; |
---|
26 | import weka.core.Instance; |
---|
27 | import weka.core.Instances; |
---|
28 | |
---|
29 | /** |
---|
30 | * Interface for clusterers. Clients will typically extend either |
---|
31 | * AbstractClusterer or AbstractDensityBasedClusterer. |
---|
32 | * |
---|
33 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
34 | * @version $Revision: 5987 $ |
---|
35 | */ |
---|
36 | public interface Clusterer { |
---|
37 | |
---|
38 | /** |
---|
39 | * Generates a clusterer. Has to initialize all fields of the clusterer |
---|
40 | * that are not being set via options. |
---|
41 | * |
---|
42 | * @param data set of instances serving as training data |
---|
43 | * @exception Exception if the clusterer has not been |
---|
44 | * generated successfully |
---|
45 | */ |
---|
46 | void buildClusterer(Instances data) throws Exception; |
---|
47 | |
---|
48 | /** |
---|
49 | * Classifies a given instance. Either this or distributionForInstance() |
---|
50 | * needs to be implemented by subclasses. |
---|
51 | * |
---|
52 | * @param instance the instance to be assigned to a cluster |
---|
53 | * @return the number of the assigned cluster as an integer |
---|
54 | * @exception Exception if instance could not be clustered |
---|
55 | * successfully |
---|
56 | */ |
---|
57 | int clusterInstance(Instance instance) throws Exception; |
---|
58 | |
---|
59 | /** |
---|
60 | * Predicts the cluster memberships for a given instance. Either |
---|
61 | * this or clusterInstance() needs to be implemented by subclasses. |
---|
62 | * |
---|
63 | * @param instance the instance to be assigned a cluster. |
---|
64 | * @return an array containing the estimated membership |
---|
65 | * probabilities of the test instance in each cluster (this |
---|
66 | * should sum to at most 1) |
---|
67 | * @exception Exception if distribution could not be |
---|
68 | * computed successfully |
---|
69 | */ |
---|
70 | public double[] distributionForInstance(Instance instance) throws Exception; |
---|
71 | |
---|
72 | /** |
---|
73 | * Returns the number of clusters. |
---|
74 | * |
---|
75 | * @return the number of clusters generated for a training dataset. |
---|
76 | * @exception Exception if number of clusters could not be returned |
---|
77 | * successfully |
---|
78 | */ |
---|
79 | int numberOfClusters() throws Exception; |
---|
80 | |
---|
81 | /** |
---|
82 | * Returns the Capabilities of this clusterer. Derived classifiers have to |
---|
83 | * override this method to enable capabilities. |
---|
84 | * |
---|
85 | * @return the capabilities of this object |
---|
86 | * @see Capabilities |
---|
87 | */ |
---|
88 | public Capabilities getCapabilities(); |
---|
89 | |
---|
90 | } |
---|