1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * CheckClusterer.java |
---|
19 | * Copyright (C) 2006 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.clusterers; |
---|
24 | |
---|
25 | import weka.core.CheckScheme; |
---|
26 | import weka.core.FastVector; |
---|
27 | import weka.core.Instance; |
---|
28 | import weka.core.Instances; |
---|
29 | import weka.core.MultiInstanceCapabilitiesHandler; |
---|
30 | import weka.core.Option; |
---|
31 | import weka.core.OptionHandler; |
---|
32 | import weka.core.RevisionUtils; |
---|
33 | import weka.core.SerializationHelper; |
---|
34 | import weka.core.TestInstances; |
---|
35 | import weka.core.Utils; |
---|
36 | import weka.core.WeightedInstancesHandler; |
---|
37 | |
---|
38 | import java.util.Enumeration; |
---|
39 | import java.util.Random; |
---|
40 | import java.util.Vector; |
---|
41 | |
---|
42 | /** |
---|
43 | * Class for examining the capabilities and finding problems with |
---|
44 | * clusterers. If you implement a clusterer using the WEKA.libraries, |
---|
45 | * you should run the checks on it to ensure robustness and correct |
---|
46 | * operation. Passing all the tests of this object does not mean |
---|
47 | * bugs in the clusterer don't exist, but this will help find some |
---|
48 | * common ones. <p/> |
---|
49 | * |
---|
50 | * Typical usage: <p/> |
---|
51 | * <code>java weka.clusterers.CheckClusterer -W clusterer_name |
---|
52 | * -- clusterer_options </code><p/> |
---|
53 | * |
---|
54 | * CheckClusterer reports on the following: |
---|
55 | * <ul> |
---|
56 | * <li> Clusterer abilities |
---|
57 | * <ul> |
---|
58 | * <li> Possible command line options to the clusterer </li> |
---|
59 | * <li> Whether the clusterer can predict nominal, numeric, string, |
---|
60 | * date or relational class attributes.</li> |
---|
61 | * <li> Whether the clusterer can handle numeric predictor attributes </li> |
---|
62 | * <li> Whether the clusterer can handle nominal predictor attributes </li> |
---|
63 | * <li> Whether the clusterer can handle string predictor attributes </li> |
---|
64 | * <li> Whether the clusterer can handle date predictor attributes </li> |
---|
65 | * <li> Whether the clusterer can handle relational predictor attributes </li> |
---|
66 | * <li> Whether the clusterer can handle multi-instance data </li> |
---|
67 | * <li> Whether the clusterer can handle missing predictor values </li> |
---|
68 | * <li> Whether the clusterer can handle instance weights </li> |
---|
69 | * </ul> |
---|
70 | * </li> |
---|
71 | * <li> Correct functioning |
---|
72 | * <ul> |
---|
73 | * <li> Correct initialisation during buildClusterer (i.e. no result |
---|
74 | * changes when buildClusterer called repeatedly) </li> |
---|
75 | * <li> Whether the clusterer alters the data pased to it |
---|
76 | * (number of instances, instance order, instance weights, etc) </li> |
---|
77 | * </ul> |
---|
78 | * </li> |
---|
79 | * <li> Degenerate cases |
---|
80 | * <ul> |
---|
81 | * <li> building clusterer with zero training instances </li> |
---|
82 | * <li> all but one predictor attribute values missing </li> |
---|
83 | * <li> all predictor attribute values missing </li> |
---|
84 | * <li> all but one class values missing </li> |
---|
85 | * <li> all class values missing </li> |
---|
86 | * </ul> |
---|
87 | * </li> |
---|
88 | * </ul> |
---|
89 | * Running CheckClusterer with the debug option set will output the |
---|
90 | * training dataset for any failed tests.<p/> |
---|
91 | * |
---|
92 | * The <code>weka.clusterers.AbstractClustererTest</code> uses this |
---|
93 | * class to test all the clusterers. Any changes here, have to be |
---|
94 | * checked in that abstract test class, too. <p/> |
---|
95 | * |
---|
96 | <!-- options-start --> |
---|
97 | * Valid options are: <p/> |
---|
98 | * |
---|
99 | * <pre> -D |
---|
100 | * Turn on debugging output.</pre> |
---|
101 | * |
---|
102 | * <pre> -S |
---|
103 | * Silent mode - prints nothing to stdout.</pre> |
---|
104 | * |
---|
105 | * <pre> -N <num> |
---|
106 | * The number of instances in the datasets (default 20).</pre> |
---|
107 | * |
---|
108 | * <pre> -nominal <num> |
---|
109 | * The number of nominal attributes (default 2).</pre> |
---|
110 | * |
---|
111 | * <pre> -nominal-values <num> |
---|
112 | * The number of values for nominal attributes (default 1).</pre> |
---|
113 | * |
---|
114 | * <pre> -numeric <num> |
---|
115 | * The number of numeric attributes (default 1).</pre> |
---|
116 | * |
---|
117 | * <pre> -string <num> |
---|
118 | * The number of string attributes (default 1).</pre> |
---|
119 | * |
---|
120 | * <pre> -date <num> |
---|
121 | * The number of date attributes (default 1).</pre> |
---|
122 | * |
---|
123 | * <pre> -relational <num> |
---|
124 | * The number of relational attributes (default 1).</pre> |
---|
125 | * |
---|
126 | * <pre> -num-instances-relational <num> |
---|
127 | * The number of instances in relational/bag attributes (default 10).</pre> |
---|
128 | * |
---|
129 | * <pre> -words <comma-separated-list> |
---|
130 | * The words to use in string attributes.</pre> |
---|
131 | * |
---|
132 | * <pre> -word-separators <chars> |
---|
133 | * The word separators to use in string attributes.</pre> |
---|
134 | * |
---|
135 | * <pre> -W |
---|
136 | * Full name of the clusterer analyzed. |
---|
137 | * eg: weka.clusterers.SimpleKMeans |
---|
138 | * (default weka.clusterers.SimpleKMeans)</pre> |
---|
139 | * |
---|
140 | * <pre> |
---|
141 | * Options specific to clusterer weka.clusterers.SimpleKMeans: |
---|
142 | * </pre> |
---|
143 | * |
---|
144 | * <pre> -N <num> |
---|
145 | * number of clusters. |
---|
146 | * (default 2).</pre> |
---|
147 | * |
---|
148 | * <pre> -V |
---|
149 | * Display std. deviations for centroids. |
---|
150 | * </pre> |
---|
151 | * |
---|
152 | * <pre> -M |
---|
153 | * Replace missing values with mean/mode. |
---|
154 | * </pre> |
---|
155 | * |
---|
156 | * <pre> -S <num> |
---|
157 | * Random number seed. |
---|
158 | * (default 10)</pre> |
---|
159 | * |
---|
160 | <!-- options-end --> |
---|
161 | * |
---|
162 | * Options after -- are passed to the designated clusterer.<p/> |
---|
163 | * |
---|
164 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
---|
165 | * @author FracPete (fracpete at waikato dot ac dot nz) |
---|
166 | * @version $Revision: 1.11 $ |
---|
167 | * @see TestInstances |
---|
168 | */ |
---|
169 | public class CheckClusterer |
---|
170 | extends CheckScheme { |
---|
171 | |
---|
172 | /* |
---|
173 | * Note about test methods: |
---|
174 | * - methods return array of booleans |
---|
175 | * - first index: success or not |
---|
176 | * - second index: acceptable or not (e.g., Exception is OK) |
---|
177 | * |
---|
178 | * FracPete (fracpete at waikato dot ac dot nz) |
---|
179 | */ |
---|
180 | |
---|
181 | /*** The clusterer to be examined */ |
---|
182 | protected Clusterer m_Clusterer = new SimpleKMeans(); |
---|
183 | |
---|
184 | /** |
---|
185 | * default constructor |
---|
186 | */ |
---|
187 | public CheckClusterer() { |
---|
188 | super(); |
---|
189 | |
---|
190 | setNumInstances(40); |
---|
191 | } |
---|
192 | |
---|
193 | /** |
---|
194 | * Returns an enumeration describing the available options. |
---|
195 | * |
---|
196 | * @return an enumeration of all the available options. |
---|
197 | */ |
---|
198 | public Enumeration listOptions() { |
---|
199 | Vector result = new Vector(); |
---|
200 | |
---|
201 | Enumeration en = super.listOptions(); |
---|
202 | while (en.hasMoreElements()) |
---|
203 | result.addElement(en.nextElement()); |
---|
204 | |
---|
205 | result.addElement(new Option( |
---|
206 | "\tFull name of the clusterer analyzed.\n" |
---|
207 | +"\teg: weka.clusterers.SimpleKMeans\n" |
---|
208 | + "\t(default weka.clusterers.SimpleKMeans)", |
---|
209 | "W", 1, "-W")); |
---|
210 | |
---|
211 | if ((m_Clusterer != null) |
---|
212 | && (m_Clusterer instanceof OptionHandler)) { |
---|
213 | result.addElement(new Option("", "", 0, |
---|
214 | "\nOptions specific to clusterer " |
---|
215 | + m_Clusterer.getClass().getName() |
---|
216 | + ":")); |
---|
217 | Enumeration enu = ((OptionHandler)m_Clusterer).listOptions(); |
---|
218 | while (enu.hasMoreElements()) |
---|
219 | result.addElement(enu.nextElement()); |
---|
220 | } |
---|
221 | |
---|
222 | return result.elements(); |
---|
223 | } |
---|
224 | |
---|
225 | /** |
---|
226 | * Parses a given list of options. <p/> |
---|
227 | * |
---|
228 | <!-- options-start --> |
---|
229 | * Valid options are: <p/> |
---|
230 | * |
---|
231 | * <pre> -D |
---|
232 | * Turn on debugging output.</pre> |
---|
233 | * |
---|
234 | * <pre> -S |
---|
235 | * Silent mode - prints nothing to stdout.</pre> |
---|
236 | * |
---|
237 | * <pre> -N <num> |
---|
238 | * The number of instances in the datasets (default 20).</pre> |
---|
239 | * |
---|
240 | * <pre> -nominal <num> |
---|
241 | * The number of nominal attributes (default 2).</pre> |
---|
242 | * |
---|
243 | * <pre> -nominal-values <num> |
---|
244 | * The number of values for nominal attributes (default 1).</pre> |
---|
245 | * |
---|
246 | * <pre> -numeric <num> |
---|
247 | * The number of numeric attributes (default 1).</pre> |
---|
248 | * |
---|
249 | * <pre> -string <num> |
---|
250 | * The number of string attributes (default 1).</pre> |
---|
251 | * |
---|
252 | * <pre> -date <num> |
---|
253 | * The number of date attributes (default 1).</pre> |
---|
254 | * |
---|
255 | * <pre> -relational <num> |
---|
256 | * The number of relational attributes (default 1).</pre> |
---|
257 | * |
---|
258 | * <pre> -num-instances-relational <num> |
---|
259 | * The number of instances in relational/bag attributes (default 10).</pre> |
---|
260 | * |
---|
261 | * <pre> -words <comma-separated-list> |
---|
262 | * The words to use in string attributes.</pre> |
---|
263 | * |
---|
264 | * <pre> -word-separators <chars> |
---|
265 | * The word separators to use in string attributes.</pre> |
---|
266 | * |
---|
267 | * <pre> -W |
---|
268 | * Full name of the clusterer analyzed. |
---|
269 | * eg: weka.clusterers.SimpleKMeans |
---|
270 | * (default weka.clusterers.SimpleKMeans)</pre> |
---|
271 | * |
---|
272 | * <pre> |
---|
273 | * Options specific to clusterer weka.clusterers.SimpleKMeans: |
---|
274 | * </pre> |
---|
275 | * |
---|
276 | * <pre> -N <num> |
---|
277 | * number of clusters. |
---|
278 | * (default 2).</pre> |
---|
279 | * |
---|
280 | * <pre> -V |
---|
281 | * Display std. deviations for centroids. |
---|
282 | * </pre> |
---|
283 | * |
---|
284 | * <pre> -M |
---|
285 | * Replace missing values with mean/mode. |
---|
286 | * </pre> |
---|
287 | * |
---|
288 | * <pre> -S <num> |
---|
289 | * Random number seed. |
---|
290 | * (default 10)</pre> |
---|
291 | * |
---|
292 | <!-- options-end --> |
---|
293 | * |
---|
294 | * @param options the list of options as an array of strings |
---|
295 | * @throws Exception if an option is not supported |
---|
296 | */ |
---|
297 | public void setOptions(String[] options) throws Exception { |
---|
298 | String tmpStr; |
---|
299 | |
---|
300 | tmpStr = Utils.getOption('N', options); |
---|
301 | |
---|
302 | super.setOptions(options); |
---|
303 | |
---|
304 | if (tmpStr.length() != 0) |
---|
305 | setNumInstances(Integer.parseInt(tmpStr)); |
---|
306 | else |
---|
307 | setNumInstances(40); |
---|
308 | |
---|
309 | tmpStr = Utils.getOption('W', options); |
---|
310 | if (tmpStr.length() == 0) |
---|
311 | tmpStr = weka.clusterers.SimpleKMeans.class.getName(); |
---|
312 | setClusterer( |
---|
313 | (Clusterer) forName( |
---|
314 | "weka.clusterers", |
---|
315 | Clusterer.class, |
---|
316 | tmpStr, |
---|
317 | Utils.partitionOptions(options))); |
---|
318 | } |
---|
319 | |
---|
320 | /** |
---|
321 | * Gets the current settings of the CheckClusterer. |
---|
322 | * |
---|
323 | * @return an array of strings suitable for passing to setOptions |
---|
324 | */ |
---|
325 | public String[] getOptions() { |
---|
326 | Vector result; |
---|
327 | String[] options; |
---|
328 | int i; |
---|
329 | |
---|
330 | result = new Vector(); |
---|
331 | |
---|
332 | options = super.getOptions(); |
---|
333 | for (i = 0; i < options.length; i++) |
---|
334 | result.add(options[i]); |
---|
335 | |
---|
336 | if (getClusterer() != null) { |
---|
337 | result.add("-W"); |
---|
338 | result.add(getClusterer().getClass().getName()); |
---|
339 | } |
---|
340 | |
---|
341 | if ((m_Clusterer != null) && (m_Clusterer instanceof OptionHandler)) |
---|
342 | options = ((OptionHandler) m_Clusterer).getOptions(); |
---|
343 | else |
---|
344 | options = new String[0]; |
---|
345 | |
---|
346 | if (options.length > 0) { |
---|
347 | result.add("--"); |
---|
348 | for (i = 0; i < options.length; i++) |
---|
349 | result.add(options[i]); |
---|
350 | } |
---|
351 | |
---|
352 | return (String[]) result.toArray(new String[result.size()]); |
---|
353 | } |
---|
354 | |
---|
355 | /** |
---|
356 | * Begin the tests, reporting results to System.out |
---|
357 | */ |
---|
358 | public void doTests() { |
---|
359 | |
---|
360 | if (getClusterer() == null) { |
---|
361 | println("\n=== No clusterer set ==="); |
---|
362 | return; |
---|
363 | } |
---|
364 | println("\n=== Check on Clusterer: " |
---|
365 | + getClusterer().getClass().getName() |
---|
366 | + " ===\n"); |
---|
367 | |
---|
368 | // Start tests |
---|
369 | println("--> Checking for interfaces"); |
---|
370 | canTakeOptions(); |
---|
371 | boolean updateable = updateableClusterer()[0]; |
---|
372 | boolean weightedInstancesHandler = weightedInstancesHandler()[0]; |
---|
373 | boolean multiInstanceHandler = multiInstanceHandler()[0]; |
---|
374 | println("--> Clusterer tests"); |
---|
375 | declaresSerialVersionUID(); |
---|
376 | runTests(weightedInstancesHandler, multiInstanceHandler, updateable); |
---|
377 | } |
---|
378 | |
---|
379 | /** |
---|
380 | * Set the clusterer for testing. |
---|
381 | * |
---|
382 | * @param newClusterer the Clusterer to use. |
---|
383 | */ |
---|
384 | public void setClusterer(Clusterer newClusterer) { |
---|
385 | m_Clusterer = newClusterer; |
---|
386 | } |
---|
387 | |
---|
388 | /** |
---|
389 | * Get the clusterer used as the clusterer |
---|
390 | * |
---|
391 | * @return the clusterer used as the clusterer |
---|
392 | */ |
---|
393 | public Clusterer getClusterer() { |
---|
394 | return m_Clusterer; |
---|
395 | } |
---|
396 | |
---|
397 | /** |
---|
398 | * Run a battery of tests |
---|
399 | * |
---|
400 | * @param weighted true if the clusterer says it handles weights |
---|
401 | * @param multiInstance true if the clusterer is a multi-instance clusterer |
---|
402 | * @param updateable true if the classifier is updateable |
---|
403 | */ |
---|
404 | protected void runTests(boolean weighted, boolean multiInstance, boolean updateable) { |
---|
405 | |
---|
406 | boolean PNom = canPredict(true, false, false, false, false, multiInstance)[0]; |
---|
407 | boolean PNum = canPredict(false, true, false, false, false, multiInstance)[0]; |
---|
408 | boolean PStr = canPredict(false, false, true, false, false, multiInstance)[0]; |
---|
409 | boolean PDat = canPredict(false, false, false, true, false, multiInstance)[0]; |
---|
410 | boolean PRel; |
---|
411 | if (!multiInstance) |
---|
412 | PRel = canPredict(false, false, false, false, true, multiInstance)[0]; |
---|
413 | else |
---|
414 | PRel = false; |
---|
415 | |
---|
416 | if (PNom || PNum || PStr || PDat || PRel) { |
---|
417 | if (weighted) |
---|
418 | instanceWeights(PNom, PNum, PStr, PDat, PRel, multiInstance); |
---|
419 | |
---|
420 | canHandleZeroTraining(PNom, PNum, PStr, PDat, PRel, multiInstance); |
---|
421 | boolean handleMissingPredictors = canHandleMissing(PNom, PNum, PStr, PDat, PRel, |
---|
422 | multiInstance, true, 20)[0]; |
---|
423 | if (handleMissingPredictors) |
---|
424 | canHandleMissing(PNom, PNum, PStr, PDat, PRel, multiInstance, true, 100); |
---|
425 | |
---|
426 | correctBuildInitialisation(PNom, PNum, PStr, PDat, PRel, multiInstance); |
---|
427 | datasetIntegrity(PNom, PNum, PStr, PDat, PRel, multiInstance, handleMissingPredictors); |
---|
428 | if (updateable) |
---|
429 | updatingEquality(PNom, PNum, PStr, PDat, PRel, multiInstance); |
---|
430 | } |
---|
431 | } |
---|
432 | |
---|
433 | /** |
---|
434 | * Checks whether the scheme can take command line options. |
---|
435 | * |
---|
436 | * @return index 0 is true if the clusterer can take options |
---|
437 | */ |
---|
438 | protected boolean[] canTakeOptions() { |
---|
439 | |
---|
440 | boolean[] result = new boolean[2]; |
---|
441 | |
---|
442 | print("options..."); |
---|
443 | if (m_Clusterer instanceof OptionHandler) { |
---|
444 | println("yes"); |
---|
445 | if (m_Debug) { |
---|
446 | println("\n=== Full report ==="); |
---|
447 | Enumeration enu = ((OptionHandler)m_Clusterer).listOptions(); |
---|
448 | while (enu.hasMoreElements()) { |
---|
449 | Option option = (Option) enu.nextElement(); |
---|
450 | print(option.synopsis() + "\n" |
---|
451 | + option.description() + "\n"); |
---|
452 | } |
---|
453 | println("\n"); |
---|
454 | } |
---|
455 | result[0] = true; |
---|
456 | } |
---|
457 | else { |
---|
458 | println("no"); |
---|
459 | result[0] = false; |
---|
460 | } |
---|
461 | |
---|
462 | return result; |
---|
463 | } |
---|
464 | |
---|
465 | /** |
---|
466 | * Checks whether the scheme can build models incrementally. |
---|
467 | * |
---|
468 | * @return index 0 is true if the clusterer can train incrementally |
---|
469 | */ |
---|
470 | protected boolean[] updateableClusterer() { |
---|
471 | |
---|
472 | boolean[] result = new boolean[2]; |
---|
473 | |
---|
474 | print("updateable clusterer..."); |
---|
475 | if (m_Clusterer instanceof UpdateableClusterer) { |
---|
476 | println("yes"); |
---|
477 | result[0] = true; |
---|
478 | } |
---|
479 | else { |
---|
480 | println("no"); |
---|
481 | result[0] = false; |
---|
482 | } |
---|
483 | |
---|
484 | return result; |
---|
485 | } |
---|
486 | |
---|
487 | /** |
---|
488 | * Checks whether the scheme says it can handle instance weights. |
---|
489 | * |
---|
490 | * @return true if the clusterer handles instance weights |
---|
491 | */ |
---|
492 | protected boolean[] weightedInstancesHandler() { |
---|
493 | |
---|
494 | boolean[] result = new boolean[2]; |
---|
495 | |
---|
496 | print("weighted instances clusterer..."); |
---|
497 | if (m_Clusterer instanceof WeightedInstancesHandler) { |
---|
498 | println("yes"); |
---|
499 | result[0] = true; |
---|
500 | } |
---|
501 | else { |
---|
502 | println("no"); |
---|
503 | result[0] = false; |
---|
504 | } |
---|
505 | |
---|
506 | return result; |
---|
507 | } |
---|
508 | |
---|
509 | /** |
---|
510 | * Checks whether the scheme handles multi-instance data. |
---|
511 | * |
---|
512 | * @return true if the clusterer handles multi-instance data |
---|
513 | */ |
---|
514 | protected boolean[] multiInstanceHandler() { |
---|
515 | boolean[] result = new boolean[2]; |
---|
516 | |
---|
517 | print("multi-instance clusterer..."); |
---|
518 | if (m_Clusterer instanceof MultiInstanceCapabilitiesHandler) { |
---|
519 | println("yes"); |
---|
520 | result[0] = true; |
---|
521 | } |
---|
522 | else { |
---|
523 | println("no"); |
---|
524 | result[0] = false; |
---|
525 | } |
---|
526 | |
---|
527 | return result; |
---|
528 | } |
---|
529 | |
---|
530 | /** |
---|
531 | * tests for a serialVersionUID. Fails in case the scheme doesn't declare |
---|
532 | * a UID. |
---|
533 | * |
---|
534 | * @return index 0 is true if the scheme declares a UID |
---|
535 | */ |
---|
536 | protected boolean[] declaresSerialVersionUID() { |
---|
537 | boolean[] result = new boolean[2]; |
---|
538 | |
---|
539 | print("serialVersionUID..."); |
---|
540 | |
---|
541 | result[0] = !SerializationHelper.needsUID(m_Clusterer.getClass()); |
---|
542 | |
---|
543 | if (result[0]) |
---|
544 | println("yes"); |
---|
545 | else |
---|
546 | println("no"); |
---|
547 | |
---|
548 | return result; |
---|
549 | } |
---|
550 | |
---|
551 | /** |
---|
552 | * Checks basic prediction of the scheme, for simple non-troublesome |
---|
553 | * datasets. |
---|
554 | * |
---|
555 | * @param nominalPredictor if true use nominal predictor attributes |
---|
556 | * @param numericPredictor if true use numeric predictor attributes |
---|
557 | * @param stringPredictor if true use string predictor attributes |
---|
558 | * @param datePredictor if true use date predictor attributes |
---|
559 | * @param relationalPredictor if true use relational predictor attributes |
---|
560 | * @param multiInstance whether multi-instance is needed |
---|
561 | * @return index 0 is true if the test was passed, index 1 is true if test |
---|
562 | * was acceptable |
---|
563 | */ |
---|
564 | protected boolean[] canPredict( |
---|
565 | boolean nominalPredictor, |
---|
566 | boolean numericPredictor, |
---|
567 | boolean stringPredictor, |
---|
568 | boolean datePredictor, |
---|
569 | boolean relationalPredictor, |
---|
570 | boolean multiInstance) { |
---|
571 | |
---|
572 | print("basic predict"); |
---|
573 | printAttributeSummary( |
---|
574 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance); |
---|
575 | print("..."); |
---|
576 | FastVector accepts = new FastVector(); |
---|
577 | accepts.addElement("unary"); |
---|
578 | accepts.addElement("binary"); |
---|
579 | accepts.addElement("nominal"); |
---|
580 | accepts.addElement("numeric"); |
---|
581 | accepts.addElement("string"); |
---|
582 | accepts.addElement("date"); |
---|
583 | accepts.addElement("relational"); |
---|
584 | accepts.addElement("multi-instance"); |
---|
585 | accepts.addElement("not in classpath"); |
---|
586 | int numTrain = getNumInstances(), missingLevel = 0; |
---|
587 | boolean predictorMissing = false; |
---|
588 | |
---|
589 | return runBasicTest(nominalPredictor, numericPredictor, stringPredictor, |
---|
590 | datePredictor, relationalPredictor, |
---|
591 | multiInstance, |
---|
592 | missingLevel, predictorMissing, |
---|
593 | numTrain, |
---|
594 | accepts); |
---|
595 | } |
---|
596 | |
---|
597 | /** |
---|
598 | * Checks whether the scheme can handle zero training instances. |
---|
599 | * |
---|
600 | * @param nominalPredictor if true use nominal predictor attributes |
---|
601 | * @param numericPredictor if true use numeric predictor attributes |
---|
602 | * @param stringPredictor if true use string predictor attributes |
---|
603 | * @param datePredictor if true use date predictor attributes |
---|
604 | * @param relationalPredictor if true use relational predictor attributes |
---|
605 | * @param multiInstance whether multi-instance is needed |
---|
606 | * @return index 0 is true if the test was passed, index 1 is true if test |
---|
607 | * was acceptable |
---|
608 | */ |
---|
609 | protected boolean[] canHandleZeroTraining( |
---|
610 | boolean nominalPredictor, |
---|
611 | boolean numericPredictor, |
---|
612 | boolean stringPredictor, |
---|
613 | boolean datePredictor, |
---|
614 | boolean relationalPredictor, |
---|
615 | boolean multiInstance) { |
---|
616 | |
---|
617 | print("handle zero training instances"); |
---|
618 | printAttributeSummary( |
---|
619 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance); |
---|
620 | print("..."); |
---|
621 | FastVector accepts = new FastVector(); |
---|
622 | accepts.addElement("train"); |
---|
623 | accepts.addElement("value"); |
---|
624 | int numTrain = 0, missingLevel = 0; |
---|
625 | boolean predictorMissing = false; |
---|
626 | |
---|
627 | return runBasicTest( |
---|
628 | nominalPredictor, numericPredictor, stringPredictor, |
---|
629 | datePredictor, relationalPredictor, |
---|
630 | multiInstance, |
---|
631 | missingLevel, predictorMissing, |
---|
632 | numTrain, |
---|
633 | accepts); |
---|
634 | } |
---|
635 | |
---|
636 | /** |
---|
637 | * Checks whether the scheme correctly initialises models when |
---|
638 | * buildClusterer is called. This test calls buildClusterer with |
---|
639 | * one training dataset. buildClusterer is then called on a training set |
---|
640 | * with different structure, and then again with the original training set. |
---|
641 | * If the equals method of the ClusterEvaluation class returns |
---|
642 | * false, this is noted as incorrect build initialisation. |
---|
643 | * |
---|
644 | * @param nominalPredictor if true use nominal predictor attributes |
---|
645 | * @param numericPredictor if true use numeric predictor attributes |
---|
646 | * @param stringPredictor if true use string predictor attributes |
---|
647 | * @param datePredictor if true use date predictor attributes |
---|
648 | * @param relationalPredictor if true use relational predictor attributes |
---|
649 | * @param multiInstance whether multi-instance is needed |
---|
650 | * @return index 0 is true if the test was passed |
---|
651 | */ |
---|
652 | protected boolean[] correctBuildInitialisation( |
---|
653 | boolean nominalPredictor, |
---|
654 | boolean numericPredictor, |
---|
655 | boolean stringPredictor, |
---|
656 | boolean datePredictor, |
---|
657 | boolean relationalPredictor, |
---|
658 | boolean multiInstance) { |
---|
659 | |
---|
660 | boolean[] result = new boolean[2]; |
---|
661 | |
---|
662 | print("correct initialisation during buildClusterer"); |
---|
663 | printAttributeSummary( |
---|
664 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance); |
---|
665 | print("..."); |
---|
666 | int numTrain = getNumInstances(), missingLevel = 0; |
---|
667 | boolean predictorMissing = false; |
---|
668 | |
---|
669 | Instances train1 = null; |
---|
670 | Instances train2 = null; |
---|
671 | Clusterer clusterer = null; |
---|
672 | ClusterEvaluation evaluation1A = null; |
---|
673 | ClusterEvaluation evaluation1B = null; |
---|
674 | ClusterEvaluation evaluation2 = null; |
---|
675 | boolean built = false; |
---|
676 | int stage = 0; |
---|
677 | try { |
---|
678 | |
---|
679 | // Make two train sets with different numbers of attributes |
---|
680 | train1 = makeTestDataset(42, numTrain, |
---|
681 | nominalPredictor ? getNumNominal() : 0, |
---|
682 | numericPredictor ? getNumNumeric() : 0, |
---|
683 | stringPredictor ? getNumString() : 0, |
---|
684 | datePredictor ? getNumDate() : 0, |
---|
685 | relationalPredictor ? getNumRelational() : 0, |
---|
686 | multiInstance); |
---|
687 | train2 = makeTestDataset(84, numTrain, |
---|
688 | nominalPredictor ? getNumNominal() + 1 : 0, |
---|
689 | numericPredictor ? getNumNumeric() + 1 : 0, |
---|
690 | stringPredictor ? getNumString() : 0, |
---|
691 | datePredictor ? getNumDate() : 0, |
---|
692 | relationalPredictor ? getNumRelational() : 0, |
---|
693 | multiInstance); |
---|
694 | if (nominalPredictor && !multiInstance) { |
---|
695 | train1.deleteAttributeAt(0); |
---|
696 | train2.deleteAttributeAt(0); |
---|
697 | } |
---|
698 | if (missingLevel > 0) { |
---|
699 | addMissing(train1, missingLevel, predictorMissing); |
---|
700 | addMissing(train2, missingLevel, predictorMissing); |
---|
701 | } |
---|
702 | |
---|
703 | clusterer = AbstractClusterer.makeCopies(getClusterer(), 1)[0]; |
---|
704 | evaluation1A = new ClusterEvaluation(); |
---|
705 | evaluation1B = new ClusterEvaluation(); |
---|
706 | evaluation2 = new ClusterEvaluation(); |
---|
707 | } catch (Exception ex) { |
---|
708 | throw new Error("Error setting up for tests: " + ex.getMessage()); |
---|
709 | } |
---|
710 | try { |
---|
711 | stage = 0; |
---|
712 | clusterer.buildClusterer(train1); |
---|
713 | built = true; |
---|
714 | evaluation1A.setClusterer(clusterer); |
---|
715 | evaluation1A.evaluateClusterer(train1); |
---|
716 | |
---|
717 | stage = 1; |
---|
718 | built = false; |
---|
719 | clusterer.buildClusterer(train2); |
---|
720 | built = true; |
---|
721 | evaluation2.setClusterer(clusterer); |
---|
722 | evaluation2.evaluateClusterer(train2); |
---|
723 | |
---|
724 | stage = 2; |
---|
725 | built = false; |
---|
726 | clusterer.buildClusterer(train1); |
---|
727 | built = true; |
---|
728 | evaluation1B.setClusterer(clusterer); |
---|
729 | evaluation1B.evaluateClusterer(train1); |
---|
730 | |
---|
731 | stage = 3; |
---|
732 | if (!evaluation1A.equals(evaluation1B)) { |
---|
733 | if (m_Debug) { |
---|
734 | println("\n=== Full report ===\n"); |
---|
735 | println("First buildClusterer()"); |
---|
736 | println(evaluation1A.clusterResultsToString() + "\n\n"); |
---|
737 | println("Second buildClusterer()"); |
---|
738 | println(evaluation1B.clusterResultsToString() + "\n\n"); |
---|
739 | } |
---|
740 | throw new Exception("Results differ between buildClusterer calls"); |
---|
741 | } |
---|
742 | println("yes"); |
---|
743 | result[0] = true; |
---|
744 | |
---|
745 | if (false && m_Debug) { |
---|
746 | println("\n=== Full report ===\n"); |
---|
747 | println("First buildClusterer()"); |
---|
748 | println(evaluation1A.clusterResultsToString() + "\n\n"); |
---|
749 | println("Second buildClusterer()"); |
---|
750 | println(evaluation1B.clusterResultsToString() + "\n\n"); |
---|
751 | } |
---|
752 | } |
---|
753 | catch (Exception ex) { |
---|
754 | println("no"); |
---|
755 | result[0] = false; |
---|
756 | if (m_Debug) { |
---|
757 | println("\n=== Full Report ==="); |
---|
758 | print("Problem during"); |
---|
759 | if (built) { |
---|
760 | print(" testing"); |
---|
761 | } else { |
---|
762 | print(" training"); |
---|
763 | } |
---|
764 | switch (stage) { |
---|
765 | case 0: |
---|
766 | print(" of dataset 1"); |
---|
767 | break; |
---|
768 | case 1: |
---|
769 | print(" of dataset 2"); |
---|
770 | break; |
---|
771 | case 2: |
---|
772 | print(" of dataset 1 (2nd build)"); |
---|
773 | break; |
---|
774 | case 3: |
---|
775 | print(", comparing results from builds of dataset 1"); |
---|
776 | break; |
---|
777 | } |
---|
778 | println(": " + ex.getMessage() + "\n"); |
---|
779 | println("here are the datasets:\n"); |
---|
780 | println("=== Train1 Dataset ===\n" |
---|
781 | + train1.toString() + "\n"); |
---|
782 | println("=== Train2 Dataset ===\n" |
---|
783 | + train2.toString() + "\n"); |
---|
784 | } |
---|
785 | } |
---|
786 | |
---|
787 | return result; |
---|
788 | } |
---|
789 | |
---|
790 | /** |
---|
791 | * Checks basic missing value handling of the scheme. If the missing |
---|
792 | * values cause an exception to be thrown by the scheme, this will be |
---|
793 | * recorded. |
---|
794 | * |
---|
795 | * @param nominalPredictor if true use nominal predictor attributes |
---|
796 | * @param numericPredictor if true use numeric predictor attributes |
---|
797 | * @param stringPredictor if true use string predictor attributes |
---|
798 | * @param datePredictor if true use date predictor attributes |
---|
799 | * @param relationalPredictor if true use relational predictor attributes |
---|
800 | * @param multiInstance whether multi-instance is needed |
---|
801 | * @param predictorMissing true if the missing values may be in |
---|
802 | * the predictors |
---|
803 | * @param missingLevel the percentage of missing values |
---|
804 | * @return index 0 is true if the test was passed, index 1 is true if test |
---|
805 | * was acceptable |
---|
806 | */ |
---|
807 | protected boolean[] canHandleMissing( |
---|
808 | boolean nominalPredictor, |
---|
809 | boolean numericPredictor, |
---|
810 | boolean stringPredictor, |
---|
811 | boolean datePredictor, |
---|
812 | boolean relationalPredictor, |
---|
813 | boolean multiInstance, |
---|
814 | boolean predictorMissing, |
---|
815 | int missingLevel) { |
---|
816 | |
---|
817 | if (missingLevel == 100) |
---|
818 | print("100% "); |
---|
819 | print("missing"); |
---|
820 | if (predictorMissing) { |
---|
821 | print(" predictor"); |
---|
822 | } |
---|
823 | print(" values"); |
---|
824 | printAttributeSummary( |
---|
825 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance); |
---|
826 | print("..."); |
---|
827 | FastVector accepts = new FastVector(); |
---|
828 | accepts.addElement("missing"); |
---|
829 | accepts.addElement("value"); |
---|
830 | accepts.addElement("train"); |
---|
831 | int numTrain = getNumInstances(); |
---|
832 | |
---|
833 | return runBasicTest(nominalPredictor, numericPredictor, stringPredictor, |
---|
834 | datePredictor, relationalPredictor, |
---|
835 | multiInstance, |
---|
836 | missingLevel, predictorMissing, |
---|
837 | numTrain, |
---|
838 | accepts); |
---|
839 | } |
---|
840 | |
---|
841 | /** |
---|
842 | * Checks whether the clusterer can handle instance weights. |
---|
843 | * This test compares the clusterer performance on two datasets |
---|
844 | * that are identical except for the training weights. If the |
---|
845 | * results change, then the clusterer must be using the weights. It |
---|
846 | * may be possible to get a false positive from this test if the |
---|
847 | * weight changes aren't significant enough to induce a change |
---|
848 | * in clusterer performance (but the weights are chosen to minimize |
---|
849 | * the likelihood of this). |
---|
850 | * |
---|
851 | * @param nominalPredictor if true use nominal predictor attributes |
---|
852 | * @param numericPredictor if true use numeric predictor attributes |
---|
853 | * @param stringPredictor if true use string predictor attributes |
---|
854 | * @param datePredictor if true use date predictor attributes |
---|
855 | * @param relationalPredictor if true use relational predictor attributes |
---|
856 | * @param multiInstance whether multi-instance is needed |
---|
857 | * @return index 0 true if the test was passed |
---|
858 | */ |
---|
859 | protected boolean[] instanceWeights( |
---|
860 | boolean nominalPredictor, |
---|
861 | boolean numericPredictor, |
---|
862 | boolean stringPredictor, |
---|
863 | boolean datePredictor, |
---|
864 | boolean relationalPredictor, |
---|
865 | boolean multiInstance) { |
---|
866 | |
---|
867 | print("clusterer uses instance weights"); |
---|
868 | printAttributeSummary( |
---|
869 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance); |
---|
870 | print("..."); |
---|
871 | int numTrain = 2*getNumInstances(), missingLevel = 0; |
---|
872 | boolean predictorMissing = false; |
---|
873 | |
---|
874 | boolean[] result = new boolean[2]; |
---|
875 | Instances train = null; |
---|
876 | Clusterer [] clusterers = null; |
---|
877 | ClusterEvaluation evaluationB = null; |
---|
878 | ClusterEvaluation evaluationI = null; |
---|
879 | boolean built = false; |
---|
880 | boolean evalFail = false; |
---|
881 | try { |
---|
882 | train = makeTestDataset(42, numTrain, |
---|
883 | nominalPredictor ? getNumNominal() + 1 : 0, |
---|
884 | numericPredictor ? getNumNumeric() + 1 : 0, |
---|
885 | stringPredictor ? getNumString() : 0, |
---|
886 | datePredictor ? getNumDate() : 0, |
---|
887 | relationalPredictor ? getNumRelational() : 0, |
---|
888 | multiInstance); |
---|
889 | if (nominalPredictor && !multiInstance) |
---|
890 | train.deleteAttributeAt(0); |
---|
891 | if (missingLevel > 0) |
---|
892 | addMissing(train, missingLevel, predictorMissing); |
---|
893 | clusterers = AbstractClusterer.makeCopies(getClusterer(), 2); |
---|
894 | evaluationB = new ClusterEvaluation(); |
---|
895 | evaluationI = new ClusterEvaluation(); |
---|
896 | clusterers[0].buildClusterer(train); |
---|
897 | evaluationB.setClusterer(clusterers[0]); |
---|
898 | } catch (Exception ex) { |
---|
899 | throw new Error("Error setting up for tests: " + ex.getMessage()); |
---|
900 | } |
---|
901 | try { |
---|
902 | |
---|
903 | // Now modify instance weights and re-built/test |
---|
904 | for (int i = 0; i < train.numInstances(); i++) { |
---|
905 | train.instance(i).setWeight(0); |
---|
906 | } |
---|
907 | Random random = new Random(1); |
---|
908 | for (int i = 0; i < train.numInstances() / 2; i++) { |
---|
909 | int inst = Math.abs(random.nextInt()) % train.numInstances(); |
---|
910 | int weight = Math.abs(random.nextInt()) % 10 + 1; |
---|
911 | train.instance(inst).setWeight(weight); |
---|
912 | } |
---|
913 | clusterers[1].buildClusterer(train); |
---|
914 | built = true; |
---|
915 | evaluationI.setClusterer(clusterers[1]); |
---|
916 | if (evaluationB.equals(evaluationI)) { |
---|
917 | // println("no"); |
---|
918 | evalFail = true; |
---|
919 | throw new Exception("evalFail"); |
---|
920 | } |
---|
921 | |
---|
922 | println("yes"); |
---|
923 | result[0] = true; |
---|
924 | } catch (Exception ex) { |
---|
925 | println("no"); |
---|
926 | result[0] = false; |
---|
927 | |
---|
928 | if (m_Debug) { |
---|
929 | println("\n=== Full Report ==="); |
---|
930 | |
---|
931 | if (evalFail) { |
---|
932 | println("Results don't differ between non-weighted and " |
---|
933 | + "weighted instance models."); |
---|
934 | println("Here are the results:\n"); |
---|
935 | println("\nboth methods\n"); |
---|
936 | println(evaluationB.clusterResultsToString()); |
---|
937 | } else { |
---|
938 | print("Problem during"); |
---|
939 | if (built) { |
---|
940 | print(" testing"); |
---|
941 | } else { |
---|
942 | print(" training"); |
---|
943 | } |
---|
944 | println(": " + ex.getMessage() + "\n"); |
---|
945 | } |
---|
946 | println("Here is the dataset:\n"); |
---|
947 | println("=== Train Dataset ===\n" |
---|
948 | + train.toString() + "\n"); |
---|
949 | println("=== Train Weights ===\n"); |
---|
950 | for (int i = 0; i < train.numInstances(); i++) { |
---|
951 | println(" " + (i + 1) |
---|
952 | + " " + train.instance(i).weight()); |
---|
953 | } |
---|
954 | } |
---|
955 | } |
---|
956 | |
---|
957 | return result; |
---|
958 | } |
---|
959 | |
---|
960 | /** |
---|
961 | * Checks whether the scheme alters the training dataset during |
---|
962 | * training. If the scheme needs to modify the training |
---|
963 | * data it should take a copy of the training data. Currently checks |
---|
964 | * for changes to header structure, number of instances, order of |
---|
965 | * instances, instance weights. |
---|
966 | * |
---|
967 | * @param nominalPredictor if true use nominal predictor attributes |
---|
968 | * @param numericPredictor if true use numeric predictor attributes |
---|
969 | * @param stringPredictor if true use string predictor attributes |
---|
970 | * @param datePredictor if true use date predictor attributes |
---|
971 | * @param relationalPredictor if true use relational predictor attributes |
---|
972 | * @param multiInstance whether multi-instance is needed |
---|
973 | * @param predictorMissing true if we know the clusterer can handle |
---|
974 | * (at least) moderate missing predictor values |
---|
975 | * @return index 0 is true if the test was passed |
---|
976 | */ |
---|
977 | protected boolean[] datasetIntegrity( |
---|
978 | boolean nominalPredictor, |
---|
979 | boolean numericPredictor, |
---|
980 | boolean stringPredictor, |
---|
981 | boolean datePredictor, |
---|
982 | boolean relationalPredictor, |
---|
983 | boolean multiInstance, |
---|
984 | boolean predictorMissing) { |
---|
985 | |
---|
986 | print("clusterer doesn't alter original datasets"); |
---|
987 | printAttributeSummary( |
---|
988 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance); |
---|
989 | print("..."); |
---|
990 | int numTrain = getNumInstances(), missingLevel = 20; |
---|
991 | |
---|
992 | boolean[] result = new boolean[2]; |
---|
993 | Instances train = null; |
---|
994 | Clusterer clusterer = null; |
---|
995 | try { |
---|
996 | train = makeTestDataset(42, numTrain, |
---|
997 | nominalPredictor ? getNumNominal() : 0, |
---|
998 | numericPredictor ? getNumNumeric() : 0, |
---|
999 | stringPredictor ? getNumString() : 0, |
---|
1000 | datePredictor ? getNumDate() : 0, |
---|
1001 | relationalPredictor ? getNumRelational() : 0, |
---|
1002 | multiInstance); |
---|
1003 | if (nominalPredictor && !multiInstance) |
---|
1004 | train.deleteAttributeAt(0); |
---|
1005 | if (missingLevel > 0) |
---|
1006 | addMissing(train, missingLevel, predictorMissing); |
---|
1007 | clusterer = AbstractClusterer.makeCopies(getClusterer(), 1)[0]; |
---|
1008 | } catch (Exception ex) { |
---|
1009 | throw new Error("Error setting up for tests: " + ex.getMessage()); |
---|
1010 | } |
---|
1011 | try { |
---|
1012 | Instances trainCopy = new Instances(train); |
---|
1013 | clusterer.buildClusterer(trainCopy); |
---|
1014 | compareDatasets(train, trainCopy); |
---|
1015 | |
---|
1016 | println("yes"); |
---|
1017 | result[0] = true; |
---|
1018 | } catch (Exception ex) { |
---|
1019 | println("no"); |
---|
1020 | result[0] = false; |
---|
1021 | |
---|
1022 | if (m_Debug) { |
---|
1023 | println("\n=== Full Report ==="); |
---|
1024 | print("Problem during training"); |
---|
1025 | println(": " + ex.getMessage() + "\n"); |
---|
1026 | println("Here is the dataset:\n"); |
---|
1027 | println("=== Train Dataset ===\n" |
---|
1028 | + train.toString() + "\n"); |
---|
1029 | } |
---|
1030 | } |
---|
1031 | |
---|
1032 | return result; |
---|
1033 | } |
---|
1034 | |
---|
1035 | /** |
---|
1036 | * Checks whether an updateable scheme produces the same model when |
---|
1037 | * trained incrementally as when batch trained. The model itself |
---|
1038 | * cannot be compared, so we compare the evaluation on test data |
---|
1039 | * for both models. It is possible to get a false positive on this |
---|
1040 | * test (likelihood depends on the classifier). |
---|
1041 | * |
---|
1042 | * @param nominalPredictor if true use nominal predictor attributes |
---|
1043 | * @param numericPredictor if true use numeric predictor attributes |
---|
1044 | * @param stringPredictor if true use string predictor attributes |
---|
1045 | * @param datePredictor if true use date predictor attributes |
---|
1046 | * @param relationalPredictor if true use relational predictor attributes |
---|
1047 | * @param multiInstance whether multi-instance is needed |
---|
1048 | * @return index 0 is true if the test was passed |
---|
1049 | */ |
---|
1050 | protected boolean[] updatingEquality( |
---|
1051 | boolean nominalPredictor, |
---|
1052 | boolean numericPredictor, |
---|
1053 | boolean stringPredictor, |
---|
1054 | boolean datePredictor, |
---|
1055 | boolean relationalPredictor, |
---|
1056 | boolean multiInstance) { |
---|
1057 | |
---|
1058 | print("incremental training produces the same results" |
---|
1059 | + " as batch training"); |
---|
1060 | printAttributeSummary( |
---|
1061 | nominalPredictor, numericPredictor, stringPredictor, datePredictor, relationalPredictor, multiInstance); |
---|
1062 | print("..."); |
---|
1063 | int numTrain = getNumInstances(), missingLevel = 0; |
---|
1064 | boolean predictorMissing = false, classMissing = false; |
---|
1065 | |
---|
1066 | boolean[] result = new boolean[2]; |
---|
1067 | Instances train = null; |
---|
1068 | Clusterer[] clusterers = null; |
---|
1069 | ClusterEvaluation evaluationB = null; |
---|
1070 | ClusterEvaluation evaluationI = null; |
---|
1071 | boolean built = false; |
---|
1072 | try { |
---|
1073 | train = makeTestDataset(42, numTrain, |
---|
1074 | nominalPredictor ? getNumNominal() : 0, |
---|
1075 | numericPredictor ? getNumNumeric() : 0, |
---|
1076 | stringPredictor ? getNumString() : 0, |
---|
1077 | datePredictor ? getNumDate() : 0, |
---|
1078 | relationalPredictor ? getNumRelational() : 0, |
---|
1079 | multiInstance); |
---|
1080 | if (missingLevel > 0) |
---|
1081 | addMissing(train, missingLevel, predictorMissing, classMissing); |
---|
1082 | clusterers = AbstractClusterer.makeCopies(getClusterer(), 2); |
---|
1083 | evaluationB = new ClusterEvaluation(); |
---|
1084 | evaluationI = new ClusterEvaluation(); |
---|
1085 | clusterers[0].buildClusterer(train); |
---|
1086 | evaluationB.setClusterer(clusterers[0]); |
---|
1087 | } catch (Exception ex) { |
---|
1088 | throw new Error("Error setting up for tests: " + ex.getMessage()); |
---|
1089 | } |
---|
1090 | try { |
---|
1091 | clusterers[1].buildClusterer(new Instances(train, 0)); |
---|
1092 | for (int i = 0; i < train.numInstances(); i++) { |
---|
1093 | ((UpdateableClusterer)clusterers[1]).updateClusterer( |
---|
1094 | train.instance(i)); |
---|
1095 | } |
---|
1096 | built = true; |
---|
1097 | evaluationI.setClusterer(clusterers[1]); |
---|
1098 | if (!evaluationB.equals(evaluationI)) { |
---|
1099 | println("no"); |
---|
1100 | result[0] = false; |
---|
1101 | |
---|
1102 | if (m_Debug) { |
---|
1103 | println("\n=== Full Report ==="); |
---|
1104 | println("Results differ between batch and " |
---|
1105 | + "incrementally built models.\n" |
---|
1106 | + "Depending on the classifier, this may be OK"); |
---|
1107 | println("Here are the results:\n"); |
---|
1108 | println("\nbatch built results\n" + evaluationB.clusterResultsToString()); |
---|
1109 | println("\nincrementally built results\n" + evaluationI.clusterResultsToString()); |
---|
1110 | println("Here are the datasets:\n"); |
---|
1111 | println("=== Train Dataset ===\n" |
---|
1112 | + train.toString() + "\n"); |
---|
1113 | } |
---|
1114 | } |
---|
1115 | else { |
---|
1116 | println("yes"); |
---|
1117 | result[0] = true; |
---|
1118 | } |
---|
1119 | } catch (Exception ex) { |
---|
1120 | result[0] = false; |
---|
1121 | |
---|
1122 | print("Problem during"); |
---|
1123 | if (built) |
---|
1124 | print(" testing"); |
---|
1125 | else |
---|
1126 | print(" training"); |
---|
1127 | println(": " + ex.getMessage() + "\n"); |
---|
1128 | } |
---|
1129 | |
---|
1130 | return result; |
---|
1131 | } |
---|
1132 | |
---|
1133 | /** |
---|
1134 | * Runs a text on the datasets with the given characteristics. |
---|
1135 | * |
---|
1136 | * @param nominalPredictor if true use nominal predictor attributes |
---|
1137 | * @param numericPredictor if true use numeric predictor attributes |
---|
1138 | * @param stringPredictor if true use string predictor attributes |
---|
1139 | * @param datePredictor if true use date predictor attributes |
---|
1140 | * @param relationalPredictor if true use relational predictor attributes |
---|
1141 | * @param multiInstance whether multi-instance is needed |
---|
1142 | * @param missingLevel the percentage of missing values |
---|
1143 | * @param predictorMissing true if the missing values may be in |
---|
1144 | * the predictors |
---|
1145 | * @param numTrain the number of instances in the training set |
---|
1146 | * @param accepts the acceptable string in an exception |
---|
1147 | * @return index 0 is true if the test was passed, index 1 is true if test |
---|
1148 | * was acceptable |
---|
1149 | */ |
---|
1150 | protected boolean[] runBasicTest(boolean nominalPredictor, |
---|
1151 | boolean numericPredictor, |
---|
1152 | boolean stringPredictor, |
---|
1153 | boolean datePredictor, |
---|
1154 | boolean relationalPredictor, |
---|
1155 | boolean multiInstance, |
---|
1156 | int missingLevel, |
---|
1157 | boolean predictorMissing, |
---|
1158 | int numTrain, |
---|
1159 | FastVector accepts) { |
---|
1160 | |
---|
1161 | boolean[] result = new boolean[2]; |
---|
1162 | Instances train = null; |
---|
1163 | Clusterer clusterer = null; |
---|
1164 | try { |
---|
1165 | train = makeTestDataset(42, numTrain, |
---|
1166 | nominalPredictor ? getNumNominal() : 0, |
---|
1167 | numericPredictor ? getNumNumeric() : 0, |
---|
1168 | stringPredictor ? getNumString() : 0, |
---|
1169 | datePredictor ? getNumDate() : 0, |
---|
1170 | relationalPredictor ? getNumRelational() : 0, |
---|
1171 | multiInstance); |
---|
1172 | if (nominalPredictor && !multiInstance) |
---|
1173 | train.deleteAttributeAt(0); |
---|
1174 | if (missingLevel > 0) |
---|
1175 | addMissing(train, missingLevel, predictorMissing); |
---|
1176 | clusterer = AbstractClusterer.makeCopies(getClusterer(), 1)[0]; |
---|
1177 | } catch (Exception ex) { |
---|
1178 | ex.printStackTrace(); |
---|
1179 | throw new Error("Error setting up for tests: " + ex.getMessage()); |
---|
1180 | } |
---|
1181 | try { |
---|
1182 | clusterer.buildClusterer(train); |
---|
1183 | println("yes"); |
---|
1184 | result[0] = true; |
---|
1185 | } |
---|
1186 | catch (Exception ex) { |
---|
1187 | boolean acceptable = false; |
---|
1188 | String msg = ex.getMessage().toLowerCase(); |
---|
1189 | for (int i = 0; i < accepts.size(); i++) { |
---|
1190 | if (msg.indexOf((String)accepts.elementAt(i)) >= 0) { |
---|
1191 | acceptable = true; |
---|
1192 | } |
---|
1193 | } |
---|
1194 | |
---|
1195 | println("no" + (acceptable ? " (OK error message)" : "")); |
---|
1196 | result[1] = acceptable; |
---|
1197 | |
---|
1198 | if (m_Debug) { |
---|
1199 | println("\n=== Full Report ==="); |
---|
1200 | print("Problem during training"); |
---|
1201 | println(": " + ex.getMessage() + "\n"); |
---|
1202 | if (!acceptable) { |
---|
1203 | if (accepts.size() > 0) { |
---|
1204 | print("Error message doesn't mention "); |
---|
1205 | for (int i = 0; i < accepts.size(); i++) { |
---|
1206 | if (i != 0) { |
---|
1207 | print(" or "); |
---|
1208 | } |
---|
1209 | print('"' + (String)accepts.elementAt(i) + '"'); |
---|
1210 | } |
---|
1211 | } |
---|
1212 | println("here is the dataset:\n"); |
---|
1213 | println("=== Train Dataset ===\n" |
---|
1214 | + train.toString() + "\n"); |
---|
1215 | } |
---|
1216 | } |
---|
1217 | } |
---|
1218 | |
---|
1219 | return result; |
---|
1220 | } |
---|
1221 | |
---|
1222 | /** |
---|
1223 | * Add missing values to a dataset. |
---|
1224 | * |
---|
1225 | * @param data the instances to add missing values to |
---|
1226 | * @param level the level of missing values to add (if positive, this |
---|
1227 | * is the probability that a value will be set to missing, if negative |
---|
1228 | * all but one value will be set to missing (not yet implemented)) |
---|
1229 | * @param predictorMissing if true, predictor attributes will be modified |
---|
1230 | */ |
---|
1231 | protected void addMissing(Instances data, int level, boolean predictorMissing) { |
---|
1232 | |
---|
1233 | Random random = new Random(1); |
---|
1234 | for (int i = 0; i < data.numInstances(); i++) { |
---|
1235 | Instance current = data.instance(i); |
---|
1236 | for (int j = 0; j < data.numAttributes(); j++) { |
---|
1237 | if (predictorMissing) { |
---|
1238 | if (Math.abs(random.nextInt()) % 100 < level) |
---|
1239 | current.setMissing(j); |
---|
1240 | } |
---|
1241 | } |
---|
1242 | } |
---|
1243 | } |
---|
1244 | |
---|
1245 | /** |
---|
1246 | * Make a simple set of instances with variable position of the class |
---|
1247 | * attribute, which can later be modified for use in specific tests. |
---|
1248 | * |
---|
1249 | * @param seed the random number seed |
---|
1250 | * @param numInstances the number of instances to generate |
---|
1251 | * @param numNominal the number of nominal attributes |
---|
1252 | * @param numNumeric the number of numeric attributes |
---|
1253 | * @param numString the number of string attributes |
---|
1254 | * @param numDate the number of date attributes |
---|
1255 | * @param numRelational the number of relational attributes |
---|
1256 | * @param multiInstance whether the dataset should a multi-instance dataset |
---|
1257 | * @return the test dataset |
---|
1258 | * @throws Exception if the dataset couldn't be generated |
---|
1259 | * @see TestInstances#CLASS_IS_LAST |
---|
1260 | */ |
---|
1261 | protected Instances makeTestDataset(int seed, int numInstances, |
---|
1262 | int numNominal, int numNumeric, |
---|
1263 | int numString, int numDate, |
---|
1264 | int numRelational, |
---|
1265 | boolean multiInstance) |
---|
1266 | throws Exception { |
---|
1267 | |
---|
1268 | TestInstances dataset = new TestInstances(); |
---|
1269 | |
---|
1270 | dataset.setSeed(seed); |
---|
1271 | dataset.setNumInstances(numInstances); |
---|
1272 | dataset.setNumNominal(numNominal); |
---|
1273 | dataset.setNumNumeric(numNumeric); |
---|
1274 | dataset.setNumString(numString); |
---|
1275 | dataset.setNumDate(numDate); |
---|
1276 | dataset.setNumRelational(numRelational); |
---|
1277 | dataset.setClassIndex(TestInstances.NO_CLASS); |
---|
1278 | dataset.setMultiInstance(multiInstance); |
---|
1279 | |
---|
1280 | return dataset.generate(); |
---|
1281 | } |
---|
1282 | |
---|
1283 | /** |
---|
1284 | * Print out a short summary string for the dataset characteristics |
---|
1285 | * |
---|
1286 | * @param nominalPredictor true if nominal predictor attributes are present |
---|
1287 | * @param numericPredictor true if numeric predictor attributes are present |
---|
1288 | * @param stringPredictor true if string predictor attributes are present |
---|
1289 | * @param datePredictor true if date predictor attributes are present |
---|
1290 | * @param relationalPredictor true if relational predictor attributes are present |
---|
1291 | * @param multiInstance whether multi-instance is needed |
---|
1292 | */ |
---|
1293 | protected void printAttributeSummary(boolean nominalPredictor, |
---|
1294 | boolean numericPredictor, |
---|
1295 | boolean stringPredictor, |
---|
1296 | boolean datePredictor, |
---|
1297 | boolean relationalPredictor, |
---|
1298 | boolean multiInstance) { |
---|
1299 | |
---|
1300 | String str = ""; |
---|
1301 | |
---|
1302 | if (numericPredictor) |
---|
1303 | str += "numeric"; |
---|
1304 | |
---|
1305 | if (nominalPredictor) { |
---|
1306 | if (str.length() > 0) |
---|
1307 | str += " & "; |
---|
1308 | str += "nominal"; |
---|
1309 | } |
---|
1310 | |
---|
1311 | if (stringPredictor) { |
---|
1312 | if (str.length() > 0) |
---|
1313 | str += " & "; |
---|
1314 | str += "string"; |
---|
1315 | } |
---|
1316 | |
---|
1317 | if (datePredictor) { |
---|
1318 | if (str.length() > 0) |
---|
1319 | str += " & "; |
---|
1320 | str += "date"; |
---|
1321 | } |
---|
1322 | |
---|
1323 | if (relationalPredictor) { |
---|
1324 | if (str.length() > 0) |
---|
1325 | str += " & "; |
---|
1326 | str += "relational"; |
---|
1327 | } |
---|
1328 | |
---|
1329 | str = " (" + str + " predictors)"; |
---|
1330 | |
---|
1331 | print(str); |
---|
1332 | } |
---|
1333 | |
---|
1334 | /** |
---|
1335 | * Returns the revision string. |
---|
1336 | * |
---|
1337 | * @return the revision |
---|
1338 | */ |
---|
1339 | public String getRevision() { |
---|
1340 | return RevisionUtils.extract("$Revision: 1.11 $"); |
---|
1341 | } |
---|
1342 | |
---|
1343 | /** |
---|
1344 | * Test method for this class |
---|
1345 | * |
---|
1346 | * @param args the commandline options |
---|
1347 | */ |
---|
1348 | public static void main(String [] args) { |
---|
1349 | runCheck(new CheckClusterer(), args); |
---|
1350 | } |
---|
1351 | } |
---|
1352 | |
---|