1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * Copyright (C) 2008 |
---|
19 | * & Alexander Smirnov (austellus@gmail.com) |
---|
20 | */ |
---|
21 | package weka.clusterers; |
---|
22 | |
---|
23 | import java.io.Serializable; |
---|
24 | import weka.core.Capabilities; |
---|
25 | import weka.core.Instance; |
---|
26 | import weka.core.Instances; |
---|
27 | import weka.core.RevisionUtils; |
---|
28 | import weka.core.SparseInstance; |
---|
29 | import weka.core.Option; |
---|
30 | import weka.core.OptionHandler; |
---|
31 | import weka.core.TechnicalInformation; |
---|
32 | import weka.core.TechnicalInformationHandler; |
---|
33 | import weka.core.Utils; |
---|
34 | import weka.core.Capabilities.Capability; |
---|
35 | import weka.core.TechnicalInformation.Field; |
---|
36 | import weka.core.TechnicalInformation.Type; |
---|
37 | import weka.filters.Filter; |
---|
38 | import weka.filters.unsupervised.attribute.ReplaceMissingValues; |
---|
39 | import java.lang.reflect.Constructor; |
---|
40 | import java.lang.reflect.InvocationTargetException; |
---|
41 | import java.text.DecimalFormat; |
---|
42 | import java.util.Enumeration; |
---|
43 | import java.util.Iterator; |
---|
44 | import java.util.List; |
---|
45 | import java.util.Vector; |
---|
46 | import java.util.HashMap; |
---|
47 | import java.util.ArrayList; |
---|
48 | |
---|
49 | /** |
---|
50 | <!-- globalinfo-start --> |
---|
51 | * Yiling Yang, Xudong Guan, Jinyuan You: CLOPE: a fast and effective clustering algorithm for transactional data. In: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, 682-687, 2002. |
---|
52 | * <p/> |
---|
53 | <!-- globalinfo-end --> |
---|
54 | * |
---|
55 | <!-- technical-bibtex-start --> |
---|
56 | * BibTeX: |
---|
57 | * <pre> |
---|
58 | * @inproceedings{Yang2002, |
---|
59 | * author = {Yiling Yang and Xudong Guan and Jinyuan You}, |
---|
60 | * booktitle = {Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining}, |
---|
61 | * pages = {682-687}, |
---|
62 | * publisher = {ACM New York, NY, USA}, |
---|
63 | * title = {CLOPE: a fast and effective clustering algorithm for transactional data}, |
---|
64 | * year = {2002} |
---|
65 | * } |
---|
66 | * </pre> |
---|
67 | * <p/> |
---|
68 | <!-- technical-bibtex-end --> |
---|
69 | * |
---|
70 | <!-- options-start --> |
---|
71 | * Valid options are: <p/> |
---|
72 | * |
---|
73 | * <pre> -R <num> |
---|
74 | * Repulsion |
---|
75 | * (default 2.6)</pre> |
---|
76 | * |
---|
77 | <!-- options-end --> |
---|
78 | * |
---|
79 | * @author Alexander Smirnov (austellus@gmail.com) |
---|
80 | * @version $Revision: 5488 $ |
---|
81 | */ |
---|
82 | public class CLOPE |
---|
83 | extends AbstractClusterer |
---|
84 | implements OptionHandler, TechnicalInformationHandler { |
---|
85 | |
---|
86 | /** for serialization */ |
---|
87 | static final long serialVersionUID = -567567567567588L; |
---|
88 | |
---|
89 | /** |
---|
90 | * Inner class for cluster of CLOPE. |
---|
91 | * |
---|
92 | * @see Serializable |
---|
93 | */ |
---|
94 | private class CLOPECluster implements Serializable { |
---|
95 | |
---|
96 | /** |
---|
97 | * Number of transactions |
---|
98 | */ |
---|
99 | public int N = 0; //number of transactions |
---|
100 | |
---|
101 | /** |
---|
102 | * Number of distinct items (or width) |
---|
103 | */ |
---|
104 | public int W = 0; |
---|
105 | |
---|
106 | /** |
---|
107 | * Size of cluster |
---|
108 | */ |
---|
109 | public int S = 0; |
---|
110 | |
---|
111 | /** |
---|
112 | * Hash of <item, occurrence> pairs |
---|
113 | */ |
---|
114 | public HashMap occ = new HashMap(); |
---|
115 | |
---|
116 | /** |
---|
117 | * Add item to cluster |
---|
118 | */ |
---|
119 | public void AddItem(String Item) { |
---|
120 | int count; |
---|
121 | if (!this.occ.containsKey(Item)) { |
---|
122 | this.occ.put(Item, 1); |
---|
123 | } else { |
---|
124 | count = (Integer) this.occ.get(Item); |
---|
125 | count++; |
---|
126 | this.occ.remove(Item); |
---|
127 | this.occ.put(Item, count); |
---|
128 | } |
---|
129 | this.S++; |
---|
130 | } |
---|
131 | |
---|
132 | public void AddItem(Integer Item) { |
---|
133 | int count; |
---|
134 | if (!this.occ.containsKey(Item)) { |
---|
135 | this.occ.put(Item, 1); |
---|
136 | } else { |
---|
137 | count = (Integer) this.occ.get(Item); |
---|
138 | count++; |
---|
139 | this.occ.remove(Item); |
---|
140 | this.occ.put(Item, count); |
---|
141 | } |
---|
142 | this.S++; |
---|
143 | } |
---|
144 | |
---|
145 | /** |
---|
146 | * Delete item from cluster |
---|
147 | */ |
---|
148 | public void DeleteItem(String Item) { |
---|
149 | int count; |
---|
150 | |
---|
151 | count = (Integer) this.occ.get(Item); |
---|
152 | |
---|
153 | if (count == 1) { |
---|
154 | this.occ.remove(Item); |
---|
155 | |
---|
156 | } else { |
---|
157 | count--; |
---|
158 | this.occ.remove(Item); |
---|
159 | this.occ.put(Item, count); |
---|
160 | } |
---|
161 | this.S--; |
---|
162 | } |
---|
163 | |
---|
164 | public void DeleteItem(Integer Item) { |
---|
165 | int count; |
---|
166 | |
---|
167 | count = (Integer) this.occ.get(Item); |
---|
168 | |
---|
169 | if (count == 1) { |
---|
170 | this.occ.remove(Item); |
---|
171 | |
---|
172 | } else { |
---|
173 | count--; |
---|
174 | this.occ.remove(Item); |
---|
175 | this.occ.put(Item, count); |
---|
176 | } |
---|
177 | this.S--; |
---|
178 | } |
---|
179 | |
---|
180 | /** |
---|
181 | * Calculate Delta |
---|
182 | */ |
---|
183 | public double DeltaAdd(Instance inst, double r) { |
---|
184 | //System.out.println("DeltaAdd"); |
---|
185 | int S_new; |
---|
186 | int W_new; |
---|
187 | double profit; |
---|
188 | double profit_new; |
---|
189 | double deltaprofit; |
---|
190 | S_new = 0; |
---|
191 | W_new = occ.size(); |
---|
192 | |
---|
193 | if (inst instanceof SparseInstance) { |
---|
194 | //System.out.println("DeltaAddSparceInstance"); |
---|
195 | for (int i = 0; i < inst.numValues(); i++) { |
---|
196 | S_new++; |
---|
197 | |
---|
198 | if ((Integer) this.occ.get(inst.index(i)) == null) { |
---|
199 | W_new++; |
---|
200 | } |
---|
201 | } |
---|
202 | } else { |
---|
203 | for (int i = 0; i < inst.numAttributes(); i++) { |
---|
204 | if (!inst.isMissing(i)) { |
---|
205 | S_new++; |
---|
206 | if ((Integer) this.occ.get(i + inst.toString(i)) == null) { |
---|
207 | W_new++; |
---|
208 | } |
---|
209 | } |
---|
210 | } |
---|
211 | } |
---|
212 | S_new += S; |
---|
213 | |
---|
214 | |
---|
215 | if (N == 0) { |
---|
216 | deltaprofit = S_new / Math.pow(W_new, r); |
---|
217 | } else { |
---|
218 | profit = S * N / Math.pow(W, r); |
---|
219 | profit_new = S_new * (N + 1) / Math.pow(W_new, r); |
---|
220 | deltaprofit = profit_new - profit; |
---|
221 | } |
---|
222 | return deltaprofit; |
---|
223 | } |
---|
224 | |
---|
225 | /** |
---|
226 | * Add instance to cluster |
---|
227 | */ |
---|
228 | public void AddInstance(Instance inst) { |
---|
229 | if (inst instanceof SparseInstance) { |
---|
230 | // System.out.println("AddSparceInstance"); |
---|
231 | for (int i = 0; i < inst.numValues(); i++) { |
---|
232 | AddItem(inst.index(i)); |
---|
233 | // for(int i=0;i<inst.numAttributes();int++){ |
---|
234 | // AddItem(inst.index(i)+inst.value(i)); |
---|
235 | } |
---|
236 | } else { |
---|
237 | for (int i = 0; i < inst.numAttributes(); i++) { |
---|
238 | |
---|
239 | if (!inst.isMissing(i)) { |
---|
240 | |
---|
241 | AddItem(i + inst.toString(i)); |
---|
242 | } |
---|
243 | } |
---|
244 | } |
---|
245 | this.W = this.occ.size(); |
---|
246 | this.N++; |
---|
247 | } |
---|
248 | |
---|
249 | /** |
---|
250 | * Delete instance from cluster |
---|
251 | */ |
---|
252 | public void DeleteInstance(Instance inst) { |
---|
253 | if (inst instanceof SparseInstance) { |
---|
254 | // System.out.println("DeleteSparceInstance"); |
---|
255 | for (int i = 0; i < inst.numValues(); i++) { |
---|
256 | DeleteItem(inst.index(i)); |
---|
257 | } |
---|
258 | } else { |
---|
259 | for (int i = 0; i <= inst.numAttributes() - 1; i++) { |
---|
260 | |
---|
261 | if (!inst.isMissing(i)) { |
---|
262 | DeleteItem(i + inst.toString(i)); |
---|
263 | } |
---|
264 | } |
---|
265 | } |
---|
266 | this.W = this.occ.size(); |
---|
267 | this.N--; |
---|
268 | } |
---|
269 | } |
---|
270 | /** |
---|
271 | * Array of clusters |
---|
272 | */ |
---|
273 | public ArrayList<CLOPECluster> clusters = new ArrayList<CLOPECluster>(); |
---|
274 | |
---|
275 | /** |
---|
276 | * Specifies the repulsion default |
---|
277 | */ |
---|
278 | protected double m_RepulsionDefault = 2.6; |
---|
279 | |
---|
280 | /** |
---|
281 | * Specifies the repulsion |
---|
282 | */ |
---|
283 | protected double m_Repulsion = m_RepulsionDefault; |
---|
284 | |
---|
285 | /** |
---|
286 | * Number of clusters |
---|
287 | */ |
---|
288 | protected int m_numberOfClusters = -1; |
---|
289 | |
---|
290 | /** |
---|
291 | * Counter for the processed instances |
---|
292 | */ |
---|
293 | protected int m_processed_InstanceID; |
---|
294 | |
---|
295 | /** |
---|
296 | * Number of instances |
---|
297 | */ |
---|
298 | protected int m_numberOfInstances; |
---|
299 | |
---|
300 | /** |
---|
301 | * |
---|
302 | */ |
---|
303 | protected ArrayList<Integer> m_clusterAssignments = new ArrayList(); |
---|
304 | |
---|
305 | /** |
---|
306 | * whether the number of clusters was already determined |
---|
307 | */ |
---|
308 | protected boolean m_numberOfClustersDetermined = false; |
---|
309 | |
---|
310 | public int numberOfClusters() { |
---|
311 | determineNumberOfClusters(); |
---|
312 | return m_numberOfClusters; |
---|
313 | } |
---|
314 | |
---|
315 | protected void determineNumberOfClusters() { |
---|
316 | |
---|
317 | m_numberOfClusters = clusters.size(); |
---|
318 | |
---|
319 | m_numberOfClustersDetermined = true; |
---|
320 | } |
---|
321 | |
---|
322 | public Enumeration listOptions() { |
---|
323 | Vector result = new Vector(); |
---|
324 | result.addElement(new Option( |
---|
325 | "\tRepulsion\n" + "\t(default " + m_RepulsionDefault + ")", |
---|
326 | "R", 1, "-R <num>")); |
---|
327 | return result.elements(); |
---|
328 | } |
---|
329 | |
---|
330 | /** |
---|
331 | * Parses a given list of options. <p/> |
---|
332 | * |
---|
333 | <!-- options-start --> |
---|
334 | * Valid options are: <p/> |
---|
335 | * |
---|
336 | * <pre> -R <num> |
---|
337 | * Repulsion |
---|
338 | * (default 2.6)</pre> |
---|
339 | * |
---|
340 | <!-- options-end --> |
---|
341 | * |
---|
342 | * @param options the list of options as an array of strings |
---|
343 | * @throws Exception if an option is not supported |
---|
344 | */ |
---|
345 | public void setOptions(String[] options) throws Exception { |
---|
346 | String tmpStr; |
---|
347 | |
---|
348 | tmpStr = Utils.getOption('R', options); |
---|
349 | if (tmpStr.length() != 0) { |
---|
350 | setRepulsion(Double.parseDouble(tmpStr)); |
---|
351 | } else { |
---|
352 | setRepulsion(m_RepulsionDefault); |
---|
353 | } |
---|
354 | } |
---|
355 | |
---|
356 | /** |
---|
357 | * Gets the current settings of CLOPE |
---|
358 | * |
---|
359 | * @return an array of strings suitable for passing to setOptions() |
---|
360 | */ |
---|
361 | public String[] getOptions() { |
---|
362 | Vector result; |
---|
363 | |
---|
364 | result = new Vector(); |
---|
365 | |
---|
366 | result.add("-R"); |
---|
367 | result.add("" + getRepulsion()); |
---|
368 | |
---|
369 | return (String[]) result.toArray(new String[result.size()]); |
---|
370 | } |
---|
371 | |
---|
372 | /** |
---|
373 | * Returns the tip text for this property |
---|
374 | * @return tip text for this property suitable for |
---|
375 | * displaying in the explorer/experimenter gui |
---|
376 | */ |
---|
377 | public String repulsionTipText() { |
---|
378 | return "Repulsion to be used."; |
---|
379 | } |
---|
380 | |
---|
381 | /** |
---|
382 | * set the repulsion |
---|
383 | * |
---|
384 | * @param value the repulsion |
---|
385 | * @throws Exception if number of clusters is negative |
---|
386 | */ |
---|
387 | public void setRepulsion(double value) { |
---|
388 | m_Repulsion = value; |
---|
389 | } |
---|
390 | |
---|
391 | /** |
---|
392 | * gets the repulsion |
---|
393 | * |
---|
394 | * @return the repulsion |
---|
395 | */ |
---|
396 | public double getRepulsion() { |
---|
397 | return m_Repulsion; |
---|
398 | } |
---|
399 | |
---|
400 | /** |
---|
401 | * Returns default capabilities of the clusterer. |
---|
402 | * |
---|
403 | * @return the capabilities of this clusterer |
---|
404 | */ |
---|
405 | public Capabilities getCapabilities() { |
---|
406 | Capabilities result = super.getCapabilities(); |
---|
407 | result.disableAll(); |
---|
408 | result.enable(Capability.NO_CLASS); |
---|
409 | |
---|
410 | // attributes |
---|
411 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
412 | // result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
413 | result.enable(Capability.MISSING_VALUES); |
---|
414 | |
---|
415 | return result; |
---|
416 | } |
---|
417 | |
---|
418 | /** |
---|
419 | * Generate Clustering via CLOPE |
---|
420 | * @param data The instances that need to be clustered |
---|
421 | * @throws java.lang.Exception If clustering was not successful |
---|
422 | */ |
---|
423 | public void buildClusterer(Instances data) throws Exception { |
---|
424 | clusters.clear(); |
---|
425 | m_processed_InstanceID = 0; |
---|
426 | m_clusterAssignments.clear(); |
---|
427 | m_numberOfInstances = data.numInstances(); |
---|
428 | boolean moved; |
---|
429 | //Phase 1 |
---|
430 | for (int i = 0; i < data.numInstances(); i++) { |
---|
431 | int clusterid = AddInstanceToBestCluster(data.instance(i)); |
---|
432 | m_clusterAssignments.add(clusterid); |
---|
433 | |
---|
434 | } |
---|
435 | //Phase 2 |
---|
436 | do { |
---|
437 | moved = false; |
---|
438 | for (int i = 0; i < data.numInstances(); i++) { |
---|
439 | m_processed_InstanceID = i; |
---|
440 | int clusterid = MoveInstanceToBestCluster(data.instance(i)); |
---|
441 | if (clusterid != m_clusterAssignments.get(i)) { |
---|
442 | moved = true; |
---|
443 | m_clusterAssignments.set(i, clusterid); |
---|
444 | } |
---|
445 | } |
---|
446 | } while (!moved); |
---|
447 | m_processed_InstanceID = 0; |
---|
448 | } |
---|
449 | |
---|
450 | /** |
---|
451 | * the default constructor |
---|
452 | */ |
---|
453 | public CLOPE() { |
---|
454 | super(); |
---|
455 | } |
---|
456 | |
---|
457 | /** |
---|
458 | * Add instance to best cluster |
---|
459 | */ |
---|
460 | public int AddInstanceToBestCluster(Instance inst) { |
---|
461 | |
---|
462 | double delta; |
---|
463 | double deltamax; |
---|
464 | int clustermax = -1; |
---|
465 | if (clusters.size() > 0) { |
---|
466 | int tempS = 0; |
---|
467 | int tempW = 0; |
---|
468 | if (inst instanceof SparseInstance) { |
---|
469 | for (int i = 0; i < inst.numValues(); i++) { |
---|
470 | tempS++; |
---|
471 | tempW++; |
---|
472 | } |
---|
473 | } else { |
---|
474 | for (int i = 0; i < inst.numAttributes(); i++) { |
---|
475 | if (!inst.isMissing(i)) { |
---|
476 | tempS++; |
---|
477 | tempW++; |
---|
478 | } |
---|
479 | } |
---|
480 | } |
---|
481 | |
---|
482 | deltamax = tempS / Math.pow(tempW, m_Repulsion); |
---|
483 | |
---|
484 | for (int i = 0; i < clusters.size(); i++) { |
---|
485 | CLOPECluster tempcluster = clusters.get(i); |
---|
486 | delta = tempcluster.DeltaAdd(inst, m_Repulsion); |
---|
487 | // System.out.println("delta " + delta); |
---|
488 | if (delta > deltamax) { |
---|
489 | deltamax = delta; |
---|
490 | clustermax = i; |
---|
491 | } |
---|
492 | } |
---|
493 | } else { |
---|
494 | CLOPECluster newcluster = new CLOPECluster(); |
---|
495 | clusters.add(newcluster); |
---|
496 | newcluster.AddInstance(inst); |
---|
497 | return clusters.size() - 1; |
---|
498 | } |
---|
499 | |
---|
500 | if (clustermax == -1) { |
---|
501 | CLOPECluster newcluster = new CLOPECluster(); |
---|
502 | clusters.add(newcluster); |
---|
503 | newcluster.AddInstance(inst); |
---|
504 | return clusters.size() - 1; |
---|
505 | } |
---|
506 | clusters.get(clustermax).AddInstance(inst); |
---|
507 | return clustermax; |
---|
508 | } |
---|
509 | |
---|
510 | /** |
---|
511 | * Move instance to best cluster |
---|
512 | */ |
---|
513 | public int MoveInstanceToBestCluster(Instance inst) { |
---|
514 | |
---|
515 | clusters.get(m_clusterAssignments.get(m_processed_InstanceID)).DeleteInstance(inst); |
---|
516 | m_clusterAssignments.set(m_processed_InstanceID, -1); |
---|
517 | double delta; |
---|
518 | double deltamax; |
---|
519 | int clustermax = -1; |
---|
520 | int tempS = 0; |
---|
521 | int tempW = 0; |
---|
522 | |
---|
523 | if (inst instanceof SparseInstance) { |
---|
524 | for (int i = 0; i < inst.numValues(); i++) { |
---|
525 | tempS++; |
---|
526 | tempW++; |
---|
527 | } |
---|
528 | } else { |
---|
529 | for (int i = 0; i < inst.numAttributes(); i++) { |
---|
530 | if (!inst.isMissing(i)) { |
---|
531 | tempS++; |
---|
532 | tempW++; |
---|
533 | } |
---|
534 | } |
---|
535 | } |
---|
536 | |
---|
537 | deltamax = tempS / Math.pow(tempW, m_Repulsion); |
---|
538 | for (int i = 0; i < clusters.size(); i++) { |
---|
539 | CLOPECluster tempcluster = clusters.get(i); |
---|
540 | delta = tempcluster.DeltaAdd(inst, m_Repulsion); |
---|
541 | // System.out.println("delta " + delta); |
---|
542 | if (delta > deltamax) { |
---|
543 | deltamax = delta; |
---|
544 | clustermax = i; |
---|
545 | } |
---|
546 | } |
---|
547 | if (clustermax == -1) { |
---|
548 | CLOPECluster newcluster = new CLOPECluster(); |
---|
549 | clusters.add(newcluster); |
---|
550 | newcluster.AddInstance(inst); |
---|
551 | return clusters.size() - 1; |
---|
552 | } |
---|
553 | clusters.get(clustermax).AddInstance(inst); |
---|
554 | return clustermax; |
---|
555 | } |
---|
556 | |
---|
557 | /** |
---|
558 | * Classifies a given instance. |
---|
559 | * |
---|
560 | * @param instance The instance to be assigned to a cluster |
---|
561 | * @return int The number of the assigned cluster as an integer |
---|
562 | * @throws java.lang.Exception If instance could not be clustered |
---|
563 | * successfully |
---|
564 | */ |
---|
565 | public int clusterInstance(Instance instance) throws Exception { |
---|
566 | if (m_processed_InstanceID >= m_numberOfInstances) { |
---|
567 | m_processed_InstanceID = 0; |
---|
568 | } |
---|
569 | int i = m_clusterAssignments.get(m_processed_InstanceID); |
---|
570 | m_processed_InstanceID++; |
---|
571 | return i; |
---|
572 | } |
---|
573 | |
---|
574 | /** |
---|
575 | * return a string describing this clusterer |
---|
576 | * |
---|
577 | * @return a description of the clusterer as a string |
---|
578 | */ |
---|
579 | public String toString() { |
---|
580 | StringBuffer stringBuffer = new StringBuffer(); |
---|
581 | stringBuffer.append("CLOPE clustering results\n" + |
---|
582 | "========================================================================================\n\n"); |
---|
583 | stringBuffer.append("Clustered instances: " + m_clusterAssignments.size() + "\n"); |
---|
584 | return stringBuffer.toString() + "\n"; |
---|
585 | } |
---|
586 | |
---|
587 | /** |
---|
588 | * Returns a string describing this DataMining-Algorithm |
---|
589 | * @return String Information for the gui-explorer |
---|
590 | */ |
---|
591 | public String globalInfo() { |
---|
592 | return getTechnicalInformation().toString(); |
---|
593 | } |
---|
594 | |
---|
595 | /** |
---|
596 | * Returns an instance of a TechnicalInformation object, containing |
---|
597 | * detailed information about the technical background of this class, |
---|
598 | * e.g., paper reference or book this class is based on. |
---|
599 | * |
---|
600 | * @return the technical information about this class |
---|
601 | */ |
---|
602 | public TechnicalInformation getTechnicalInformation() { |
---|
603 | TechnicalInformation result; |
---|
604 | |
---|
605 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
606 | result.setValue(Field.AUTHOR, "Yiling Yang and Xudong Guan and Jinyuan You"); |
---|
607 | result.setValue(Field.TITLE, "CLOPE: a fast and effective clustering algorithm for transactional data"); |
---|
608 | result.setValue(Field.BOOKTITLE, "Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining"); |
---|
609 | result.setValue(Field.YEAR, "2002"); |
---|
610 | result.setValue(Field.PAGES, "682-687"); |
---|
611 | result.setValue(Field.PUBLISHER, "ACM New York, NY, USA"); |
---|
612 | |
---|
613 | return result; |
---|
614 | } |
---|
615 | |
---|
616 | /** |
---|
617 | * Returns the revision string. |
---|
618 | * |
---|
619 | * @return the revision |
---|
620 | */ |
---|
621 | public String getRevision() { |
---|
622 | return RevisionUtils.extract("$Revision: 5488 $"); |
---|
623 | } |
---|
624 | |
---|
625 | /** |
---|
626 | * Main method for testing this class. |
---|
627 | * |
---|
628 | * @param argv should contain the following arguments: <p> |
---|
629 | * -t training file [-R repulsion] |
---|
630 | */ |
---|
631 | public static void main(String[] argv) { |
---|
632 | runClusterer(new CLOPE(), argv); |
---|
633 | } |
---|
634 | } |
---|
635 | |
---|