1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * AbstractDensityBasedClusterer.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.clusterers; |
---|
24 | |
---|
25 | import weka.core.Instance; |
---|
26 | import weka.core.SerializedObject; |
---|
27 | import weka.core.Utils; |
---|
28 | |
---|
29 | /** |
---|
30 | * Abstract clustering model that produces (for each test instance) |
---|
31 | * an estimate of the membership in each cluster |
---|
32 | * (ie. a probability distribution). |
---|
33 | * |
---|
34 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
35 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
36 | * @version $Revision: 1.1 $ |
---|
37 | */ |
---|
38 | public abstract class AbstractDensityBasedClusterer |
---|
39 | extends AbstractClusterer implements DensityBasedClusterer { |
---|
40 | |
---|
41 | /** for serialization. */ |
---|
42 | private static final long serialVersionUID = -5950728041704213845L; |
---|
43 | |
---|
44 | // =============== |
---|
45 | // Public methods. |
---|
46 | // =============== |
---|
47 | |
---|
48 | /** |
---|
49 | * Returns the prior probability of each cluster. |
---|
50 | * |
---|
51 | * @return the prior probability for each cluster |
---|
52 | * @exception Exception if priors could not be |
---|
53 | * returned successfully |
---|
54 | */ |
---|
55 | public abstract double[] clusterPriors() |
---|
56 | throws Exception; |
---|
57 | |
---|
58 | /** |
---|
59 | * Computes the log of the conditional density (per cluster) for a given instance. |
---|
60 | * |
---|
61 | * @param instance the instance to compute the density for |
---|
62 | * @return an array containing the estimated densities |
---|
63 | * @exception Exception if the density could not be computed |
---|
64 | * successfully |
---|
65 | */ |
---|
66 | public abstract double[] logDensityPerClusterForInstance(Instance instance) |
---|
67 | throws Exception; |
---|
68 | |
---|
69 | /** |
---|
70 | * Computes the density for a given instance. |
---|
71 | * |
---|
72 | * @param instance the instance to compute the density for |
---|
73 | * @return the density. |
---|
74 | * @exception Exception if the density could not be computed successfully |
---|
75 | */ |
---|
76 | public double logDensityForInstance(Instance instance) throws Exception { |
---|
77 | |
---|
78 | double[] a = logJointDensitiesForInstance(instance); |
---|
79 | double max = a[Utils.maxIndex(a)]; |
---|
80 | double sum = 0.0; |
---|
81 | |
---|
82 | for(int i = 0; i < a.length; i++) { |
---|
83 | sum += Math.exp(a[i] - max); |
---|
84 | } |
---|
85 | |
---|
86 | return max + Math.log(sum); |
---|
87 | } |
---|
88 | |
---|
89 | /** |
---|
90 | * Returns the cluster probability distribution for an instance. |
---|
91 | * |
---|
92 | * @param instance the instance to be clustered |
---|
93 | * @return the probability distribution |
---|
94 | * @throws Exception if computation fails |
---|
95 | */ |
---|
96 | public double[] distributionForInstance(Instance instance) throws Exception { |
---|
97 | |
---|
98 | return Utils.logs2probs(logJointDensitiesForInstance(instance)); |
---|
99 | } |
---|
100 | |
---|
101 | /** |
---|
102 | * Returns the logs of the joint densities for a given instance. |
---|
103 | * |
---|
104 | * @param inst the instance |
---|
105 | * @return the array of values |
---|
106 | * @exception Exception if values could not be computed |
---|
107 | */ |
---|
108 | public double[] logJointDensitiesForInstance(Instance inst) |
---|
109 | throws Exception { |
---|
110 | |
---|
111 | double[] weights = logDensityPerClusterForInstance(inst); |
---|
112 | double[] priors = clusterPriors(); |
---|
113 | |
---|
114 | for (int i = 0; i < weights.length; i++) { |
---|
115 | if (priors[i] > 0) { |
---|
116 | weights[i] += Math.log(priors[i]); |
---|
117 | } else { |
---|
118 | throw new IllegalArgumentException("Cluster empty!"); |
---|
119 | } |
---|
120 | } |
---|
121 | return weights; |
---|
122 | } |
---|
123 | |
---|
124 | /** |
---|
125 | * Creates copies of the current clusterer. Note that this method |
---|
126 | * now uses Serialization to perform a deep copy, so the Clusterer |
---|
127 | * object must be fully Serializable. Any currently built model will |
---|
128 | * now be copied as well. |
---|
129 | * |
---|
130 | * @param model an example clusterer to copy |
---|
131 | * @param num the number of clusterer copies to create. |
---|
132 | * @return an array of clusterers. |
---|
133 | * @exception Exception if an error occurs |
---|
134 | */ |
---|
135 | public static DensityBasedClusterer [] makeCopies(DensityBasedClusterer model, |
---|
136 | int num) throws Exception { |
---|
137 | if (model == null) { |
---|
138 | throw new Exception("No model clusterer set"); |
---|
139 | } |
---|
140 | DensityBasedClusterer [] clusterers = new DensityBasedClusterer [num]; |
---|
141 | SerializedObject so = new SerializedObject(model); |
---|
142 | for(int i = 0; i < clusterers.length; i++) { |
---|
143 | clusterers[i] = (DensityBasedClusterer) so.getObject(); |
---|
144 | } |
---|
145 | return clusterers; |
---|
146 | } |
---|
147 | } |
---|