source: src/main/java/weka/clusterers/AbstractDensityBasedClusterer.java @ 22

Last change on this file since 22 was 4, checked in by gnappo, 14 years ago

Import di weka.

File size: 4.6 KB
RevLine 
[4]1/*
2 *    This program is free software; you can redistribute it and/or modify
3 *    it under the terms of the GNU General Public License as published by
4 *    the Free Software Foundation; either version 2 of the License, or
5 *    (at your option) any later version.
6 *
7 *    This program is distributed in the hope that it will be useful,
8 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
9 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10 *    GNU General Public License for more details.
11 *
12 *    You should have received a copy of the GNU General Public License
13 *    along with this program; if not, write to the Free Software
14 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
15 */
16
17/*
18 *    AbstractDensityBasedClusterer.java
19 *    Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
20 *
21 */
22
23package weka.clusterers;
24
25import weka.core.Instance;
26import weka.core.SerializedObject;
27import weka.core.Utils;
28
29/**
30 * Abstract clustering model that produces (for each test instance)
31 * an estimate of the membership in each cluster
32 * (ie. a probability distribution).
33 *
34 * @author   Mark Hall (mhall@cs.waikato.ac.nz)
35 * @author Eibe Frank (eibe@cs.waikato.ac.nz)
36 * @version  $Revision: 1.1 $
37 */
38public abstract class AbstractDensityBasedClusterer
39  extends AbstractClusterer implements DensityBasedClusterer {
40
41  /** for serialization. */
42  private static final long serialVersionUID = -5950728041704213845L;
43
44  // ===============
45  // Public methods.
46  // ===============
47
48  /**
49   * Returns the prior probability of each cluster.
50   *
51   * @return the prior probability for each cluster
52   * @exception Exception if priors could not be
53   * returned successfully
54   */
55  public abstract double[] clusterPriors() 
56    throws Exception;
57
58  /**
59   * Computes the log of the conditional density (per cluster) for a given instance.
60   *
61   * @param instance the instance to compute the density for
62   * @return an array containing the estimated densities
63   * @exception Exception if the density could not be computed
64   * successfully
65   */
66  public abstract double[] logDensityPerClusterForInstance(Instance instance) 
67    throws Exception;
68
69  /**
70   * Computes the density for a given instance.
71   *
72   * @param instance the instance to compute the density for
73   * @return the density.
74   * @exception Exception if the density could not be computed successfully
75   */
76  public double logDensityForInstance(Instance instance) throws Exception {
77
78    double[] a = logJointDensitiesForInstance(instance);
79    double max = a[Utils.maxIndex(a)];
80    double sum = 0.0;
81
82    for(int i = 0; i < a.length; i++) {
83      sum += Math.exp(a[i] - max);
84    }
85
86    return max + Math.log(sum);
87  }
88
89  /**
90   * Returns the cluster probability distribution for an instance.
91   *
92   * @param instance the instance to be clustered
93   * @return the probability distribution
94   * @throws Exception if computation fails
95   */ 
96  public double[] distributionForInstance(Instance instance) throws Exception {
97   
98    return Utils.logs2probs(logJointDensitiesForInstance(instance));
99  }
100
101  /**
102   * Returns the logs of the joint densities for a given instance.
103   *
104   * @param inst the instance
105   * @return the array of values
106   * @exception Exception if values could not be computed
107   */
108  public double[] logJointDensitiesForInstance(Instance inst)
109    throws Exception {
110
111    double[] weights = logDensityPerClusterForInstance(inst);
112    double[] priors = clusterPriors();
113
114    for (int i = 0; i < weights.length; i++) {
115      if (priors[i] > 0) {
116        weights[i] += Math.log(priors[i]);
117      } else {
118        throw new IllegalArgumentException("Cluster empty!");
119      }
120    }
121    return weights;
122  }
123
124  /**
125   * Creates copies of the current clusterer. Note that this method
126   * now uses Serialization to perform a deep copy, so the Clusterer
127   * object must be fully Serializable. Any currently built model will
128   * now be copied as well.
129   *
130   * @param model an example clusterer to copy
131   * @param num the number of clusterer copies to create.
132   * @return an array of clusterers.
133   * @exception Exception if an error occurs
134   */
135  public static DensityBasedClusterer [] makeCopies(DensityBasedClusterer model,
136                                                    int num) throws Exception {
137     if (model == null) {
138      throw new Exception("No model clusterer set");
139    }
140    DensityBasedClusterer [] clusterers = new DensityBasedClusterer [num];
141    SerializedObject so = new SerializedObject(model);
142    for(int i = 0; i < clusterers.length; i++) {
143      clusterers[i] = (DensityBasedClusterer) so.getObject();
144    }
145    return clusterers;
146  }
147}
Note: See TracBrowser for help on using the repository browser.