1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * Rule.java |
---|
19 | * Copyright (C) 2000 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.trees.m5; |
---|
24 | |
---|
25 | import weka.core.Instance; |
---|
26 | import weka.core.Instances; |
---|
27 | import weka.core.RevisionHandler; |
---|
28 | import weka.core.RevisionUtils; |
---|
29 | import weka.core.Utils; |
---|
30 | |
---|
31 | import java.io.Serializable; |
---|
32 | |
---|
33 | /** |
---|
34 | * Generates a single m5 tree or rule |
---|
35 | * |
---|
36 | * @author Mark Hall |
---|
37 | * @version $Revision: 1.15 $ |
---|
38 | */ |
---|
39 | public class Rule |
---|
40 | implements Serializable, RevisionHandler { |
---|
41 | |
---|
42 | /** for serialization */ |
---|
43 | private static final long serialVersionUID = -4458627451682483204L; |
---|
44 | |
---|
45 | protected static int LEFT = 0; |
---|
46 | protected static int RIGHT = 1; |
---|
47 | |
---|
48 | /** |
---|
49 | * the instances covered by this rule |
---|
50 | */ |
---|
51 | private Instances m_instances; |
---|
52 | |
---|
53 | /** |
---|
54 | * the class index |
---|
55 | */ |
---|
56 | private int m_classIndex; |
---|
57 | |
---|
58 | /** |
---|
59 | * the number of attributes |
---|
60 | */ |
---|
61 | private int m_numAttributes; |
---|
62 | |
---|
63 | /** |
---|
64 | * the number of instances in the dataset |
---|
65 | */ |
---|
66 | private int m_numInstances; |
---|
67 | |
---|
68 | /** |
---|
69 | * the indexes of the attributes used to split on for this rule |
---|
70 | */ |
---|
71 | private int[] m_splitAtts; |
---|
72 | |
---|
73 | /** |
---|
74 | * the corresponding values of the split points |
---|
75 | */ |
---|
76 | private double[] m_splitVals; |
---|
77 | |
---|
78 | /** |
---|
79 | * the corresponding internal nodes. Used for smoothing rules. |
---|
80 | */ |
---|
81 | private RuleNode[] m_internalNodes; |
---|
82 | |
---|
83 | /** |
---|
84 | * the corresponding relational operators (0 = "<=", 1 = ">") |
---|
85 | */ |
---|
86 | private int[] m_relOps; |
---|
87 | |
---|
88 | /** |
---|
89 | * the leaf encapsulating the linear model for this rule |
---|
90 | */ |
---|
91 | private RuleNode m_ruleModel; |
---|
92 | |
---|
93 | /** |
---|
94 | * the top of the m5 tree for this rule |
---|
95 | */ |
---|
96 | protected RuleNode m_topOfTree; |
---|
97 | |
---|
98 | /** |
---|
99 | * the standard deviation of the class for all the instances |
---|
100 | */ |
---|
101 | private double m_globalStdDev; |
---|
102 | |
---|
103 | /** |
---|
104 | * the absolute deviation of the class for all the instances |
---|
105 | */ |
---|
106 | private double m_globalAbsDev; |
---|
107 | |
---|
108 | /** |
---|
109 | * the instances covered by this rule |
---|
110 | */ |
---|
111 | private Instances m_covered; |
---|
112 | |
---|
113 | /** |
---|
114 | * the number of instances covered by this rule |
---|
115 | */ |
---|
116 | private int m_numCovered; |
---|
117 | |
---|
118 | /** |
---|
119 | * the instances not covered by this rule |
---|
120 | */ |
---|
121 | private Instances m_notCovered; |
---|
122 | |
---|
123 | /** |
---|
124 | * use a pruned m5 tree rather than make a rule |
---|
125 | */ |
---|
126 | private boolean m_useTree; |
---|
127 | |
---|
128 | /** |
---|
129 | * use the original m5 smoothing procedure |
---|
130 | */ |
---|
131 | private boolean m_smoothPredictions; |
---|
132 | |
---|
133 | /** |
---|
134 | * Save instances at each node in an M5 tree for visualization purposes. |
---|
135 | */ |
---|
136 | private boolean m_saveInstances; |
---|
137 | |
---|
138 | /** |
---|
139 | * Make a regression tree instead of a model tree |
---|
140 | */ |
---|
141 | private boolean m_regressionTree; |
---|
142 | |
---|
143 | /** |
---|
144 | * Build unpruned tree/rule |
---|
145 | */ |
---|
146 | private boolean m_useUnpruned; |
---|
147 | |
---|
148 | /** |
---|
149 | * The minimum number of instances to allow at a leaf node |
---|
150 | */ |
---|
151 | private double m_minNumInstances; |
---|
152 | |
---|
153 | /** |
---|
154 | * Constructor declaration |
---|
155 | * |
---|
156 | */ |
---|
157 | public Rule() { |
---|
158 | m_useTree = false; |
---|
159 | m_smoothPredictions = false; |
---|
160 | m_useUnpruned = false; |
---|
161 | m_minNumInstances = 4; |
---|
162 | } |
---|
163 | |
---|
164 | /** |
---|
165 | * Generates a single rule or m5 model tree. |
---|
166 | * |
---|
167 | * @param data set of instances serving as training data |
---|
168 | * @exception Exception if the rule has not been generated |
---|
169 | * successfully |
---|
170 | */ |
---|
171 | public void buildClassifier(Instances data) throws Exception { |
---|
172 | m_instances = null; |
---|
173 | m_topOfTree = null; |
---|
174 | m_covered = null; |
---|
175 | m_notCovered = null; |
---|
176 | m_ruleModel = null; |
---|
177 | m_splitAtts = null; |
---|
178 | m_splitVals = null; |
---|
179 | m_relOps = null; |
---|
180 | m_internalNodes = null; |
---|
181 | m_instances = data; |
---|
182 | m_classIndex = m_instances.classIndex(); |
---|
183 | m_numAttributes = m_instances.numAttributes(); |
---|
184 | m_numInstances = m_instances.numInstances(); |
---|
185 | |
---|
186 | // first calculate global deviation of class attribute |
---|
187 | m_globalStdDev = Rule.stdDev(m_classIndex, m_instances); |
---|
188 | m_globalAbsDev = Rule.absDev(m_classIndex, m_instances); |
---|
189 | |
---|
190 | m_topOfTree = new RuleNode(m_globalStdDev, m_globalAbsDev, null); |
---|
191 | m_topOfTree.setSaveInstances(m_saveInstances); |
---|
192 | m_topOfTree.setRegressionTree(m_regressionTree); |
---|
193 | m_topOfTree.setMinNumInstances(m_minNumInstances); |
---|
194 | m_topOfTree.buildClassifier(m_instances); |
---|
195 | |
---|
196 | |
---|
197 | if (!m_useUnpruned) { |
---|
198 | m_topOfTree.prune(); |
---|
199 | } else { |
---|
200 | m_topOfTree.installLinearModels(); |
---|
201 | } |
---|
202 | |
---|
203 | if (m_smoothPredictions) { |
---|
204 | m_topOfTree.installSmoothedModels(); |
---|
205 | } |
---|
206 | //m_topOfTree.printAllModels(); |
---|
207 | m_topOfTree.numLeaves(0); |
---|
208 | |
---|
209 | if (!m_useTree) { |
---|
210 | makeRule(); |
---|
211 | // save space |
---|
212 | // m_topOfTree = null; |
---|
213 | } |
---|
214 | |
---|
215 | // save space |
---|
216 | m_instances = new Instances(m_instances, 0); |
---|
217 | |
---|
218 | } |
---|
219 | |
---|
220 | /** |
---|
221 | * Calculates a prediction for an instance using this rule |
---|
222 | * or M5 model tree |
---|
223 | * |
---|
224 | * @param instance the instance whos class value is to be predicted |
---|
225 | * @return the prediction |
---|
226 | * @exception Exception if a prediction can't be made. |
---|
227 | */ |
---|
228 | public double classifyInstance(Instance instance) throws Exception { |
---|
229 | if (m_useTree) { |
---|
230 | return m_topOfTree.classifyInstance(instance); |
---|
231 | } |
---|
232 | |
---|
233 | // does the instance pass the rule's conditions? |
---|
234 | if (m_splitAtts.length > 0) { |
---|
235 | for (int i = 0; i < m_relOps.length; i++) { |
---|
236 | if (m_relOps[i] == LEFT) // left |
---|
237 | { |
---|
238 | if (instance.value(m_splitAtts[i]) > m_splitVals[i]) { |
---|
239 | throw new Exception("Rule does not classify instance"); |
---|
240 | } |
---|
241 | } else { |
---|
242 | if (instance.value(m_splitAtts[i]) <= m_splitVals[i]) { |
---|
243 | throw new Exception("Rule does not classify instance"); |
---|
244 | } |
---|
245 | } |
---|
246 | } |
---|
247 | } |
---|
248 | |
---|
249 | // the linear model's prediction for this rule |
---|
250 | return m_ruleModel.classifyInstance(instance); |
---|
251 | } |
---|
252 | |
---|
253 | /** |
---|
254 | * Returns the top of the tree. |
---|
255 | */ |
---|
256 | public RuleNode topOfTree() { |
---|
257 | |
---|
258 | return m_topOfTree; |
---|
259 | } |
---|
260 | |
---|
261 | /** |
---|
262 | * Make the single best rule from a pruned m5 model tree |
---|
263 | * |
---|
264 | * @exception Exception if something goes wrong. |
---|
265 | */ |
---|
266 | private void makeRule() throws Exception { |
---|
267 | RuleNode[] best_leaf = new RuleNode[1]; |
---|
268 | double[] best_cov = new double[1]; |
---|
269 | RuleNode temp; |
---|
270 | |
---|
271 | m_notCovered = new Instances(m_instances, 0); |
---|
272 | m_covered = new Instances(m_instances, 0); |
---|
273 | best_cov[0] = -1; |
---|
274 | best_leaf[0] = null; |
---|
275 | |
---|
276 | m_topOfTree.findBestLeaf(best_cov, best_leaf); |
---|
277 | |
---|
278 | temp = best_leaf[0]; |
---|
279 | |
---|
280 | if (temp == null) { |
---|
281 | throw new Exception("Unable to generate rule!"); |
---|
282 | } |
---|
283 | |
---|
284 | // save the linear model for this rule |
---|
285 | m_ruleModel = temp; |
---|
286 | |
---|
287 | int count = 0; |
---|
288 | |
---|
289 | while (temp.parentNode() != null) { |
---|
290 | count++; |
---|
291 | temp = temp.parentNode(); |
---|
292 | } |
---|
293 | |
---|
294 | temp = best_leaf[0]; |
---|
295 | m_relOps = new int[count]; |
---|
296 | m_splitAtts = new int[count]; |
---|
297 | m_splitVals = new double[count]; |
---|
298 | if (m_smoothPredictions) { |
---|
299 | m_internalNodes = new RuleNode[count]; |
---|
300 | } |
---|
301 | |
---|
302 | // trace back to the root |
---|
303 | int i = 0; |
---|
304 | |
---|
305 | while (temp.parentNode() != null) { |
---|
306 | m_splitAtts[i] = temp.parentNode().splitAtt(); |
---|
307 | m_splitVals[i] = temp.parentNode().splitVal(); |
---|
308 | |
---|
309 | if (temp.parentNode().leftNode() == temp) { |
---|
310 | m_relOps[i] = LEFT; |
---|
311 | // temp.parentNode().m_right = null; |
---|
312 | } else { |
---|
313 | m_relOps[i] = RIGHT; |
---|
314 | // temp.parentNode().m_left = null; |
---|
315 | } |
---|
316 | |
---|
317 | if (m_smoothPredictions) { |
---|
318 | m_internalNodes[i] = temp.parentNode(); |
---|
319 | } |
---|
320 | |
---|
321 | temp = temp.parentNode(); |
---|
322 | i++; |
---|
323 | } |
---|
324 | |
---|
325 | // now assemble the covered and uncovered instances |
---|
326 | boolean ok; |
---|
327 | |
---|
328 | for (i = 0; i < m_numInstances; i++) { |
---|
329 | ok = true; |
---|
330 | |
---|
331 | for (int j = 0; j < m_relOps.length; j++) { |
---|
332 | if (m_relOps[j] == LEFT) |
---|
333 | { |
---|
334 | if (m_instances.instance(i).value(m_splitAtts[j]) |
---|
335 | > m_splitVals[j]) { |
---|
336 | m_notCovered.add(m_instances.instance(i)); |
---|
337 | ok = false; |
---|
338 | break; |
---|
339 | } |
---|
340 | } else { |
---|
341 | if (m_instances.instance(i).value(m_splitAtts[j]) |
---|
342 | <= m_splitVals[j]) { |
---|
343 | m_notCovered.add(m_instances.instance(i)); |
---|
344 | ok = false; |
---|
345 | break; |
---|
346 | } |
---|
347 | } |
---|
348 | } |
---|
349 | |
---|
350 | if (ok) { |
---|
351 | m_numCovered++; |
---|
352 | // m_covered.add(m_instances.instance(i)); |
---|
353 | } |
---|
354 | } |
---|
355 | } |
---|
356 | |
---|
357 | /** |
---|
358 | * Return a description of the m5 tree or rule |
---|
359 | * |
---|
360 | * @return a description of the m5 tree or rule as a String |
---|
361 | */ |
---|
362 | public String toString() { |
---|
363 | if (m_useTree) { |
---|
364 | return treeToString(); |
---|
365 | } else { |
---|
366 | return ruleToString(); |
---|
367 | } |
---|
368 | } |
---|
369 | |
---|
370 | /** |
---|
371 | * Return a description of the m5 tree |
---|
372 | * |
---|
373 | * @return a description of the m5 tree as a String |
---|
374 | */ |
---|
375 | private String treeToString() { |
---|
376 | StringBuffer text = new StringBuffer(); |
---|
377 | |
---|
378 | if (m_topOfTree == null) { |
---|
379 | return "Tree/Rule has not been built yet!"; |
---|
380 | } |
---|
381 | |
---|
382 | text.append("M5 " |
---|
383 | + ((m_useUnpruned) |
---|
384 | ? "unpruned " |
---|
385 | : "pruned ") |
---|
386 | + ((m_regressionTree) |
---|
387 | ? "regression " |
---|
388 | : "model ") |
---|
389 | +"tree:\n"); |
---|
390 | |
---|
391 | if (m_smoothPredictions == true) { |
---|
392 | text.append("(using smoothed linear models)\n"); |
---|
393 | } |
---|
394 | |
---|
395 | text.append(m_topOfTree.treeToString(0)); |
---|
396 | text.append(m_topOfTree.printLeafModels()); |
---|
397 | text.append("\nNumber of Rules : " + m_topOfTree.numberOfLinearModels()); |
---|
398 | |
---|
399 | return text.toString(); |
---|
400 | } |
---|
401 | |
---|
402 | /** |
---|
403 | * Return a description of the rule |
---|
404 | * |
---|
405 | * @return a description of the rule as a String |
---|
406 | */ |
---|
407 | private String ruleToString() { |
---|
408 | StringBuffer text = new StringBuffer(); |
---|
409 | |
---|
410 | if (m_splitAtts.length > 0) { |
---|
411 | text.append("IF\n"); |
---|
412 | |
---|
413 | for (int i = m_splitAtts.length - 1; i >= 0; i--) { |
---|
414 | text.append("\t" + m_covered.attribute(m_splitAtts[i]).name() + " "); |
---|
415 | |
---|
416 | if (m_relOps[i] == 0) { |
---|
417 | text.append("<= "); |
---|
418 | } else { |
---|
419 | text.append("> "); |
---|
420 | } |
---|
421 | |
---|
422 | text.append(Utils.doubleToString(m_splitVals[i], 1, 3) + "\n"); |
---|
423 | } |
---|
424 | |
---|
425 | text.append("THEN\n"); |
---|
426 | } |
---|
427 | |
---|
428 | if (m_ruleModel != null) { |
---|
429 | try { |
---|
430 | text.append(m_ruleModel.printNodeLinearModel()); |
---|
431 | text.append(" [" + m_numCovered/*m_covered.numInstances()*/); |
---|
432 | |
---|
433 | if (m_globalAbsDev > 0.0) { |
---|
434 | text.append("/"+Utils.doubleToString((100 * |
---|
435 | m_ruleModel. |
---|
436 | rootMeanSquaredError() / |
---|
437 | m_globalStdDev), 1, 3) |
---|
438 | + "%]\n\n"); |
---|
439 | } else { |
---|
440 | text.append("]\n\n"); |
---|
441 | } |
---|
442 | } catch (Exception e) { |
---|
443 | return "Can't print rule"; |
---|
444 | } |
---|
445 | } |
---|
446 | |
---|
447 | // System.out.println(m_instances); |
---|
448 | return text.toString(); |
---|
449 | } |
---|
450 | |
---|
451 | /** |
---|
452 | * Use unpruned tree/rules |
---|
453 | * |
---|
454 | * @param unpruned true if unpruned tree/rules are to be generated |
---|
455 | */ |
---|
456 | public void setUnpruned(boolean unpruned) { |
---|
457 | m_useUnpruned = unpruned; |
---|
458 | } |
---|
459 | |
---|
460 | /** |
---|
461 | * Get whether unpruned tree/rules are being generated |
---|
462 | * |
---|
463 | * @return true if unpruned tree/rules are to be generated |
---|
464 | */ |
---|
465 | public boolean getUnpruned() { |
---|
466 | return m_useUnpruned; |
---|
467 | } |
---|
468 | |
---|
469 | /** |
---|
470 | * Use an m5 tree rather than generate rules |
---|
471 | * |
---|
472 | * @param u true if m5 tree is to be used |
---|
473 | */ |
---|
474 | public void setUseTree(boolean u) { |
---|
475 | m_useTree = u; |
---|
476 | } |
---|
477 | |
---|
478 | /** |
---|
479 | * get whether an m5 tree is being used rather than rules |
---|
480 | * |
---|
481 | * @return true if an m5 tree is being used. |
---|
482 | */ |
---|
483 | public boolean getUseTree() { |
---|
484 | return m_useTree; |
---|
485 | } |
---|
486 | |
---|
487 | /** |
---|
488 | * Smooth predictions |
---|
489 | * |
---|
490 | * @param s true if smoothing is to be used |
---|
491 | */ |
---|
492 | public void setSmoothing(boolean s) { |
---|
493 | m_smoothPredictions = s; |
---|
494 | } |
---|
495 | |
---|
496 | /** |
---|
497 | * Get whether or not smoothing has been turned on |
---|
498 | * |
---|
499 | * @return true if smoothing is being used |
---|
500 | */ |
---|
501 | public boolean getSmoothing() { |
---|
502 | return m_smoothPredictions; |
---|
503 | } |
---|
504 | |
---|
505 | /** |
---|
506 | * Get the instances not covered by this rule |
---|
507 | * |
---|
508 | * @return the instances not covered |
---|
509 | */ |
---|
510 | public Instances notCoveredInstances() { |
---|
511 | return m_notCovered; |
---|
512 | } |
---|
513 | |
---|
514 | // /** |
---|
515 | // * Get the instances covered by this rule |
---|
516 | // * |
---|
517 | // * @return the instances covered by this rule |
---|
518 | // */ |
---|
519 | // public Instances coveredInstances() { |
---|
520 | // return m_covered; |
---|
521 | // } |
---|
522 | |
---|
523 | /** |
---|
524 | * Returns the standard deviation value of the supplied attribute index. |
---|
525 | * |
---|
526 | * @param attr an attribute index |
---|
527 | * @param inst the instances |
---|
528 | * @return the standard deviation value |
---|
529 | */ |
---|
530 | protected static final double stdDev(int attr, Instances inst) { |
---|
531 | int i,count=0; |
---|
532 | double sd,va,sum=0.0,sqrSum=0.0,value; |
---|
533 | |
---|
534 | for(i = 0; i <= inst.numInstances() - 1; i++) { |
---|
535 | count++; |
---|
536 | value = inst.instance(i).value(attr); |
---|
537 | sum += value; |
---|
538 | sqrSum += value * value; |
---|
539 | } |
---|
540 | |
---|
541 | if(count > 1) { |
---|
542 | va = (sqrSum - sum * sum / count) / count; |
---|
543 | va = Math.abs(va); |
---|
544 | sd = Math.sqrt(va); |
---|
545 | } else { |
---|
546 | sd = 0.0; |
---|
547 | } |
---|
548 | |
---|
549 | return sd; |
---|
550 | } |
---|
551 | |
---|
552 | /** |
---|
553 | * Returns the absolute deviation value of the supplied attribute index. |
---|
554 | * |
---|
555 | * @param attr an attribute index |
---|
556 | * @param inst the instances |
---|
557 | * @return the absolute deviation value |
---|
558 | */ |
---|
559 | protected static final double absDev(int attr, Instances inst) { |
---|
560 | int i; |
---|
561 | double average=0.0,absdiff=0.0,absDev; |
---|
562 | |
---|
563 | for(i = 0; i <= inst.numInstances()-1; i++) { |
---|
564 | average += inst.instance(i).value(attr); |
---|
565 | } |
---|
566 | if(inst.numInstances() > 1) { |
---|
567 | average /= (double)inst.numInstances(); |
---|
568 | for(i=0; i <= inst.numInstances()-1; i++) { |
---|
569 | absdiff += Math.abs(inst.instance(i).value(attr) - average); |
---|
570 | } |
---|
571 | absDev = absdiff / (double)inst.numInstances(); |
---|
572 | } else { |
---|
573 | absDev = 0.0; |
---|
574 | } |
---|
575 | |
---|
576 | return absDev; |
---|
577 | } |
---|
578 | |
---|
579 | /** |
---|
580 | * Sets whether instances at each node in an M5 tree should be saved |
---|
581 | * for visualization purposes. Default is to save memory. |
---|
582 | * |
---|
583 | * @param save a <code>boolean</code> value |
---|
584 | */ |
---|
585 | protected void setSaveInstances(boolean save) { |
---|
586 | m_saveInstances = save; |
---|
587 | } |
---|
588 | |
---|
589 | /** |
---|
590 | * Get the value of regressionTree. |
---|
591 | * |
---|
592 | * @return Value of regressionTree. |
---|
593 | */ |
---|
594 | public boolean getRegressionTree() { |
---|
595 | |
---|
596 | return m_regressionTree; |
---|
597 | } |
---|
598 | |
---|
599 | /** |
---|
600 | * Set the value of regressionTree. |
---|
601 | * |
---|
602 | * @param newregressionTree Value to assign to regressionTree. |
---|
603 | */ |
---|
604 | public void setRegressionTree(boolean newregressionTree) { |
---|
605 | |
---|
606 | m_regressionTree = newregressionTree; |
---|
607 | } |
---|
608 | |
---|
609 | /** |
---|
610 | * Set the minumum number of instances to allow at a leaf node |
---|
611 | * |
---|
612 | * @param minNum the minimum number of instances |
---|
613 | */ |
---|
614 | public void setMinNumInstances(double minNum) { |
---|
615 | m_minNumInstances = minNum; |
---|
616 | } |
---|
617 | |
---|
618 | /** |
---|
619 | * Get the minimum number of instances to allow at a leaf node |
---|
620 | * |
---|
621 | * @return a <code>double</code> value |
---|
622 | */ |
---|
623 | public double getMinNumInstances() { |
---|
624 | return m_minNumInstances; |
---|
625 | } |
---|
626 | |
---|
627 | public RuleNode getM5RootNode() { |
---|
628 | return m_topOfTree; |
---|
629 | } |
---|
630 | |
---|
631 | /** |
---|
632 | * Returns the revision string. |
---|
633 | * |
---|
634 | * @return the revision |
---|
635 | */ |
---|
636 | public String getRevision() { |
---|
637 | return RevisionUtils.extract("$Revision: 1.15 $"); |
---|
638 | } |
---|
639 | } |
---|