1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * M5Base.java |
---|
19 | * Copyright (C) 2000 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.trees.m5; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.classifiers.functions.LinearRegression; |
---|
28 | import weka.core.AdditionalMeasureProducer; |
---|
29 | import weka.core.Capabilities; |
---|
30 | import weka.core.FastVector; |
---|
31 | import weka.core.Instance; |
---|
32 | import weka.core.Instances; |
---|
33 | import weka.core.Option; |
---|
34 | import weka.core.TechnicalInformation; |
---|
35 | import weka.core.TechnicalInformationHandler; |
---|
36 | import weka.core.Utils; |
---|
37 | import weka.core.TechnicalInformation.Field; |
---|
38 | import weka.core.TechnicalInformation.Type; |
---|
39 | import weka.filters.Filter; |
---|
40 | import weka.filters.supervised.attribute.NominalToBinary; |
---|
41 | import weka.filters.unsupervised.attribute.RemoveUseless; |
---|
42 | import weka.filters.unsupervised.attribute.ReplaceMissingValues; |
---|
43 | |
---|
44 | import java.util.Enumeration; |
---|
45 | import java.util.Random; |
---|
46 | import java.util.Vector; |
---|
47 | |
---|
48 | /** |
---|
49 | * M5Base. Implements base routines |
---|
50 | * for generating M5 Model trees and rules. <p> |
---|
51 | * |
---|
52 | * The original algorithm M5 was invented by Quinlan: <br/> |
---|
53 | * |
---|
54 | * Quinlan J. R. (1992). Learning with continuous classes. Proceedings of |
---|
55 | * the Australian Joint Conference on Artificial Intelligence. 343--348. |
---|
56 | * World Scientific, Singapore. <p/> |
---|
57 | * |
---|
58 | * Yong Wang made improvements and created M5': <br/> |
---|
59 | * |
---|
60 | * Wang, Y and Witten, I. H. (1997). Induction of model trees for |
---|
61 | * predicting continuous classes. Proceedings of the poster papers of the |
---|
62 | * European Conference on Machine Learning. University of Economics, |
---|
63 | * Faculty of Informatics and Statistics, Prague. <p/> |
---|
64 | * |
---|
65 | * Valid options are:<p> |
---|
66 | * |
---|
67 | * -U <br> |
---|
68 | * Use unsmoothed predictions. <p> |
---|
69 | * |
---|
70 | * -R <br> |
---|
71 | * Build regression tree/rule rather than model tree/rule |
---|
72 | * |
---|
73 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
74 | * @version $Revision: 5928 $ |
---|
75 | */ |
---|
76 | public abstract class M5Base |
---|
77 | extends AbstractClassifier |
---|
78 | implements AdditionalMeasureProducer, |
---|
79 | TechnicalInformationHandler { |
---|
80 | |
---|
81 | /** for serialization */ |
---|
82 | private static final long serialVersionUID = -4022221950191647679L; |
---|
83 | |
---|
84 | /** |
---|
85 | * the instances covered by the tree/rules |
---|
86 | */ |
---|
87 | private Instances m_instances; |
---|
88 | |
---|
89 | /** |
---|
90 | * the rule set |
---|
91 | */ |
---|
92 | protected FastVector m_ruleSet; |
---|
93 | |
---|
94 | /** |
---|
95 | * generate a decision list instead of a single tree. |
---|
96 | */ |
---|
97 | private boolean m_generateRules; |
---|
98 | |
---|
99 | /** |
---|
100 | * use unsmoothed predictions |
---|
101 | */ |
---|
102 | private boolean m_unsmoothedPredictions; |
---|
103 | |
---|
104 | /** |
---|
105 | * filter to fill in missing values |
---|
106 | */ |
---|
107 | private ReplaceMissingValues m_replaceMissing; |
---|
108 | |
---|
109 | /** |
---|
110 | * filter to convert nominal attributes to binary |
---|
111 | */ |
---|
112 | private NominalToBinary m_nominalToBinary; |
---|
113 | |
---|
114 | /** |
---|
115 | * for removing useless attributes |
---|
116 | */ |
---|
117 | private RemoveUseless m_removeUseless; |
---|
118 | |
---|
119 | /** |
---|
120 | * Save instances at each node in an M5 tree for visualization purposes. |
---|
121 | */ |
---|
122 | protected boolean m_saveInstances = false; |
---|
123 | |
---|
124 | /** |
---|
125 | * Make a regression tree/rule instead of a model tree/rule |
---|
126 | */ |
---|
127 | protected boolean m_regressionTree; |
---|
128 | |
---|
129 | /** |
---|
130 | * Do not prune tree/rules |
---|
131 | */ |
---|
132 | protected boolean m_useUnpruned = false; |
---|
133 | |
---|
134 | /** |
---|
135 | * The minimum number of instances to allow at a leaf node |
---|
136 | */ |
---|
137 | protected double m_minNumInstances = 4; |
---|
138 | |
---|
139 | /** |
---|
140 | * Constructor |
---|
141 | */ |
---|
142 | public M5Base() { |
---|
143 | m_generateRules = false; |
---|
144 | m_unsmoothedPredictions = false; |
---|
145 | m_useUnpruned = false; |
---|
146 | m_minNumInstances = 4; |
---|
147 | } |
---|
148 | |
---|
149 | /** |
---|
150 | * returns information about the classifier |
---|
151 | * @return a description suitable for |
---|
152 | * displaying in the explorer/experimenter gui |
---|
153 | */ |
---|
154 | public String globalInfo() { |
---|
155 | return |
---|
156 | "M5Base. Implements base routines for generating M5 Model trees and " |
---|
157 | + "rules\n" |
---|
158 | + "The original algorithm M5 was invented by R. Quinlan and Yong Wang " |
---|
159 | + "made improvements.\n\n" |
---|
160 | + "For more information see:\n\n" |
---|
161 | + getTechnicalInformation().toString(); |
---|
162 | } |
---|
163 | |
---|
164 | /** |
---|
165 | * Returns an instance of a TechnicalInformation object, containing |
---|
166 | * detailed information about the technical background of this class, |
---|
167 | * e.g., paper reference or book this class is based on. |
---|
168 | * |
---|
169 | * @return the technical information about this class |
---|
170 | */ |
---|
171 | public TechnicalInformation getTechnicalInformation() { |
---|
172 | TechnicalInformation result; |
---|
173 | TechnicalInformation additional; |
---|
174 | |
---|
175 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
176 | result.setValue(Field.AUTHOR, "Ross J. Quinlan"); |
---|
177 | result.setValue(Field.TITLE, "Learning with Continuous Classes"); |
---|
178 | result.setValue(Field.BOOKTITLE, "5th Australian Joint Conference on Artificial Intelligence"); |
---|
179 | result.setValue(Field.YEAR, "1992"); |
---|
180 | result.setValue(Field.PAGES, "343-348"); |
---|
181 | result.setValue(Field.PUBLISHER, "World Scientific"); |
---|
182 | result.setValue(Field.ADDRESS, "Singapore"); |
---|
183 | |
---|
184 | additional = result.add(Type.INPROCEEDINGS); |
---|
185 | additional.setValue(Field.AUTHOR, "Y. Wang and I. H. Witten"); |
---|
186 | additional.setValue(Field.TITLE, "Induction of model trees for predicting continuous classes"); |
---|
187 | additional.setValue(Field.BOOKTITLE, "Poster papers of the 9th European Conference on Machine Learning"); |
---|
188 | additional.setValue(Field.YEAR, "1997"); |
---|
189 | additional.setValue(Field.PUBLISHER, "Springer"); |
---|
190 | |
---|
191 | return result; |
---|
192 | } |
---|
193 | |
---|
194 | /** |
---|
195 | * Returns an enumeration describing the available options |
---|
196 | * |
---|
197 | * @return an enumeration of all the available options |
---|
198 | */ |
---|
199 | public Enumeration listOptions() { |
---|
200 | Vector newVector = new Vector(4); |
---|
201 | |
---|
202 | newVector.addElement(new Option("\tUse unpruned tree/rules", |
---|
203 | "N", 0, "-N")); |
---|
204 | |
---|
205 | newVector.addElement(new Option("\tUse unsmoothed predictions", |
---|
206 | "U", 0, "-U")); |
---|
207 | |
---|
208 | newVector.addElement(new Option("\tBuild regression tree/rule rather " |
---|
209 | +"than a model tree/rule", |
---|
210 | "R", 0, "-R")); |
---|
211 | |
---|
212 | newVector.addElement(new Option("\tSet minimum number of instances " |
---|
213 | +"per leaf\n\t(default 4)", |
---|
214 | "M",1,"-M <minimum number of instances>")); |
---|
215 | return newVector.elements(); |
---|
216 | } |
---|
217 | |
---|
218 | /** |
---|
219 | * Parses a given list of options. <p/> |
---|
220 | * |
---|
221 | * Valid options are:<p> |
---|
222 | * |
---|
223 | * -U <br> |
---|
224 | * Use unsmoothed predictions. <p> |
---|
225 | * |
---|
226 | * -R <br> |
---|
227 | * Build a regression tree rather than a model tree. <p> |
---|
228 | * |
---|
229 | * @param options the list of options as an array of strings |
---|
230 | * @throws Exception if an option is not supported |
---|
231 | */ |
---|
232 | public void setOptions(String[] options) throws Exception { |
---|
233 | setUnpruned(Utils.getFlag('N', options)); |
---|
234 | setUseUnsmoothed(Utils.getFlag('U', options)); |
---|
235 | setBuildRegressionTree(Utils.getFlag('R', options)); |
---|
236 | String optionString = Utils.getOption('M', options); |
---|
237 | if (optionString.length() != 0) { |
---|
238 | setMinNumInstances((new Double(optionString)).doubleValue()); |
---|
239 | } |
---|
240 | Utils.checkForRemainingOptions(options); |
---|
241 | } |
---|
242 | |
---|
243 | /** |
---|
244 | * Gets the current settings of the classifier. |
---|
245 | * |
---|
246 | * @return an array of strings suitable for passing to setOptions |
---|
247 | */ |
---|
248 | public String[] getOptions() { |
---|
249 | String[] options = new String[5]; |
---|
250 | int current = 0; |
---|
251 | |
---|
252 | if (getUnpruned()) { |
---|
253 | options[current++] = "-N"; |
---|
254 | } |
---|
255 | |
---|
256 | if (getUseUnsmoothed()) { |
---|
257 | options[current++] = "-U"; |
---|
258 | } |
---|
259 | |
---|
260 | if (getBuildRegressionTree()) { |
---|
261 | options[current++] = "-R"; |
---|
262 | } |
---|
263 | |
---|
264 | options[current++] = "-M"; |
---|
265 | options[current++] = ""+getMinNumInstances(); |
---|
266 | |
---|
267 | while (current < options.length) { |
---|
268 | options[current++] = ""; |
---|
269 | } |
---|
270 | return options; |
---|
271 | } |
---|
272 | |
---|
273 | /** |
---|
274 | * Returns the tip text for this property |
---|
275 | * |
---|
276 | * @return tip text for this property suitable for |
---|
277 | * displaying in the explorer/experimenter gui |
---|
278 | */ |
---|
279 | public String unprunedTipText() { |
---|
280 | return "Whether unpruned tree/rules are to be generated."; |
---|
281 | } |
---|
282 | |
---|
283 | /** |
---|
284 | * Use unpruned tree/rules |
---|
285 | * |
---|
286 | * @param unpruned true if unpruned tree/rules are to be generated |
---|
287 | */ |
---|
288 | public void setUnpruned(boolean unpruned) { |
---|
289 | m_useUnpruned = unpruned; |
---|
290 | } |
---|
291 | |
---|
292 | /** |
---|
293 | * Get whether unpruned tree/rules are being generated |
---|
294 | * |
---|
295 | * @return true if unpruned tree/rules are to be generated |
---|
296 | */ |
---|
297 | public boolean getUnpruned() { |
---|
298 | return m_useUnpruned; |
---|
299 | } |
---|
300 | |
---|
301 | /** |
---|
302 | * Returns the tip text for this property |
---|
303 | * |
---|
304 | * @return tip text for this property suitable for |
---|
305 | * displaying in the explorer/experimenter gui |
---|
306 | */ |
---|
307 | public String generateRulesTipText() { |
---|
308 | return "Whether to generate rules (decision list) rather than a tree."; |
---|
309 | } |
---|
310 | |
---|
311 | /** |
---|
312 | * Generate rules (decision list) rather than a tree |
---|
313 | * |
---|
314 | * @param u true if rules are to be generated |
---|
315 | */ |
---|
316 | protected void setGenerateRules(boolean u) { |
---|
317 | m_generateRules = u; |
---|
318 | } |
---|
319 | |
---|
320 | /** |
---|
321 | * get whether rules are being generated rather than a tree |
---|
322 | * |
---|
323 | * @return true if rules are to be generated |
---|
324 | */ |
---|
325 | protected boolean getGenerateRules() { |
---|
326 | return m_generateRules; |
---|
327 | } |
---|
328 | |
---|
329 | /** |
---|
330 | * Returns the tip text for this property |
---|
331 | * |
---|
332 | * @return tip text for this property suitable for |
---|
333 | * displaying in the explorer/experimenter gui |
---|
334 | */ |
---|
335 | public String useUnsmoothedTipText() { |
---|
336 | return "Whether to use unsmoothed predictions."; |
---|
337 | } |
---|
338 | |
---|
339 | /** |
---|
340 | * Use unsmoothed predictions |
---|
341 | * |
---|
342 | * @param s true if unsmoothed predictions are to be used |
---|
343 | */ |
---|
344 | public void setUseUnsmoothed(boolean s) { |
---|
345 | m_unsmoothedPredictions = s; |
---|
346 | } |
---|
347 | |
---|
348 | /** |
---|
349 | * Get whether or not smoothing is being used |
---|
350 | * |
---|
351 | * @return true if unsmoothed predictions are to be used |
---|
352 | */ |
---|
353 | public boolean getUseUnsmoothed() { |
---|
354 | return m_unsmoothedPredictions; |
---|
355 | } |
---|
356 | |
---|
357 | /** |
---|
358 | * Returns the tip text for this property |
---|
359 | * |
---|
360 | * @return tip text for this property suitable for |
---|
361 | * displaying in the explorer/experimenter gui |
---|
362 | */ |
---|
363 | public String buildRegressionTreeTipText() { |
---|
364 | return "Whether to generate a regression tree/rule instead of a model tree/rule."; |
---|
365 | } |
---|
366 | |
---|
367 | /** |
---|
368 | * Get the value of regressionTree. |
---|
369 | * |
---|
370 | * @return Value of regressionTree. |
---|
371 | */ |
---|
372 | public boolean getBuildRegressionTree() { |
---|
373 | |
---|
374 | return m_regressionTree; |
---|
375 | } |
---|
376 | |
---|
377 | /** |
---|
378 | * Set the value of regressionTree. |
---|
379 | * |
---|
380 | * @param newregressionTree Value to assign to regressionTree. |
---|
381 | */ |
---|
382 | public void setBuildRegressionTree(boolean newregressionTree) { |
---|
383 | |
---|
384 | m_regressionTree = newregressionTree; |
---|
385 | } |
---|
386 | |
---|
387 | /** |
---|
388 | * Returns the tip text for this property |
---|
389 | * |
---|
390 | * @return tip text for this property suitable for |
---|
391 | * displaying in the explorer/experimenter gui |
---|
392 | */ |
---|
393 | public String minNumInstancesTipText() { |
---|
394 | return "The minimum number of instances to allow at a leaf node."; |
---|
395 | } |
---|
396 | |
---|
397 | /** |
---|
398 | * Set the minimum number of instances to allow at a leaf node |
---|
399 | * |
---|
400 | * @param minNum the minimum number of instances |
---|
401 | */ |
---|
402 | public void setMinNumInstances(double minNum) { |
---|
403 | m_minNumInstances = minNum; |
---|
404 | } |
---|
405 | |
---|
406 | /** |
---|
407 | * Get the minimum number of instances to allow at a leaf node |
---|
408 | * |
---|
409 | * @return a <code>double</code> value |
---|
410 | */ |
---|
411 | public double getMinNumInstances() { |
---|
412 | return m_minNumInstances; |
---|
413 | } |
---|
414 | |
---|
415 | /** |
---|
416 | * Returns default capabilities of the classifier, i.e., of LinearRegression. |
---|
417 | * |
---|
418 | * @return the capabilities of this classifier |
---|
419 | */ |
---|
420 | public Capabilities getCapabilities() { |
---|
421 | return new LinearRegression().getCapabilities(); |
---|
422 | } |
---|
423 | |
---|
424 | /** |
---|
425 | * Generates the classifier. |
---|
426 | * |
---|
427 | * @param data set of instances serving as training data |
---|
428 | * @throws Exception if the classifier has not been generated |
---|
429 | * successfully |
---|
430 | */ |
---|
431 | public void buildClassifier(Instances data) throws Exception { |
---|
432 | // can classifier handle the data? |
---|
433 | getCapabilities().testWithFail(data); |
---|
434 | |
---|
435 | // remove instances with missing class |
---|
436 | data = new Instances(data); |
---|
437 | data.deleteWithMissingClass(); |
---|
438 | |
---|
439 | m_instances = new Instances(data); |
---|
440 | |
---|
441 | m_replaceMissing = new ReplaceMissingValues(); |
---|
442 | m_replaceMissing.setInputFormat(m_instances); |
---|
443 | m_instances = Filter.useFilter(m_instances, m_replaceMissing); |
---|
444 | |
---|
445 | m_nominalToBinary = new NominalToBinary(); |
---|
446 | m_nominalToBinary.setInputFormat(m_instances); |
---|
447 | m_instances = Filter.useFilter(m_instances, m_nominalToBinary); |
---|
448 | |
---|
449 | m_removeUseless = new RemoveUseless(); |
---|
450 | m_removeUseless.setInputFormat(m_instances); |
---|
451 | m_instances = Filter.useFilter(m_instances, m_removeUseless); |
---|
452 | |
---|
453 | m_instances.randomize(new Random(1)); |
---|
454 | |
---|
455 | m_ruleSet = new FastVector(); |
---|
456 | |
---|
457 | Rule tempRule; |
---|
458 | |
---|
459 | if (m_generateRules) { |
---|
460 | Instances tempInst = m_instances; |
---|
461 | |
---|
462 | do { |
---|
463 | tempRule = new Rule(); |
---|
464 | tempRule.setSmoothing(!m_unsmoothedPredictions); |
---|
465 | tempRule.setRegressionTree(m_regressionTree); |
---|
466 | tempRule.setUnpruned(m_useUnpruned); |
---|
467 | tempRule.setSaveInstances(false); |
---|
468 | tempRule.setMinNumInstances(m_minNumInstances); |
---|
469 | tempRule.buildClassifier(tempInst); |
---|
470 | m_ruleSet.addElement(tempRule); |
---|
471 | // System.err.println("Built rule : "+tempRule.toString()); |
---|
472 | tempInst = tempRule.notCoveredInstances(); |
---|
473 | } while (tempInst.numInstances() > 0); |
---|
474 | } else { |
---|
475 | // just build a single tree |
---|
476 | tempRule = new Rule(); |
---|
477 | |
---|
478 | tempRule.setUseTree(true); |
---|
479 | // tempRule.setGrowFullTree(true); |
---|
480 | tempRule.setSmoothing(!m_unsmoothedPredictions); |
---|
481 | tempRule.setSaveInstances(m_saveInstances); |
---|
482 | tempRule.setRegressionTree(m_regressionTree); |
---|
483 | tempRule.setUnpruned(m_useUnpruned); |
---|
484 | tempRule.setMinNumInstances(m_minNumInstances); |
---|
485 | |
---|
486 | Instances temp_train; |
---|
487 | |
---|
488 | temp_train = m_instances; |
---|
489 | |
---|
490 | tempRule.buildClassifier(temp_train); |
---|
491 | |
---|
492 | m_ruleSet.addElement(tempRule); |
---|
493 | |
---|
494 | // save space |
---|
495 | m_instances = new Instances(m_instances, 0); |
---|
496 | // System.err.print(tempRule.m_topOfTree.treeToString(0)); |
---|
497 | } |
---|
498 | } |
---|
499 | |
---|
500 | /** |
---|
501 | * Calculates a prediction for an instance using a set of rules |
---|
502 | * or an M5 model tree |
---|
503 | * |
---|
504 | * @param inst the instance whos class value is to be predicted |
---|
505 | * @return the prediction |
---|
506 | * @throws Exception if a prediction can't be made. |
---|
507 | */ |
---|
508 | public double classifyInstance(Instance inst) throws Exception { |
---|
509 | Rule temp; |
---|
510 | double prediction = 0; |
---|
511 | boolean success = false; |
---|
512 | |
---|
513 | m_replaceMissing.input(inst); |
---|
514 | inst = m_replaceMissing.output(); |
---|
515 | m_nominalToBinary.input(inst); |
---|
516 | inst = m_nominalToBinary.output(); |
---|
517 | m_removeUseless.input(inst); |
---|
518 | inst = m_removeUseless.output(); |
---|
519 | |
---|
520 | if (m_ruleSet == null) { |
---|
521 | throw new Exception("Classifier has not been built yet!"); |
---|
522 | } |
---|
523 | |
---|
524 | if (!m_generateRules) { |
---|
525 | temp = (Rule) m_ruleSet.elementAt(0); |
---|
526 | return temp.classifyInstance(inst); |
---|
527 | } |
---|
528 | |
---|
529 | boolean cont; |
---|
530 | int i; |
---|
531 | |
---|
532 | for (i = 0; i < m_ruleSet.size(); i++) { |
---|
533 | cont = false; |
---|
534 | temp = (Rule) m_ruleSet.elementAt(i); |
---|
535 | |
---|
536 | try { |
---|
537 | prediction = temp.classifyInstance(inst); |
---|
538 | success = true; |
---|
539 | } catch (Exception e) { |
---|
540 | cont = true; |
---|
541 | } |
---|
542 | |
---|
543 | if (!cont) { |
---|
544 | break; |
---|
545 | } |
---|
546 | } |
---|
547 | |
---|
548 | if (!success) { |
---|
549 | System.out.println("Error in predicting (DecList)"); |
---|
550 | } |
---|
551 | return prediction; |
---|
552 | } |
---|
553 | |
---|
554 | /** |
---|
555 | * Returns a description of the classifier |
---|
556 | * |
---|
557 | * @return a description of the classifier as a String |
---|
558 | */ |
---|
559 | public String toString() { |
---|
560 | StringBuffer text = new StringBuffer(); |
---|
561 | Rule temp; |
---|
562 | |
---|
563 | if (m_ruleSet == null) { |
---|
564 | return "Classifier hasn't been built yet!"; |
---|
565 | } |
---|
566 | |
---|
567 | if (m_generateRules) { |
---|
568 | text.append("M5 " |
---|
569 | + ((m_useUnpruned == true) |
---|
570 | ? "unpruned " |
---|
571 | : "pruned ") |
---|
572 | + ((m_regressionTree == true) |
---|
573 | ? "regression " |
---|
574 | : "model ") |
---|
575 | + "rules "); |
---|
576 | |
---|
577 | if (!m_unsmoothedPredictions) { |
---|
578 | text.append("\n(using smoothed linear models) "); |
---|
579 | } |
---|
580 | |
---|
581 | text.append(":\n"); |
---|
582 | |
---|
583 | text.append("Number of Rules : " + m_ruleSet.size() + "\n\n"); |
---|
584 | |
---|
585 | for (int j = 0; j < m_ruleSet.size(); j++) { |
---|
586 | temp = (Rule) m_ruleSet.elementAt(j); |
---|
587 | |
---|
588 | text.append("Rule: " + (j + 1) + "\n"); |
---|
589 | text.append(temp.toString()); |
---|
590 | } |
---|
591 | } else { |
---|
592 | temp = (Rule) m_ruleSet.elementAt(0); |
---|
593 | text.append(temp.toString()); |
---|
594 | } |
---|
595 | return text.toString(); |
---|
596 | } |
---|
597 | |
---|
598 | /** |
---|
599 | * Returns an enumeration of the additional measure names |
---|
600 | * @return an enumeration of the measure names |
---|
601 | */ |
---|
602 | public Enumeration enumerateMeasures() { |
---|
603 | Vector newVector = new Vector(1); |
---|
604 | newVector.addElement("measureNumRules"); |
---|
605 | return newVector.elements(); |
---|
606 | } |
---|
607 | |
---|
608 | /** |
---|
609 | * Returns the value of the named measure |
---|
610 | * @param additionalMeasureName the name of the measure to query for its value |
---|
611 | * @return the value of the named measure |
---|
612 | * @throws Exception if the named measure is not supported |
---|
613 | */ |
---|
614 | public double getMeasure(String additionalMeasureName) |
---|
615 | { |
---|
616 | if (additionalMeasureName.compareToIgnoreCase("measureNumRules") == 0) { |
---|
617 | return measureNumRules(); |
---|
618 | } else { |
---|
619 | throw new IllegalArgumentException(additionalMeasureName |
---|
620 | + " not supported (M5)"); |
---|
621 | } |
---|
622 | } |
---|
623 | |
---|
624 | /** |
---|
625 | * return the number of rules |
---|
626 | * @return the number of rules (same as # linear models & |
---|
627 | * # leaves in the tree) |
---|
628 | */ |
---|
629 | public double measureNumRules() { |
---|
630 | if (m_generateRules) { |
---|
631 | return m_ruleSet.size(); |
---|
632 | } |
---|
633 | return ((Rule)m_ruleSet.elementAt(0)).m_topOfTree.numberOfLinearModels(); |
---|
634 | } |
---|
635 | |
---|
636 | public RuleNode getM5RootNode() { |
---|
637 | Rule temp = (Rule) m_ruleSet.elementAt(0); |
---|
638 | return temp.getM5RootNode(); |
---|
639 | } |
---|
640 | } |
---|