| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * M5Base.java |
|---|
| 19 | * Copyright (C) 2000 University of Waikato, Hamilton, New Zealand |
|---|
| 20 | * |
|---|
| 21 | */ |
|---|
| 22 | |
|---|
| 23 | package weka.classifiers.trees.m5; |
|---|
| 24 | |
|---|
| 25 | import weka.classifiers.Classifier; |
|---|
| 26 | import weka.classifiers.AbstractClassifier; |
|---|
| 27 | import weka.classifiers.functions.LinearRegression; |
|---|
| 28 | import weka.core.AdditionalMeasureProducer; |
|---|
| 29 | import weka.core.Capabilities; |
|---|
| 30 | import weka.core.FastVector; |
|---|
| 31 | import weka.core.Instance; |
|---|
| 32 | import weka.core.Instances; |
|---|
| 33 | import weka.core.Option; |
|---|
| 34 | import weka.core.TechnicalInformation; |
|---|
| 35 | import weka.core.TechnicalInformationHandler; |
|---|
| 36 | import weka.core.Utils; |
|---|
| 37 | import weka.core.TechnicalInformation.Field; |
|---|
| 38 | import weka.core.TechnicalInformation.Type; |
|---|
| 39 | import weka.filters.Filter; |
|---|
| 40 | import weka.filters.supervised.attribute.NominalToBinary; |
|---|
| 41 | import weka.filters.unsupervised.attribute.RemoveUseless; |
|---|
| 42 | import weka.filters.unsupervised.attribute.ReplaceMissingValues; |
|---|
| 43 | |
|---|
| 44 | import java.util.Enumeration; |
|---|
| 45 | import java.util.Random; |
|---|
| 46 | import java.util.Vector; |
|---|
| 47 | |
|---|
| 48 | /** |
|---|
| 49 | * M5Base. Implements base routines |
|---|
| 50 | * for generating M5 Model trees and rules. <p> |
|---|
| 51 | * |
|---|
| 52 | * The original algorithm M5 was invented by Quinlan: <br/> |
|---|
| 53 | * |
|---|
| 54 | * Quinlan J. R. (1992). Learning with continuous classes. Proceedings of |
|---|
| 55 | * the Australian Joint Conference on Artificial Intelligence. 343--348. |
|---|
| 56 | * World Scientific, Singapore. <p/> |
|---|
| 57 | * |
|---|
| 58 | * Yong Wang made improvements and created M5': <br/> |
|---|
| 59 | * |
|---|
| 60 | * Wang, Y and Witten, I. H. (1997). Induction of model trees for |
|---|
| 61 | * predicting continuous classes. Proceedings of the poster papers of the |
|---|
| 62 | * European Conference on Machine Learning. University of Economics, |
|---|
| 63 | * Faculty of Informatics and Statistics, Prague. <p/> |
|---|
| 64 | * |
|---|
| 65 | * Valid options are:<p> |
|---|
| 66 | * |
|---|
| 67 | * -U <br> |
|---|
| 68 | * Use unsmoothed predictions. <p> |
|---|
| 69 | * |
|---|
| 70 | * -R <br> |
|---|
| 71 | * Build regression tree/rule rather than model tree/rule |
|---|
| 72 | * |
|---|
| 73 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
|---|
| 74 | * @version $Revision: 5928 $ |
|---|
| 75 | */ |
|---|
| 76 | public abstract class M5Base |
|---|
| 77 | extends AbstractClassifier |
|---|
| 78 | implements AdditionalMeasureProducer, |
|---|
| 79 | TechnicalInformationHandler { |
|---|
| 80 | |
|---|
| 81 | /** for serialization */ |
|---|
| 82 | private static final long serialVersionUID = -4022221950191647679L; |
|---|
| 83 | |
|---|
| 84 | /** |
|---|
| 85 | * the instances covered by the tree/rules |
|---|
| 86 | */ |
|---|
| 87 | private Instances m_instances; |
|---|
| 88 | |
|---|
| 89 | /** |
|---|
| 90 | * the rule set |
|---|
| 91 | */ |
|---|
| 92 | protected FastVector m_ruleSet; |
|---|
| 93 | |
|---|
| 94 | /** |
|---|
| 95 | * generate a decision list instead of a single tree. |
|---|
| 96 | */ |
|---|
| 97 | private boolean m_generateRules; |
|---|
| 98 | |
|---|
| 99 | /** |
|---|
| 100 | * use unsmoothed predictions |
|---|
| 101 | */ |
|---|
| 102 | private boolean m_unsmoothedPredictions; |
|---|
| 103 | |
|---|
| 104 | /** |
|---|
| 105 | * filter to fill in missing values |
|---|
| 106 | */ |
|---|
| 107 | private ReplaceMissingValues m_replaceMissing; |
|---|
| 108 | |
|---|
| 109 | /** |
|---|
| 110 | * filter to convert nominal attributes to binary |
|---|
| 111 | */ |
|---|
| 112 | private NominalToBinary m_nominalToBinary; |
|---|
| 113 | |
|---|
| 114 | /** |
|---|
| 115 | * for removing useless attributes |
|---|
| 116 | */ |
|---|
| 117 | private RemoveUseless m_removeUseless; |
|---|
| 118 | |
|---|
| 119 | /** |
|---|
| 120 | * Save instances at each node in an M5 tree for visualization purposes. |
|---|
| 121 | */ |
|---|
| 122 | protected boolean m_saveInstances = false; |
|---|
| 123 | |
|---|
| 124 | /** |
|---|
| 125 | * Make a regression tree/rule instead of a model tree/rule |
|---|
| 126 | */ |
|---|
| 127 | protected boolean m_regressionTree; |
|---|
| 128 | |
|---|
| 129 | /** |
|---|
| 130 | * Do not prune tree/rules |
|---|
| 131 | */ |
|---|
| 132 | protected boolean m_useUnpruned = false; |
|---|
| 133 | |
|---|
| 134 | /** |
|---|
| 135 | * The minimum number of instances to allow at a leaf node |
|---|
| 136 | */ |
|---|
| 137 | protected double m_minNumInstances = 4; |
|---|
| 138 | |
|---|
| 139 | /** |
|---|
| 140 | * Constructor |
|---|
| 141 | */ |
|---|
| 142 | public M5Base() { |
|---|
| 143 | m_generateRules = false; |
|---|
| 144 | m_unsmoothedPredictions = false; |
|---|
| 145 | m_useUnpruned = false; |
|---|
| 146 | m_minNumInstances = 4; |
|---|
| 147 | } |
|---|
| 148 | |
|---|
| 149 | /** |
|---|
| 150 | * returns information about the classifier |
|---|
| 151 | * @return a description suitable for |
|---|
| 152 | * displaying in the explorer/experimenter gui |
|---|
| 153 | */ |
|---|
| 154 | public String globalInfo() { |
|---|
| 155 | return |
|---|
| 156 | "M5Base. Implements base routines for generating M5 Model trees and " |
|---|
| 157 | + "rules\n" |
|---|
| 158 | + "The original algorithm M5 was invented by R. Quinlan and Yong Wang " |
|---|
| 159 | + "made improvements.\n\n" |
|---|
| 160 | + "For more information see:\n\n" |
|---|
| 161 | + getTechnicalInformation().toString(); |
|---|
| 162 | } |
|---|
| 163 | |
|---|
| 164 | /** |
|---|
| 165 | * Returns an instance of a TechnicalInformation object, containing |
|---|
| 166 | * detailed information about the technical background of this class, |
|---|
| 167 | * e.g., paper reference or book this class is based on. |
|---|
| 168 | * |
|---|
| 169 | * @return the technical information about this class |
|---|
| 170 | */ |
|---|
| 171 | public TechnicalInformation getTechnicalInformation() { |
|---|
| 172 | TechnicalInformation result; |
|---|
| 173 | TechnicalInformation additional; |
|---|
| 174 | |
|---|
| 175 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
|---|
| 176 | result.setValue(Field.AUTHOR, "Ross J. Quinlan"); |
|---|
| 177 | result.setValue(Field.TITLE, "Learning with Continuous Classes"); |
|---|
| 178 | result.setValue(Field.BOOKTITLE, "5th Australian Joint Conference on Artificial Intelligence"); |
|---|
| 179 | result.setValue(Field.YEAR, "1992"); |
|---|
| 180 | result.setValue(Field.PAGES, "343-348"); |
|---|
| 181 | result.setValue(Field.PUBLISHER, "World Scientific"); |
|---|
| 182 | result.setValue(Field.ADDRESS, "Singapore"); |
|---|
| 183 | |
|---|
| 184 | additional = result.add(Type.INPROCEEDINGS); |
|---|
| 185 | additional.setValue(Field.AUTHOR, "Y. Wang and I. H. Witten"); |
|---|
| 186 | additional.setValue(Field.TITLE, "Induction of model trees for predicting continuous classes"); |
|---|
| 187 | additional.setValue(Field.BOOKTITLE, "Poster papers of the 9th European Conference on Machine Learning"); |
|---|
| 188 | additional.setValue(Field.YEAR, "1997"); |
|---|
| 189 | additional.setValue(Field.PUBLISHER, "Springer"); |
|---|
| 190 | |
|---|
| 191 | return result; |
|---|
| 192 | } |
|---|
| 193 | |
|---|
| 194 | /** |
|---|
| 195 | * Returns an enumeration describing the available options |
|---|
| 196 | * |
|---|
| 197 | * @return an enumeration of all the available options |
|---|
| 198 | */ |
|---|
| 199 | public Enumeration listOptions() { |
|---|
| 200 | Vector newVector = new Vector(4); |
|---|
| 201 | |
|---|
| 202 | newVector.addElement(new Option("\tUse unpruned tree/rules", |
|---|
| 203 | "N", 0, "-N")); |
|---|
| 204 | |
|---|
| 205 | newVector.addElement(new Option("\tUse unsmoothed predictions", |
|---|
| 206 | "U", 0, "-U")); |
|---|
| 207 | |
|---|
| 208 | newVector.addElement(new Option("\tBuild regression tree/rule rather " |
|---|
| 209 | +"than a model tree/rule", |
|---|
| 210 | "R", 0, "-R")); |
|---|
| 211 | |
|---|
| 212 | newVector.addElement(new Option("\tSet minimum number of instances " |
|---|
| 213 | +"per leaf\n\t(default 4)", |
|---|
| 214 | "M",1,"-M <minimum number of instances>")); |
|---|
| 215 | return newVector.elements(); |
|---|
| 216 | } |
|---|
| 217 | |
|---|
| 218 | /** |
|---|
| 219 | * Parses a given list of options. <p/> |
|---|
| 220 | * |
|---|
| 221 | * Valid options are:<p> |
|---|
| 222 | * |
|---|
| 223 | * -U <br> |
|---|
| 224 | * Use unsmoothed predictions. <p> |
|---|
| 225 | * |
|---|
| 226 | * -R <br> |
|---|
| 227 | * Build a regression tree rather than a model tree. <p> |
|---|
| 228 | * |
|---|
| 229 | * @param options the list of options as an array of strings |
|---|
| 230 | * @throws Exception if an option is not supported |
|---|
| 231 | */ |
|---|
| 232 | public void setOptions(String[] options) throws Exception { |
|---|
| 233 | setUnpruned(Utils.getFlag('N', options)); |
|---|
| 234 | setUseUnsmoothed(Utils.getFlag('U', options)); |
|---|
| 235 | setBuildRegressionTree(Utils.getFlag('R', options)); |
|---|
| 236 | String optionString = Utils.getOption('M', options); |
|---|
| 237 | if (optionString.length() != 0) { |
|---|
| 238 | setMinNumInstances((new Double(optionString)).doubleValue()); |
|---|
| 239 | } |
|---|
| 240 | Utils.checkForRemainingOptions(options); |
|---|
| 241 | } |
|---|
| 242 | |
|---|
| 243 | /** |
|---|
| 244 | * Gets the current settings of the classifier. |
|---|
| 245 | * |
|---|
| 246 | * @return an array of strings suitable for passing to setOptions |
|---|
| 247 | */ |
|---|
| 248 | public String[] getOptions() { |
|---|
| 249 | String[] options = new String[5]; |
|---|
| 250 | int current = 0; |
|---|
| 251 | |
|---|
| 252 | if (getUnpruned()) { |
|---|
| 253 | options[current++] = "-N"; |
|---|
| 254 | } |
|---|
| 255 | |
|---|
| 256 | if (getUseUnsmoothed()) { |
|---|
| 257 | options[current++] = "-U"; |
|---|
| 258 | } |
|---|
| 259 | |
|---|
| 260 | if (getBuildRegressionTree()) { |
|---|
| 261 | options[current++] = "-R"; |
|---|
| 262 | } |
|---|
| 263 | |
|---|
| 264 | options[current++] = "-M"; |
|---|
| 265 | options[current++] = ""+getMinNumInstances(); |
|---|
| 266 | |
|---|
| 267 | while (current < options.length) { |
|---|
| 268 | options[current++] = ""; |
|---|
| 269 | } |
|---|
| 270 | return options; |
|---|
| 271 | } |
|---|
| 272 | |
|---|
| 273 | /** |
|---|
| 274 | * Returns the tip text for this property |
|---|
| 275 | * |
|---|
| 276 | * @return tip text for this property suitable for |
|---|
| 277 | * displaying in the explorer/experimenter gui |
|---|
| 278 | */ |
|---|
| 279 | public String unprunedTipText() { |
|---|
| 280 | return "Whether unpruned tree/rules are to be generated."; |
|---|
| 281 | } |
|---|
| 282 | |
|---|
| 283 | /** |
|---|
| 284 | * Use unpruned tree/rules |
|---|
| 285 | * |
|---|
| 286 | * @param unpruned true if unpruned tree/rules are to be generated |
|---|
| 287 | */ |
|---|
| 288 | public void setUnpruned(boolean unpruned) { |
|---|
| 289 | m_useUnpruned = unpruned; |
|---|
| 290 | } |
|---|
| 291 | |
|---|
| 292 | /** |
|---|
| 293 | * Get whether unpruned tree/rules are being generated |
|---|
| 294 | * |
|---|
| 295 | * @return true if unpruned tree/rules are to be generated |
|---|
| 296 | */ |
|---|
| 297 | public boolean getUnpruned() { |
|---|
| 298 | return m_useUnpruned; |
|---|
| 299 | } |
|---|
| 300 | |
|---|
| 301 | /** |
|---|
| 302 | * Returns the tip text for this property |
|---|
| 303 | * |
|---|
| 304 | * @return tip text for this property suitable for |
|---|
| 305 | * displaying in the explorer/experimenter gui |
|---|
| 306 | */ |
|---|
| 307 | public String generateRulesTipText() { |
|---|
| 308 | return "Whether to generate rules (decision list) rather than a tree."; |
|---|
| 309 | } |
|---|
| 310 | |
|---|
| 311 | /** |
|---|
| 312 | * Generate rules (decision list) rather than a tree |
|---|
| 313 | * |
|---|
| 314 | * @param u true if rules are to be generated |
|---|
| 315 | */ |
|---|
| 316 | protected void setGenerateRules(boolean u) { |
|---|
| 317 | m_generateRules = u; |
|---|
| 318 | } |
|---|
| 319 | |
|---|
| 320 | /** |
|---|
| 321 | * get whether rules are being generated rather than a tree |
|---|
| 322 | * |
|---|
| 323 | * @return true if rules are to be generated |
|---|
| 324 | */ |
|---|
| 325 | protected boolean getGenerateRules() { |
|---|
| 326 | return m_generateRules; |
|---|
| 327 | } |
|---|
| 328 | |
|---|
| 329 | /** |
|---|
| 330 | * Returns the tip text for this property |
|---|
| 331 | * |
|---|
| 332 | * @return tip text for this property suitable for |
|---|
| 333 | * displaying in the explorer/experimenter gui |
|---|
| 334 | */ |
|---|
| 335 | public String useUnsmoothedTipText() { |
|---|
| 336 | return "Whether to use unsmoothed predictions."; |
|---|
| 337 | } |
|---|
| 338 | |
|---|
| 339 | /** |
|---|
| 340 | * Use unsmoothed predictions |
|---|
| 341 | * |
|---|
| 342 | * @param s true if unsmoothed predictions are to be used |
|---|
| 343 | */ |
|---|
| 344 | public void setUseUnsmoothed(boolean s) { |
|---|
| 345 | m_unsmoothedPredictions = s; |
|---|
| 346 | } |
|---|
| 347 | |
|---|
| 348 | /** |
|---|
| 349 | * Get whether or not smoothing is being used |
|---|
| 350 | * |
|---|
| 351 | * @return true if unsmoothed predictions are to be used |
|---|
| 352 | */ |
|---|
| 353 | public boolean getUseUnsmoothed() { |
|---|
| 354 | return m_unsmoothedPredictions; |
|---|
| 355 | } |
|---|
| 356 | |
|---|
| 357 | /** |
|---|
| 358 | * Returns the tip text for this property |
|---|
| 359 | * |
|---|
| 360 | * @return tip text for this property suitable for |
|---|
| 361 | * displaying in the explorer/experimenter gui |
|---|
| 362 | */ |
|---|
| 363 | public String buildRegressionTreeTipText() { |
|---|
| 364 | return "Whether to generate a regression tree/rule instead of a model tree/rule."; |
|---|
| 365 | } |
|---|
| 366 | |
|---|
| 367 | /** |
|---|
| 368 | * Get the value of regressionTree. |
|---|
| 369 | * |
|---|
| 370 | * @return Value of regressionTree. |
|---|
| 371 | */ |
|---|
| 372 | public boolean getBuildRegressionTree() { |
|---|
| 373 | |
|---|
| 374 | return m_regressionTree; |
|---|
| 375 | } |
|---|
| 376 | |
|---|
| 377 | /** |
|---|
| 378 | * Set the value of regressionTree. |
|---|
| 379 | * |
|---|
| 380 | * @param newregressionTree Value to assign to regressionTree. |
|---|
| 381 | */ |
|---|
| 382 | public void setBuildRegressionTree(boolean newregressionTree) { |
|---|
| 383 | |
|---|
| 384 | m_regressionTree = newregressionTree; |
|---|
| 385 | } |
|---|
| 386 | |
|---|
| 387 | /** |
|---|
| 388 | * Returns the tip text for this property |
|---|
| 389 | * |
|---|
| 390 | * @return tip text for this property suitable for |
|---|
| 391 | * displaying in the explorer/experimenter gui |
|---|
| 392 | */ |
|---|
| 393 | public String minNumInstancesTipText() { |
|---|
| 394 | return "The minimum number of instances to allow at a leaf node."; |
|---|
| 395 | } |
|---|
| 396 | |
|---|
| 397 | /** |
|---|
| 398 | * Set the minimum number of instances to allow at a leaf node |
|---|
| 399 | * |
|---|
| 400 | * @param minNum the minimum number of instances |
|---|
| 401 | */ |
|---|
| 402 | public void setMinNumInstances(double minNum) { |
|---|
| 403 | m_minNumInstances = minNum; |
|---|
| 404 | } |
|---|
| 405 | |
|---|
| 406 | /** |
|---|
| 407 | * Get the minimum number of instances to allow at a leaf node |
|---|
| 408 | * |
|---|
| 409 | * @return a <code>double</code> value |
|---|
| 410 | */ |
|---|
| 411 | public double getMinNumInstances() { |
|---|
| 412 | return m_minNumInstances; |
|---|
| 413 | } |
|---|
| 414 | |
|---|
| 415 | /** |
|---|
| 416 | * Returns default capabilities of the classifier, i.e., of LinearRegression. |
|---|
| 417 | * |
|---|
| 418 | * @return the capabilities of this classifier |
|---|
| 419 | */ |
|---|
| 420 | public Capabilities getCapabilities() { |
|---|
| 421 | return new LinearRegression().getCapabilities(); |
|---|
| 422 | } |
|---|
| 423 | |
|---|
| 424 | /** |
|---|
| 425 | * Generates the classifier. |
|---|
| 426 | * |
|---|
| 427 | * @param data set of instances serving as training data |
|---|
| 428 | * @throws Exception if the classifier has not been generated |
|---|
| 429 | * successfully |
|---|
| 430 | */ |
|---|
| 431 | public void buildClassifier(Instances data) throws Exception { |
|---|
| 432 | // can classifier handle the data? |
|---|
| 433 | getCapabilities().testWithFail(data); |
|---|
| 434 | |
|---|
| 435 | // remove instances with missing class |
|---|
| 436 | data = new Instances(data); |
|---|
| 437 | data.deleteWithMissingClass(); |
|---|
| 438 | |
|---|
| 439 | m_instances = new Instances(data); |
|---|
| 440 | |
|---|
| 441 | m_replaceMissing = new ReplaceMissingValues(); |
|---|
| 442 | m_replaceMissing.setInputFormat(m_instances); |
|---|
| 443 | m_instances = Filter.useFilter(m_instances, m_replaceMissing); |
|---|
| 444 | |
|---|
| 445 | m_nominalToBinary = new NominalToBinary(); |
|---|
| 446 | m_nominalToBinary.setInputFormat(m_instances); |
|---|
| 447 | m_instances = Filter.useFilter(m_instances, m_nominalToBinary); |
|---|
| 448 | |
|---|
| 449 | m_removeUseless = new RemoveUseless(); |
|---|
| 450 | m_removeUseless.setInputFormat(m_instances); |
|---|
| 451 | m_instances = Filter.useFilter(m_instances, m_removeUseless); |
|---|
| 452 | |
|---|
| 453 | m_instances.randomize(new Random(1)); |
|---|
| 454 | |
|---|
| 455 | m_ruleSet = new FastVector(); |
|---|
| 456 | |
|---|
| 457 | Rule tempRule; |
|---|
| 458 | |
|---|
| 459 | if (m_generateRules) { |
|---|
| 460 | Instances tempInst = m_instances; |
|---|
| 461 | |
|---|
| 462 | do { |
|---|
| 463 | tempRule = new Rule(); |
|---|
| 464 | tempRule.setSmoothing(!m_unsmoothedPredictions); |
|---|
| 465 | tempRule.setRegressionTree(m_regressionTree); |
|---|
| 466 | tempRule.setUnpruned(m_useUnpruned); |
|---|
| 467 | tempRule.setSaveInstances(false); |
|---|
| 468 | tempRule.setMinNumInstances(m_minNumInstances); |
|---|
| 469 | tempRule.buildClassifier(tempInst); |
|---|
| 470 | m_ruleSet.addElement(tempRule); |
|---|
| 471 | // System.err.println("Built rule : "+tempRule.toString()); |
|---|
| 472 | tempInst = tempRule.notCoveredInstances(); |
|---|
| 473 | } while (tempInst.numInstances() > 0); |
|---|
| 474 | } else { |
|---|
| 475 | // just build a single tree |
|---|
| 476 | tempRule = new Rule(); |
|---|
| 477 | |
|---|
| 478 | tempRule.setUseTree(true); |
|---|
| 479 | // tempRule.setGrowFullTree(true); |
|---|
| 480 | tempRule.setSmoothing(!m_unsmoothedPredictions); |
|---|
| 481 | tempRule.setSaveInstances(m_saveInstances); |
|---|
| 482 | tempRule.setRegressionTree(m_regressionTree); |
|---|
| 483 | tempRule.setUnpruned(m_useUnpruned); |
|---|
| 484 | tempRule.setMinNumInstances(m_minNumInstances); |
|---|
| 485 | |
|---|
| 486 | Instances temp_train; |
|---|
| 487 | |
|---|
| 488 | temp_train = m_instances; |
|---|
| 489 | |
|---|
| 490 | tempRule.buildClassifier(temp_train); |
|---|
| 491 | |
|---|
| 492 | m_ruleSet.addElement(tempRule); |
|---|
| 493 | |
|---|
| 494 | // save space |
|---|
| 495 | m_instances = new Instances(m_instances, 0); |
|---|
| 496 | // System.err.print(tempRule.m_topOfTree.treeToString(0)); |
|---|
| 497 | } |
|---|
| 498 | } |
|---|
| 499 | |
|---|
| 500 | /** |
|---|
| 501 | * Calculates a prediction for an instance using a set of rules |
|---|
| 502 | * or an M5 model tree |
|---|
| 503 | * |
|---|
| 504 | * @param inst the instance whos class value is to be predicted |
|---|
| 505 | * @return the prediction |
|---|
| 506 | * @throws Exception if a prediction can't be made. |
|---|
| 507 | */ |
|---|
| 508 | public double classifyInstance(Instance inst) throws Exception { |
|---|
| 509 | Rule temp; |
|---|
| 510 | double prediction = 0; |
|---|
| 511 | boolean success = false; |
|---|
| 512 | |
|---|
| 513 | m_replaceMissing.input(inst); |
|---|
| 514 | inst = m_replaceMissing.output(); |
|---|
| 515 | m_nominalToBinary.input(inst); |
|---|
| 516 | inst = m_nominalToBinary.output(); |
|---|
| 517 | m_removeUseless.input(inst); |
|---|
| 518 | inst = m_removeUseless.output(); |
|---|
| 519 | |
|---|
| 520 | if (m_ruleSet == null) { |
|---|
| 521 | throw new Exception("Classifier has not been built yet!"); |
|---|
| 522 | } |
|---|
| 523 | |
|---|
| 524 | if (!m_generateRules) { |
|---|
| 525 | temp = (Rule) m_ruleSet.elementAt(0); |
|---|
| 526 | return temp.classifyInstance(inst); |
|---|
| 527 | } |
|---|
| 528 | |
|---|
| 529 | boolean cont; |
|---|
| 530 | int i; |
|---|
| 531 | |
|---|
| 532 | for (i = 0; i < m_ruleSet.size(); i++) { |
|---|
| 533 | cont = false; |
|---|
| 534 | temp = (Rule) m_ruleSet.elementAt(i); |
|---|
| 535 | |
|---|
| 536 | try { |
|---|
| 537 | prediction = temp.classifyInstance(inst); |
|---|
| 538 | success = true; |
|---|
| 539 | } catch (Exception e) { |
|---|
| 540 | cont = true; |
|---|
| 541 | } |
|---|
| 542 | |
|---|
| 543 | if (!cont) { |
|---|
| 544 | break; |
|---|
| 545 | } |
|---|
| 546 | } |
|---|
| 547 | |
|---|
| 548 | if (!success) { |
|---|
| 549 | System.out.println("Error in predicting (DecList)"); |
|---|
| 550 | } |
|---|
| 551 | return prediction; |
|---|
| 552 | } |
|---|
| 553 | |
|---|
| 554 | /** |
|---|
| 555 | * Returns a description of the classifier |
|---|
| 556 | * |
|---|
| 557 | * @return a description of the classifier as a String |
|---|
| 558 | */ |
|---|
| 559 | public String toString() { |
|---|
| 560 | StringBuffer text = new StringBuffer(); |
|---|
| 561 | Rule temp; |
|---|
| 562 | |
|---|
| 563 | if (m_ruleSet == null) { |
|---|
| 564 | return "Classifier hasn't been built yet!"; |
|---|
| 565 | } |
|---|
| 566 | |
|---|
| 567 | if (m_generateRules) { |
|---|
| 568 | text.append("M5 " |
|---|
| 569 | + ((m_useUnpruned == true) |
|---|
| 570 | ? "unpruned " |
|---|
| 571 | : "pruned ") |
|---|
| 572 | + ((m_regressionTree == true) |
|---|
| 573 | ? "regression " |
|---|
| 574 | : "model ") |
|---|
| 575 | + "rules "); |
|---|
| 576 | |
|---|
| 577 | if (!m_unsmoothedPredictions) { |
|---|
| 578 | text.append("\n(using smoothed linear models) "); |
|---|
| 579 | } |
|---|
| 580 | |
|---|
| 581 | text.append(":\n"); |
|---|
| 582 | |
|---|
| 583 | text.append("Number of Rules : " + m_ruleSet.size() + "\n\n"); |
|---|
| 584 | |
|---|
| 585 | for (int j = 0; j < m_ruleSet.size(); j++) { |
|---|
| 586 | temp = (Rule) m_ruleSet.elementAt(j); |
|---|
| 587 | |
|---|
| 588 | text.append("Rule: " + (j + 1) + "\n"); |
|---|
| 589 | text.append(temp.toString()); |
|---|
| 590 | } |
|---|
| 591 | } else { |
|---|
| 592 | temp = (Rule) m_ruleSet.elementAt(0); |
|---|
| 593 | text.append(temp.toString()); |
|---|
| 594 | } |
|---|
| 595 | return text.toString(); |
|---|
| 596 | } |
|---|
| 597 | |
|---|
| 598 | /** |
|---|
| 599 | * Returns an enumeration of the additional measure names |
|---|
| 600 | * @return an enumeration of the measure names |
|---|
| 601 | */ |
|---|
| 602 | public Enumeration enumerateMeasures() { |
|---|
| 603 | Vector newVector = new Vector(1); |
|---|
| 604 | newVector.addElement("measureNumRules"); |
|---|
| 605 | return newVector.elements(); |
|---|
| 606 | } |
|---|
| 607 | |
|---|
| 608 | /** |
|---|
| 609 | * Returns the value of the named measure |
|---|
| 610 | * @param additionalMeasureName the name of the measure to query for its value |
|---|
| 611 | * @return the value of the named measure |
|---|
| 612 | * @throws Exception if the named measure is not supported |
|---|
| 613 | */ |
|---|
| 614 | public double getMeasure(String additionalMeasureName) |
|---|
| 615 | { |
|---|
| 616 | if (additionalMeasureName.compareToIgnoreCase("measureNumRules") == 0) { |
|---|
| 617 | return measureNumRules(); |
|---|
| 618 | } else { |
|---|
| 619 | throw new IllegalArgumentException(additionalMeasureName |
|---|
| 620 | + " not supported (M5)"); |
|---|
| 621 | } |
|---|
| 622 | } |
|---|
| 623 | |
|---|
| 624 | /** |
|---|
| 625 | * return the number of rules |
|---|
| 626 | * @return the number of rules (same as # linear models & |
|---|
| 627 | * # leaves in the tree) |
|---|
| 628 | */ |
|---|
| 629 | public double measureNumRules() { |
|---|
| 630 | if (m_generateRules) { |
|---|
| 631 | return m_ruleSet.size(); |
|---|
| 632 | } |
|---|
| 633 | return ((Rule)m_ruleSet.elementAt(0)).m_topOfTree.numberOfLinearModels(); |
|---|
| 634 | } |
|---|
| 635 | |
|---|
| 636 | public RuleNode getM5RootNode() { |
|---|
| 637 | Rule temp = (Rule) m_ruleSet.elementAt(0); |
|---|
| 638 | return temp.getM5RootNode(); |
|---|
| 639 | } |
|---|
| 640 | } |
|---|