| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * ResidualSplit.java |
|---|
| 19 | * Copyright (C) 2003 University of Waikato, Hamilton, New Zealand |
|---|
| 20 | * |
|---|
| 21 | */ |
|---|
| 22 | |
|---|
| 23 | package weka.classifiers.trees.lmt; |
|---|
| 24 | |
|---|
| 25 | import weka.classifiers.trees.j48.ClassifierSplitModel; |
|---|
| 26 | import weka.classifiers.trees.j48.Distribution; |
|---|
| 27 | import weka.core.Attribute; |
|---|
| 28 | import weka.core.Instance; |
|---|
| 29 | import weka.core.Instances; |
|---|
| 30 | import weka.core.RevisionUtils; |
|---|
| 31 | import weka.core.Utils; |
|---|
| 32 | |
|---|
| 33 | /** |
|---|
| 34 | * Helper class for logistic model trees (weka.classifiers.trees.lmt.LMT) to implement the |
|---|
| 35 | * splitting criterion based on residuals of the LogitBoost algorithm. |
|---|
| 36 | * |
|---|
| 37 | * @author Niels Landwehr |
|---|
| 38 | * @version $Revision: 1.4 $ |
|---|
| 39 | */ |
|---|
| 40 | public class ResidualSplit |
|---|
| 41 | extends ClassifierSplitModel{ |
|---|
| 42 | |
|---|
| 43 | /** for serialization */ |
|---|
| 44 | private static final long serialVersionUID = -5055883734183713525L; |
|---|
| 45 | |
|---|
| 46 | /**The attribute selected for the split*/ |
|---|
| 47 | protected Attribute m_attribute; |
|---|
| 48 | |
|---|
| 49 | /**The index of the attribute selected for the split*/ |
|---|
| 50 | protected int m_attIndex; |
|---|
| 51 | |
|---|
| 52 | /**Number of instances in the set*/ |
|---|
| 53 | protected int m_numInstances; |
|---|
| 54 | |
|---|
| 55 | /**Number of classed*/ |
|---|
| 56 | protected int m_numClasses; |
|---|
| 57 | |
|---|
| 58 | /**The set of instances*/ |
|---|
| 59 | protected Instances m_data; |
|---|
| 60 | |
|---|
| 61 | /**The Z-values (LogitBoost response) for the set of instances*/ |
|---|
| 62 | protected double[][] m_dataZs; |
|---|
| 63 | |
|---|
| 64 | /**The LogitBoost-weights for the set of instances*/ |
|---|
| 65 | protected double[][] m_dataWs; |
|---|
| 66 | |
|---|
| 67 | /**The split point (for numeric attributes)*/ |
|---|
| 68 | protected double m_splitPoint; |
|---|
| 69 | |
|---|
| 70 | /** |
|---|
| 71 | *Creates a split object |
|---|
| 72 | *@param attIndex the index of the attribute to split on |
|---|
| 73 | */ |
|---|
| 74 | public ResidualSplit(int attIndex) { |
|---|
| 75 | m_attIndex = attIndex; |
|---|
| 76 | } |
|---|
| 77 | |
|---|
| 78 | /** |
|---|
| 79 | * Builds the split. |
|---|
| 80 | * Needs the Z/W values of LogitBoost for the set of instances. |
|---|
| 81 | */ |
|---|
| 82 | public void buildClassifier(Instances data, double[][] dataZs, double[][] dataWs) |
|---|
| 83 | throws Exception { |
|---|
| 84 | |
|---|
| 85 | m_numClasses = data.numClasses(); |
|---|
| 86 | m_numInstances = data.numInstances(); |
|---|
| 87 | if (m_numInstances == 0) throw new Exception("Can't build split on 0 instances"); |
|---|
| 88 | |
|---|
| 89 | //save data/Zs/Ws |
|---|
| 90 | m_data = data; |
|---|
| 91 | m_dataZs = dataZs; |
|---|
| 92 | m_dataWs = dataWs; |
|---|
| 93 | m_attribute = data.attribute(m_attIndex); |
|---|
| 94 | |
|---|
| 95 | //determine number of subsets and split point for numeric attributes |
|---|
| 96 | if (m_attribute.isNominal()) { |
|---|
| 97 | m_splitPoint = 0.0; |
|---|
| 98 | m_numSubsets = m_attribute.numValues(); |
|---|
| 99 | } else { |
|---|
| 100 | getSplitPoint(); |
|---|
| 101 | m_numSubsets = 2; |
|---|
| 102 | } |
|---|
| 103 | //create distribution for data |
|---|
| 104 | m_distribution = new Distribution(data, this); |
|---|
| 105 | } |
|---|
| 106 | |
|---|
| 107 | |
|---|
| 108 | /** |
|---|
| 109 | * Selects split point for numeric attribute. |
|---|
| 110 | */ |
|---|
| 111 | protected boolean getSplitPoint() throws Exception{ |
|---|
| 112 | |
|---|
| 113 | //compute possible split points |
|---|
| 114 | double[] splitPoints = new double[m_numInstances]; |
|---|
| 115 | int numSplitPoints = 0; |
|---|
| 116 | |
|---|
| 117 | Instances sortedData = new Instances(m_data); |
|---|
| 118 | sortedData.sort(sortedData.attribute(m_attIndex)); |
|---|
| 119 | |
|---|
| 120 | double last, current; |
|---|
| 121 | |
|---|
| 122 | last = sortedData.instance(0).value(m_attIndex); |
|---|
| 123 | |
|---|
| 124 | for (int i = 0; i < m_numInstances - 1; i++) { |
|---|
| 125 | current = sortedData.instance(i+1).value(m_attIndex); |
|---|
| 126 | if (!Utils.eq(current, last)){ |
|---|
| 127 | splitPoints[numSplitPoints++] = (last + current) / 2.0; |
|---|
| 128 | } |
|---|
| 129 | last = current; |
|---|
| 130 | } |
|---|
| 131 | |
|---|
| 132 | //compute entropy for all split points |
|---|
| 133 | double[] entropyGain = new double[numSplitPoints]; |
|---|
| 134 | |
|---|
| 135 | for (int i = 0; i < numSplitPoints; i++) { |
|---|
| 136 | m_splitPoint = splitPoints[i]; |
|---|
| 137 | entropyGain[i] = entropyGain(); |
|---|
| 138 | } |
|---|
| 139 | |
|---|
| 140 | //get best entropy gain |
|---|
| 141 | int bestSplit = -1; |
|---|
| 142 | double bestGain = -Double.MAX_VALUE; |
|---|
| 143 | |
|---|
| 144 | for (int i = 0; i < numSplitPoints; i++) { |
|---|
| 145 | if (entropyGain[i] > bestGain) { |
|---|
| 146 | bestGain = entropyGain[i]; |
|---|
| 147 | bestSplit = i; |
|---|
| 148 | } |
|---|
| 149 | } |
|---|
| 150 | |
|---|
| 151 | if (bestSplit < 0) return false; |
|---|
| 152 | |
|---|
| 153 | m_splitPoint = splitPoints[bestSplit]; |
|---|
| 154 | return true; |
|---|
| 155 | } |
|---|
| 156 | |
|---|
| 157 | /** |
|---|
| 158 | * Computes entropy gain for current split. |
|---|
| 159 | */ |
|---|
| 160 | public double entropyGain() throws Exception{ |
|---|
| 161 | |
|---|
| 162 | int numSubsets; |
|---|
| 163 | if (m_attribute.isNominal()) { |
|---|
| 164 | numSubsets = m_attribute.numValues(); |
|---|
| 165 | } else { |
|---|
| 166 | numSubsets = 2; |
|---|
| 167 | } |
|---|
| 168 | |
|---|
| 169 | double[][][] splitDataZs = new double[numSubsets][][]; |
|---|
| 170 | double[][][] splitDataWs = new double[numSubsets][][]; |
|---|
| 171 | |
|---|
| 172 | //determine size of the subsets |
|---|
| 173 | int[] subsetSize = new int[numSubsets]; |
|---|
| 174 | for (int i = 0; i < m_numInstances; i++) { |
|---|
| 175 | int subset = whichSubset(m_data.instance(i)); |
|---|
| 176 | if (subset < 0) throw new Exception("ResidualSplit: no support for splits on missing values"); |
|---|
| 177 | subsetSize[subset]++; |
|---|
| 178 | } |
|---|
| 179 | |
|---|
| 180 | for (int i = 0; i < numSubsets; i++) { |
|---|
| 181 | splitDataZs[i] = new double[subsetSize[i]][]; |
|---|
| 182 | splitDataWs[i] = new double[subsetSize[i]][]; |
|---|
| 183 | } |
|---|
| 184 | |
|---|
| 185 | |
|---|
| 186 | int[] subsetCount = new int[numSubsets]; |
|---|
| 187 | |
|---|
| 188 | //sort Zs/Ws into subsets |
|---|
| 189 | for (int i = 0; i < m_numInstances; i++) { |
|---|
| 190 | int subset = whichSubset(m_data.instance(i)); |
|---|
| 191 | splitDataZs[subset][subsetCount[subset]] = m_dataZs[i]; |
|---|
| 192 | splitDataWs[subset][subsetCount[subset]] = m_dataWs[i]; |
|---|
| 193 | subsetCount[subset]++; |
|---|
| 194 | } |
|---|
| 195 | |
|---|
| 196 | //calculate entropy gain |
|---|
| 197 | double entropyOrig = entropy(m_dataZs, m_dataWs); |
|---|
| 198 | |
|---|
| 199 | double entropySplit = 0.0; |
|---|
| 200 | |
|---|
| 201 | for (int i = 0; i < numSubsets; i++) { |
|---|
| 202 | entropySplit += entropy(splitDataZs[i], splitDataWs[i]); |
|---|
| 203 | } |
|---|
| 204 | |
|---|
| 205 | return entropyOrig - entropySplit; |
|---|
| 206 | } |
|---|
| 207 | |
|---|
| 208 | /** |
|---|
| 209 | * Helper function to compute entropy from Z/W values. |
|---|
| 210 | */ |
|---|
| 211 | protected double entropy(double[][] dataZs, double[][] dataWs){ |
|---|
| 212 | //method returns entropy * sumOfWeights |
|---|
| 213 | double entropy = 0.0; |
|---|
| 214 | int numInstances = dataZs.length; |
|---|
| 215 | |
|---|
| 216 | for (int j = 0; j < m_numClasses; j++) { |
|---|
| 217 | |
|---|
| 218 | //compute mean for class |
|---|
| 219 | double m = 0.0; |
|---|
| 220 | double sum = 0.0; |
|---|
| 221 | for (int i = 0; i < numInstances; i++) { |
|---|
| 222 | m += dataZs[i][j] * dataWs[i][j]; |
|---|
| 223 | sum += dataWs[i][j]; |
|---|
| 224 | } |
|---|
| 225 | m /= sum; |
|---|
| 226 | |
|---|
| 227 | //sum up entropy for class |
|---|
| 228 | for (int i = 0; i < numInstances; i++) { |
|---|
| 229 | entropy += dataWs[i][j] * Math.pow(dataZs[i][j] - m,2); |
|---|
| 230 | } |
|---|
| 231 | |
|---|
| 232 | } |
|---|
| 233 | |
|---|
| 234 | return entropy; |
|---|
| 235 | } |
|---|
| 236 | |
|---|
| 237 | /** |
|---|
| 238 | * Checks if there are at least 2 subsets that contain >= minNumInstances. |
|---|
| 239 | */ |
|---|
| 240 | public boolean checkModel(int minNumInstances){ |
|---|
| 241 | //checks if there are at least 2 subsets that contain >= minNumInstances |
|---|
| 242 | int count = 0; |
|---|
| 243 | for (int i = 0; i < m_distribution.numBags(); i++) { |
|---|
| 244 | if (m_distribution.perBag(i) >= minNumInstances) count++; |
|---|
| 245 | } |
|---|
| 246 | return (count >= 2); |
|---|
| 247 | } |
|---|
| 248 | |
|---|
| 249 | /** |
|---|
| 250 | * Returns name of splitting attribute (left side of condition). |
|---|
| 251 | */ |
|---|
| 252 | public final String leftSide(Instances data) { |
|---|
| 253 | |
|---|
| 254 | return data.attribute(m_attIndex).name(); |
|---|
| 255 | } |
|---|
| 256 | |
|---|
| 257 | /** |
|---|
| 258 | * Prints the condition satisfied by instances in a subset. |
|---|
| 259 | */ |
|---|
| 260 | public final String rightSide(int index,Instances data) { |
|---|
| 261 | |
|---|
| 262 | StringBuffer text; |
|---|
| 263 | |
|---|
| 264 | text = new StringBuffer(); |
|---|
| 265 | if (data.attribute(m_attIndex).isNominal()) |
|---|
| 266 | text.append(" = "+ |
|---|
| 267 | data.attribute(m_attIndex).value(index)); |
|---|
| 268 | else |
|---|
| 269 | if (index == 0) |
|---|
| 270 | text.append(" <= "+ |
|---|
| 271 | Utils.doubleToString(m_splitPoint,6)); |
|---|
| 272 | else |
|---|
| 273 | text.append(" > "+ |
|---|
| 274 | Utils.doubleToString(m_splitPoint,6)); |
|---|
| 275 | return text.toString(); |
|---|
| 276 | } |
|---|
| 277 | |
|---|
| 278 | public final int whichSubset(Instance instance) |
|---|
| 279 | throws Exception { |
|---|
| 280 | |
|---|
| 281 | if (instance.isMissing(m_attIndex)) |
|---|
| 282 | return -1; |
|---|
| 283 | else{ |
|---|
| 284 | if (instance.attribute(m_attIndex).isNominal()) |
|---|
| 285 | return (int)instance.value(m_attIndex); |
|---|
| 286 | else |
|---|
| 287 | if (Utils.smOrEq(instance.value(m_attIndex),m_splitPoint)) |
|---|
| 288 | return 0; |
|---|
| 289 | else |
|---|
| 290 | return 1; |
|---|
| 291 | } |
|---|
| 292 | } |
|---|
| 293 | |
|---|
| 294 | /** Method not in use*/ |
|---|
| 295 | public void buildClassifier(Instances data) { |
|---|
| 296 | //method not in use |
|---|
| 297 | } |
|---|
| 298 | |
|---|
| 299 | /**Method not in use*/ |
|---|
| 300 | public final double [] weights(Instance instance){ |
|---|
| 301 | //method not in use |
|---|
| 302 | return null; |
|---|
| 303 | } |
|---|
| 304 | |
|---|
| 305 | /**Method not in use*/ |
|---|
| 306 | public final String sourceExpression(int index, Instances data) { |
|---|
| 307 | //method not in use |
|---|
| 308 | return ""; |
|---|
| 309 | } |
|---|
| 310 | |
|---|
| 311 | /** |
|---|
| 312 | * Returns the revision string. |
|---|
| 313 | * |
|---|
| 314 | * @return the revision |
|---|
| 315 | */ |
|---|
| 316 | public String getRevision() { |
|---|
| 317 | return RevisionUtils.extract("$Revision: 1.4 $"); |
|---|
| 318 | } |
|---|
| 319 | } |
|---|