| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * LogisticBase.java |
|---|
| 19 | * Copyright (C) 2003 University of Waikato, Hamilton, New Zealand |
|---|
| 20 | * |
|---|
| 21 | */ |
|---|
| 22 | |
|---|
| 23 | package weka.classifiers.trees.lmt; |
|---|
| 24 | |
|---|
| 25 | import weka.classifiers.Classifier; |
|---|
| 26 | import weka.classifiers.AbstractClassifier; |
|---|
| 27 | import weka.classifiers.Evaluation; |
|---|
| 28 | import weka.classifiers.functions.SimpleLinearRegression; |
|---|
| 29 | import weka.core.Attribute; |
|---|
| 30 | import weka.core.Instance; |
|---|
| 31 | import weka.core.Instances; |
|---|
| 32 | import weka.core.RevisionUtils; |
|---|
| 33 | import weka.core.Utils; |
|---|
| 34 | import weka.core.WeightedInstancesHandler; |
|---|
| 35 | |
|---|
| 36 | /** |
|---|
| 37 | * Base/helper class for building logistic regression models with the LogitBoost algorithm. |
|---|
| 38 | * Used for building logistic model trees (weka.classifiers.trees.lmt.LMT) |
|---|
| 39 | * and standalone logistic regression (weka.classifiers.functions.SimpleLogistic). |
|---|
| 40 | * |
|---|
| 41 | <!-- options-start --> |
|---|
| 42 | * Valid options are: <p/> |
|---|
| 43 | * |
|---|
| 44 | * <pre> -D |
|---|
| 45 | * If set, classifier is run in debug mode and |
|---|
| 46 | * may output additional info to the console</pre> |
|---|
| 47 | * |
|---|
| 48 | <!-- options-end --> |
|---|
| 49 | * |
|---|
| 50 | * @author Niels Landwehr |
|---|
| 51 | * @author Marc Sumner |
|---|
| 52 | * @version $Revision: 5928 $ |
|---|
| 53 | */ |
|---|
| 54 | public class LogisticBase |
|---|
| 55 | extends AbstractClassifier |
|---|
| 56 | implements WeightedInstancesHandler { |
|---|
| 57 | |
|---|
| 58 | /** for serialization */ |
|---|
| 59 | static final long serialVersionUID = 168765678097825064L; |
|---|
| 60 | |
|---|
| 61 | /** Header-only version of the numeric version of the training data*/ |
|---|
| 62 | protected Instances m_numericDataHeader; |
|---|
| 63 | /** |
|---|
| 64 | * Numeric version of the training data. Original class is replaced by a numeric pseudo-class. |
|---|
| 65 | */ |
|---|
| 66 | protected Instances m_numericData; |
|---|
| 67 | |
|---|
| 68 | /** Training data */ |
|---|
| 69 | protected Instances m_train; |
|---|
| 70 | |
|---|
| 71 | /** Use cross-validation to determine best number of LogitBoost iterations ?*/ |
|---|
| 72 | protected boolean m_useCrossValidation; |
|---|
| 73 | |
|---|
| 74 | /**Use error on probabilities for stopping criterion of LogitBoost? */ |
|---|
| 75 | protected boolean m_errorOnProbabilities; |
|---|
| 76 | |
|---|
| 77 | /**Use fixed number of iterations for LogitBoost? (if negative, cross-validate number of iterations)*/ |
|---|
| 78 | protected int m_fixedNumIterations; |
|---|
| 79 | |
|---|
| 80 | /**Use heuristic to stop performing LogitBoost iterations earlier? |
|---|
| 81 | * If enabled, LogitBoost is stopped if the current (local) minimum of the error on a test set as |
|---|
| 82 | * a function of the number of iterations has not changed for m_heuristicStop iterations. |
|---|
| 83 | */ |
|---|
| 84 | protected int m_heuristicStop = 50; |
|---|
| 85 | |
|---|
| 86 | /**The number of LogitBoost iterations performed.*/ |
|---|
| 87 | protected int m_numRegressions = 0; |
|---|
| 88 | |
|---|
| 89 | /**The maximum number of LogitBoost iterations*/ |
|---|
| 90 | protected int m_maxIterations; |
|---|
| 91 | |
|---|
| 92 | /**The number of different classes*/ |
|---|
| 93 | protected int m_numClasses; |
|---|
| 94 | |
|---|
| 95 | /**Array holding the simple regression functions fit by LogitBoost*/ |
|---|
| 96 | protected SimpleLinearRegression[][] m_regressions; |
|---|
| 97 | |
|---|
| 98 | /**Number of folds for cross-validating number of LogitBoost iterations*/ |
|---|
| 99 | protected static int m_numFoldsBoosting = 5; |
|---|
| 100 | |
|---|
| 101 | /**Threshold on the Z-value for LogitBoost*/ |
|---|
| 102 | protected static final double Z_MAX = 3; |
|---|
| 103 | |
|---|
| 104 | /** If true, the AIC is used to choose the best iteration*/ |
|---|
| 105 | private boolean m_useAIC = false; |
|---|
| 106 | |
|---|
| 107 | /** Effective number of parameters used for AIC / BIC automatic stopping */ |
|---|
| 108 | protected double m_numParameters = 0; |
|---|
| 109 | |
|---|
| 110 | /**Threshold for trimming weights. Instances with a weight lower than this (as a percentage |
|---|
| 111 | * of total weights) are not included in the regression fit. |
|---|
| 112 | **/ |
|---|
| 113 | protected double m_weightTrimBeta = 0; |
|---|
| 114 | |
|---|
| 115 | /** |
|---|
| 116 | * Constructor that creates LogisticBase object with standard options. |
|---|
| 117 | */ |
|---|
| 118 | public LogisticBase(){ |
|---|
| 119 | m_fixedNumIterations = -1; |
|---|
| 120 | m_useCrossValidation = true; |
|---|
| 121 | m_errorOnProbabilities = false; |
|---|
| 122 | m_maxIterations = 500; |
|---|
| 123 | m_useAIC = false; |
|---|
| 124 | m_numParameters = 0; |
|---|
| 125 | } |
|---|
| 126 | |
|---|
| 127 | /** |
|---|
| 128 | * Constructor to create LogisticBase object. |
|---|
| 129 | * @param numBoostingIterations fixed number of iterations for LogitBoost (if negative, use cross-validation or |
|---|
| 130 | * stopping criterion on the training data). |
|---|
| 131 | * @param useCrossValidation cross-validate number of LogitBoost iterations (if false, use stopping |
|---|
| 132 | * criterion on the training data). |
|---|
| 133 | * @param errorOnProbabilities if true, use error on probabilities |
|---|
| 134 | * instead of misclassification for stopping criterion of LogitBoost |
|---|
| 135 | */ |
|---|
| 136 | public LogisticBase(int numBoostingIterations, boolean useCrossValidation, boolean errorOnProbabilities){ |
|---|
| 137 | m_fixedNumIterations = numBoostingIterations; |
|---|
| 138 | m_useCrossValidation = useCrossValidation; |
|---|
| 139 | m_errorOnProbabilities = errorOnProbabilities; |
|---|
| 140 | m_maxIterations = 500; |
|---|
| 141 | m_useAIC = false; |
|---|
| 142 | m_numParameters = 0; |
|---|
| 143 | } |
|---|
| 144 | |
|---|
| 145 | /** |
|---|
| 146 | * Builds the logistic regression model usiing LogitBoost. |
|---|
| 147 | * |
|---|
| 148 | * @param data the training data |
|---|
| 149 | * @throws Exception if something goes wrong |
|---|
| 150 | */ |
|---|
| 151 | public void buildClassifier(Instances data) throws Exception { |
|---|
| 152 | |
|---|
| 153 | m_train = new Instances(data); |
|---|
| 154 | |
|---|
| 155 | m_numClasses = m_train.numClasses(); |
|---|
| 156 | |
|---|
| 157 | //init the array of simple regression functions |
|---|
| 158 | m_regressions = initRegressions(); |
|---|
| 159 | m_numRegressions = 0; |
|---|
| 160 | |
|---|
| 161 | //get numeric version of the training data (class variable replaced by numeric pseudo-class) |
|---|
| 162 | m_numericData = getNumericData(m_train); |
|---|
| 163 | |
|---|
| 164 | //save header info |
|---|
| 165 | m_numericDataHeader = new Instances(m_numericData, 0); |
|---|
| 166 | |
|---|
| 167 | |
|---|
| 168 | if (m_fixedNumIterations > 0) { |
|---|
| 169 | //run LogitBoost for fixed number of iterations |
|---|
| 170 | performBoosting(m_fixedNumIterations); |
|---|
| 171 | } else if (m_useAIC) { // Marc had this after the test for m_useCrossValidation. Changed by Eibe. |
|---|
| 172 | //run LogitBoost using information criterion for stopping |
|---|
| 173 | performBoostingInfCriterion(); |
|---|
| 174 | } else if (m_useCrossValidation) { |
|---|
| 175 | //cross-validate number of LogitBoost iterations |
|---|
| 176 | performBoostingCV(); |
|---|
| 177 | } else { |
|---|
| 178 | //run LogitBoost with number of iterations that minimizes error on the training set |
|---|
| 179 | performBoosting(); |
|---|
| 180 | } |
|---|
| 181 | |
|---|
| 182 | //only keep the simple regression functions that correspond to the selected number of LogitBoost iterations |
|---|
| 183 | m_regressions = selectRegressions(m_regressions); |
|---|
| 184 | } |
|---|
| 185 | |
|---|
| 186 | /** |
|---|
| 187 | * Runs LogitBoost, determining the best number of iterations by cross-validation. |
|---|
| 188 | * |
|---|
| 189 | * @throws Exception if something goes wrong |
|---|
| 190 | */ |
|---|
| 191 | protected void performBoostingCV() throws Exception{ |
|---|
| 192 | |
|---|
| 193 | //completed iteration keeps track of the number of iterations that have been |
|---|
| 194 | //performed in every fold (some might stop earlier than others). |
|---|
| 195 | //Best iteration is selected only from these. |
|---|
| 196 | int completedIterations = m_maxIterations; |
|---|
| 197 | |
|---|
| 198 | Instances allData = new Instances(m_train); |
|---|
| 199 | |
|---|
| 200 | allData.stratify(m_numFoldsBoosting); |
|---|
| 201 | |
|---|
| 202 | double[] error = new double[m_maxIterations + 1]; |
|---|
| 203 | |
|---|
| 204 | for (int i = 0; i < m_numFoldsBoosting; i++) { |
|---|
| 205 | //split into training/test data in fold |
|---|
| 206 | Instances train = allData.trainCV(m_numFoldsBoosting,i); |
|---|
| 207 | Instances test = allData.testCV(m_numFoldsBoosting,i); |
|---|
| 208 | |
|---|
| 209 | //initialize LogitBoost |
|---|
| 210 | m_numRegressions = 0; |
|---|
| 211 | m_regressions = initRegressions(); |
|---|
| 212 | |
|---|
| 213 | //run LogitBoost iterations |
|---|
| 214 | int iterations = performBoosting(train,test,error,completedIterations); |
|---|
| 215 | if (iterations < completedIterations) completedIterations = iterations; |
|---|
| 216 | } |
|---|
| 217 | |
|---|
| 218 | //determine iteration with minimum error over the folds |
|---|
| 219 | int bestIteration = getBestIteration(error,completedIterations); |
|---|
| 220 | |
|---|
| 221 | //rebuild model on all of the training data |
|---|
| 222 | m_numRegressions = 0; |
|---|
| 223 | performBoosting(bestIteration); |
|---|
| 224 | } |
|---|
| 225 | |
|---|
| 226 | /** |
|---|
| 227 | * Runs LogitBoost, determining the best number of iterations by an information criterion (currently AIC). |
|---|
| 228 | */ |
|---|
| 229 | protected void performBoostingInfCriterion() throws Exception{ |
|---|
| 230 | |
|---|
| 231 | double criterion = 0.0; |
|---|
| 232 | double bestCriterion = Double.MAX_VALUE; |
|---|
| 233 | int bestIteration = 0; |
|---|
| 234 | int noMin = 0; |
|---|
| 235 | |
|---|
| 236 | // Variable to keep track of criterion values (AIC) |
|---|
| 237 | double criterionValue = Double.MAX_VALUE; |
|---|
| 238 | |
|---|
| 239 | // initialize Ys/Fs/ps |
|---|
| 240 | double[][] trainYs = getYs(m_train); |
|---|
| 241 | double[][] trainFs = getFs(m_numericData); |
|---|
| 242 | double[][] probs = getProbs(trainFs); |
|---|
| 243 | |
|---|
| 244 | // Array with true/false if the attribute is included in the model or not |
|---|
| 245 | boolean[][] attributes = new boolean[m_numClasses][m_numericDataHeader.numAttributes()]; |
|---|
| 246 | |
|---|
| 247 | int iteration = 0; |
|---|
| 248 | while (iteration < m_maxIterations) { |
|---|
| 249 | |
|---|
| 250 | //perform single LogitBoost iteration |
|---|
| 251 | boolean foundAttribute = performIteration(iteration, trainYs, trainFs, probs, m_numericData); |
|---|
| 252 | if (foundAttribute) { |
|---|
| 253 | iteration++; |
|---|
| 254 | m_numRegressions = iteration; |
|---|
| 255 | } else { |
|---|
| 256 | //could not fit simple linear regression: stop LogitBoost |
|---|
| 257 | break; |
|---|
| 258 | } |
|---|
| 259 | |
|---|
| 260 | double numberOfAttributes = m_numParameters + iteration; |
|---|
| 261 | |
|---|
| 262 | // Fill criterion array values |
|---|
| 263 | criterionValue = 2.0 * negativeLogLikelihood(trainYs, probs) + |
|---|
| 264 | 2.0 * numberOfAttributes; |
|---|
| 265 | |
|---|
| 266 | //heuristic: stop LogitBoost if the current minimum has not changed for <m_heuristicStop> iterations |
|---|
| 267 | if (noMin > m_heuristicStop) break; |
|---|
| 268 | if (criterionValue < bestCriterion) { |
|---|
| 269 | bestCriterion = criterionValue; |
|---|
| 270 | bestIteration = iteration; |
|---|
| 271 | noMin = 0; |
|---|
| 272 | } else { |
|---|
| 273 | noMin++; |
|---|
| 274 | } |
|---|
| 275 | } |
|---|
| 276 | |
|---|
| 277 | m_numRegressions = 0; |
|---|
| 278 | performBoosting(bestIteration); |
|---|
| 279 | } |
|---|
| 280 | |
|---|
| 281 | /** |
|---|
| 282 | * Runs LogitBoost on a training set and monitors the error on a test set. |
|---|
| 283 | * Used for running one fold when cross-validating the number of LogitBoost iterations. |
|---|
| 284 | * @param train the training set |
|---|
| 285 | * @param test the test set |
|---|
| 286 | * @param error array to hold the logged error values |
|---|
| 287 | * @param maxIterations the maximum number of LogitBoost iterations to run |
|---|
| 288 | * @return the number of completed LogitBoost iterations (can be smaller than maxIterations |
|---|
| 289 | * if the heuristic for early stopping is active or there is a problem while fitting the regressions |
|---|
| 290 | * in LogitBoost). |
|---|
| 291 | * @throws Exception if something goes wrong |
|---|
| 292 | */ |
|---|
| 293 | protected int performBoosting(Instances train, Instances test, |
|---|
| 294 | double[] error, int maxIterations) throws Exception{ |
|---|
| 295 | |
|---|
| 296 | //get numeric version of the (sub)set of training instances |
|---|
| 297 | Instances numericTrain = getNumericData(train); |
|---|
| 298 | |
|---|
| 299 | //initialize Ys/Fs/ps |
|---|
| 300 | double[][] trainYs = getYs(train); |
|---|
| 301 | double[][] trainFs = getFs(numericTrain); |
|---|
| 302 | double[][] probs = getProbs(trainFs); |
|---|
| 303 | |
|---|
| 304 | int iteration = 0; |
|---|
| 305 | |
|---|
| 306 | int noMin = 0; |
|---|
| 307 | double lastMin = Double.MAX_VALUE; |
|---|
| 308 | |
|---|
| 309 | if (m_errorOnProbabilities) error[0] += getMeanAbsoluteError(test); |
|---|
| 310 | else error[0] += getErrorRate(test); |
|---|
| 311 | |
|---|
| 312 | while (iteration < maxIterations) { |
|---|
| 313 | |
|---|
| 314 | //perform single LogitBoost iteration |
|---|
| 315 | boolean foundAttribute = performIteration(iteration, trainYs, trainFs, probs, numericTrain); |
|---|
| 316 | if (foundAttribute) { |
|---|
| 317 | iteration++; |
|---|
| 318 | m_numRegressions = iteration; |
|---|
| 319 | } else { |
|---|
| 320 | //could not fit simple linear regression: stop LogitBoost |
|---|
| 321 | break; |
|---|
| 322 | } |
|---|
| 323 | |
|---|
| 324 | if (m_errorOnProbabilities) error[iteration] += getMeanAbsoluteError(test); |
|---|
| 325 | else error[iteration] += getErrorRate(test); |
|---|
| 326 | |
|---|
| 327 | //heuristic: stop LogitBoost if the current minimum has not changed for <m_heuristicStop> iterations |
|---|
| 328 | if (noMin > m_heuristicStop) break; |
|---|
| 329 | if (error[iteration] < lastMin) { |
|---|
| 330 | lastMin = error[iteration]; |
|---|
| 331 | noMin = 0; |
|---|
| 332 | } else { |
|---|
| 333 | noMin++; |
|---|
| 334 | } |
|---|
| 335 | } |
|---|
| 336 | |
|---|
| 337 | return iteration; |
|---|
| 338 | } |
|---|
| 339 | |
|---|
| 340 | /** |
|---|
| 341 | * Runs LogitBoost with a fixed number of iterations. |
|---|
| 342 | * @param numIterations the number of iterations to run |
|---|
| 343 | * @throws Exception if something goes wrong |
|---|
| 344 | */ |
|---|
| 345 | protected void performBoosting(int numIterations) throws Exception{ |
|---|
| 346 | |
|---|
| 347 | //initialize Ys/Fs/ps |
|---|
| 348 | double[][] trainYs = getYs(m_train); |
|---|
| 349 | double[][] trainFs = getFs(m_numericData); |
|---|
| 350 | double[][] probs = getProbs(trainFs); |
|---|
| 351 | |
|---|
| 352 | int iteration = 0; |
|---|
| 353 | |
|---|
| 354 | //run iterations |
|---|
| 355 | while (iteration < numIterations) { |
|---|
| 356 | boolean foundAttribute = performIteration(iteration, trainYs, trainFs, probs, m_numericData); |
|---|
| 357 | if (foundAttribute) iteration++; |
|---|
| 358 | else break; |
|---|
| 359 | } |
|---|
| 360 | |
|---|
| 361 | m_numRegressions = iteration; |
|---|
| 362 | } |
|---|
| 363 | |
|---|
| 364 | /** |
|---|
| 365 | * Runs LogitBoost using the stopping criterion on the training set. |
|---|
| 366 | * The number of iterations is used that gives the lowest error on the training set, either misclassification |
|---|
| 367 | * or error on probabilities (depending on the errorOnProbabilities option). |
|---|
| 368 | * @throws Exception if something goes wrong |
|---|
| 369 | */ |
|---|
| 370 | protected void performBoosting() throws Exception{ |
|---|
| 371 | |
|---|
| 372 | //initialize Ys/Fs/ps |
|---|
| 373 | double[][] trainYs = getYs(m_train); |
|---|
| 374 | double[][] trainFs = getFs(m_numericData); |
|---|
| 375 | double[][] probs = getProbs(trainFs); |
|---|
| 376 | |
|---|
| 377 | int iteration = 0; |
|---|
| 378 | |
|---|
| 379 | double[] trainErrors = new double[m_maxIterations+1]; |
|---|
| 380 | trainErrors[0] = getErrorRate(m_train); |
|---|
| 381 | |
|---|
| 382 | int noMin = 0; |
|---|
| 383 | double lastMin = Double.MAX_VALUE; |
|---|
| 384 | |
|---|
| 385 | while (iteration < m_maxIterations) { |
|---|
| 386 | boolean foundAttribute = performIteration(iteration, trainYs, trainFs, probs, m_numericData); |
|---|
| 387 | if (foundAttribute) { |
|---|
| 388 | iteration++; |
|---|
| 389 | m_numRegressions = iteration; |
|---|
| 390 | } else { |
|---|
| 391 | //could not fit simple regression |
|---|
| 392 | break; |
|---|
| 393 | } |
|---|
| 394 | |
|---|
| 395 | trainErrors[iteration] = getErrorRate(m_train); |
|---|
| 396 | |
|---|
| 397 | //heuristic: stop LogitBoost if the current minimum has not changed for <m_heuristicStop> iterations |
|---|
| 398 | if (noMin > m_heuristicStop) break; |
|---|
| 399 | if (trainErrors[iteration] < lastMin) { |
|---|
| 400 | lastMin = trainErrors[iteration]; |
|---|
| 401 | noMin = 0; |
|---|
| 402 | } else { |
|---|
| 403 | noMin++; |
|---|
| 404 | } |
|---|
| 405 | } |
|---|
| 406 | |
|---|
| 407 | //find iteration with best error |
|---|
| 408 | m_numRegressions = getBestIteration(trainErrors, iteration); |
|---|
| 409 | } |
|---|
| 410 | |
|---|
| 411 | /** |
|---|
| 412 | * Returns the misclassification error of the current model on a set of instances. |
|---|
| 413 | * @param data the set of instances |
|---|
| 414 | * @return the error rate |
|---|
| 415 | * @throws Exception if something goes wrong |
|---|
| 416 | */ |
|---|
| 417 | protected double getErrorRate(Instances data) throws Exception { |
|---|
| 418 | Evaluation eval = new Evaluation(data); |
|---|
| 419 | eval.evaluateModel(this,data); |
|---|
| 420 | return eval.errorRate(); |
|---|
| 421 | } |
|---|
| 422 | |
|---|
| 423 | /** |
|---|
| 424 | * Returns the error of the probability estimates for the current model on a set of instances. |
|---|
| 425 | * @param data the set of instances |
|---|
| 426 | * @return the error |
|---|
| 427 | * @throws Exception if something goes wrong |
|---|
| 428 | */ |
|---|
| 429 | protected double getMeanAbsoluteError(Instances data) throws Exception { |
|---|
| 430 | Evaluation eval = new Evaluation(data); |
|---|
| 431 | eval.evaluateModel(this,data); |
|---|
| 432 | return eval.meanAbsoluteError(); |
|---|
| 433 | } |
|---|
| 434 | |
|---|
| 435 | /** |
|---|
| 436 | * Helper function to find the minimum in an array of error values. |
|---|
| 437 | * |
|---|
| 438 | * @param errors an array containing errors |
|---|
| 439 | * @param maxIteration the maximum of iterations |
|---|
| 440 | * @return the minimum |
|---|
| 441 | */ |
|---|
| 442 | protected int getBestIteration(double[] errors, int maxIteration) { |
|---|
| 443 | double bestError = errors[0]; |
|---|
| 444 | int bestIteration = 0; |
|---|
| 445 | for (int i = 1; i <= maxIteration; i++) { |
|---|
| 446 | if (errors[i] < bestError) { |
|---|
| 447 | bestError = errors[i]; |
|---|
| 448 | bestIteration = i; |
|---|
| 449 | } |
|---|
| 450 | } |
|---|
| 451 | return bestIteration; |
|---|
| 452 | } |
|---|
| 453 | |
|---|
| 454 | /** |
|---|
| 455 | * Performs a single iteration of LogitBoost, and updates the model accordingly. |
|---|
| 456 | * A simple regression function is fit to the response and added to the m_regressions array. |
|---|
| 457 | * @param iteration the current iteration |
|---|
| 458 | * @param trainYs the y-values (see description of LogitBoost) for the model trained so far |
|---|
| 459 | * @param trainFs the F-values (see description of LogitBoost) for the model trained so far |
|---|
| 460 | * @param probs the p-values (see description of LogitBoost) for the model trained so far |
|---|
| 461 | * @param trainNumeric numeric version of the training data |
|---|
| 462 | * @return returns true if iteration performed successfully, false if no simple regression function |
|---|
| 463 | * could be fitted. |
|---|
| 464 | * @throws Exception if something goes wrong |
|---|
| 465 | */ |
|---|
| 466 | protected boolean performIteration(int iteration, |
|---|
| 467 | double[][] trainYs, |
|---|
| 468 | double[][] trainFs, |
|---|
| 469 | double[][] probs, |
|---|
| 470 | Instances trainNumeric) throws Exception { |
|---|
| 471 | |
|---|
| 472 | for (int j = 0; j < m_numClasses; j++) { |
|---|
| 473 | // Keep track of sum of weights |
|---|
| 474 | double[] weights = new double[trainNumeric.numInstances()]; |
|---|
| 475 | double weightSum = 0.0; |
|---|
| 476 | |
|---|
| 477 | //make copy of data (need to save the weights) |
|---|
| 478 | Instances boostData = new Instances(trainNumeric); |
|---|
| 479 | |
|---|
| 480 | for (int i = 0; i < trainNumeric.numInstances(); i++) { |
|---|
| 481 | |
|---|
| 482 | //compute response and weight |
|---|
| 483 | double p = probs[i][j]; |
|---|
| 484 | double actual = trainYs[i][j]; |
|---|
| 485 | double z = getZ(actual, p); |
|---|
| 486 | double w = (actual - p) / z; |
|---|
| 487 | |
|---|
| 488 | //set values for instance |
|---|
| 489 | Instance current = boostData.instance(i); |
|---|
| 490 | current.setValue(boostData.classIndex(), z); |
|---|
| 491 | current.setWeight(current.weight() * w); |
|---|
| 492 | |
|---|
| 493 | weights[i] = current.weight(); |
|---|
| 494 | weightSum += current.weight(); |
|---|
| 495 | } |
|---|
| 496 | |
|---|
| 497 | Instances instancesCopy = new Instances(boostData); |
|---|
| 498 | |
|---|
| 499 | if (weightSum > 0) { |
|---|
| 500 | // Only the (1-beta)th quantile of instances are sent to the base classifier |
|---|
| 501 | if (m_weightTrimBeta > 0) { |
|---|
| 502 | double weightPercentage = 0.0; |
|---|
| 503 | int[] weightsOrder = new int[trainNumeric.numInstances()]; |
|---|
| 504 | weightsOrder = Utils.sort(weights); |
|---|
| 505 | instancesCopy.delete(); |
|---|
| 506 | |
|---|
| 507 | |
|---|
| 508 | for (int i = weightsOrder.length-1; (i >= 0) && (weightPercentage < (1-m_weightTrimBeta)); i--) { |
|---|
| 509 | instancesCopy.add(boostData.instance(weightsOrder[i])); |
|---|
| 510 | weightPercentage += (weights[weightsOrder[i]] / weightSum); |
|---|
| 511 | |
|---|
| 512 | } |
|---|
| 513 | } |
|---|
| 514 | |
|---|
| 515 | //Scale the weights |
|---|
| 516 | weightSum = instancesCopy.sumOfWeights(); |
|---|
| 517 | for (int i = 0; i < instancesCopy.numInstances(); i++) { |
|---|
| 518 | Instance current = instancesCopy.instance(i); |
|---|
| 519 | current.setWeight(current.weight() * (double)instancesCopy.numInstances() / weightSum); |
|---|
| 520 | } |
|---|
| 521 | } |
|---|
| 522 | |
|---|
| 523 | //fit simple regression function |
|---|
| 524 | m_regressions[j][iteration].buildClassifier(instancesCopy); |
|---|
| 525 | |
|---|
| 526 | boolean foundAttribute = m_regressions[j][iteration].foundUsefulAttribute(); |
|---|
| 527 | if (!foundAttribute) { |
|---|
| 528 | //could not fit simple regression function |
|---|
| 529 | return false; |
|---|
| 530 | } |
|---|
| 531 | |
|---|
| 532 | } |
|---|
| 533 | |
|---|
| 534 | // Evaluate / increment trainFs from the classifier |
|---|
| 535 | for (int i = 0; i < trainFs.length; i++) { |
|---|
| 536 | double [] pred = new double [m_numClasses]; |
|---|
| 537 | double predSum = 0; |
|---|
| 538 | for (int j = 0; j < m_numClasses; j++) { |
|---|
| 539 | pred[j] = m_regressions[j][iteration] |
|---|
| 540 | .classifyInstance(trainNumeric.instance(i)); |
|---|
| 541 | predSum += pred[j]; |
|---|
| 542 | } |
|---|
| 543 | predSum /= m_numClasses; |
|---|
| 544 | for (int j = 0; j < m_numClasses; j++) { |
|---|
| 545 | trainFs[i][j] += (pred[j] - predSum) * (m_numClasses - 1) |
|---|
| 546 | / m_numClasses; |
|---|
| 547 | } |
|---|
| 548 | } |
|---|
| 549 | |
|---|
| 550 | // Compute the current probability estimates |
|---|
| 551 | for (int i = 0; i < trainYs.length; i++) { |
|---|
| 552 | probs[i] = probs(trainFs[i]); |
|---|
| 553 | } |
|---|
| 554 | return true; |
|---|
| 555 | } |
|---|
| 556 | |
|---|
| 557 | /** |
|---|
| 558 | * Helper function to initialize m_regressions. |
|---|
| 559 | * |
|---|
| 560 | * @return the generated classifiers |
|---|
| 561 | */ |
|---|
| 562 | protected SimpleLinearRegression[][] initRegressions(){ |
|---|
| 563 | SimpleLinearRegression[][] classifiers = |
|---|
| 564 | new SimpleLinearRegression[m_numClasses][m_maxIterations]; |
|---|
| 565 | for (int j = 0; j < m_numClasses; j++) { |
|---|
| 566 | for (int i = 0; i < m_maxIterations; i++) { |
|---|
| 567 | classifiers[j][i] = new SimpleLinearRegression(); |
|---|
| 568 | classifiers[j][i].setSuppressErrorMessage(true); |
|---|
| 569 | } |
|---|
| 570 | } |
|---|
| 571 | return classifiers; |
|---|
| 572 | } |
|---|
| 573 | |
|---|
| 574 | /** |
|---|
| 575 | * Converts training data to numeric version. The class variable is replaced by a pseudo-class |
|---|
| 576 | * used by LogitBoost. |
|---|
| 577 | * |
|---|
| 578 | * @param data the data to convert |
|---|
| 579 | * @return the converted data |
|---|
| 580 | * @throws Exception if something goes wrong |
|---|
| 581 | */ |
|---|
| 582 | protected Instances getNumericData(Instances data) throws Exception{ |
|---|
| 583 | Instances numericData = new Instances(data); |
|---|
| 584 | |
|---|
| 585 | int classIndex = numericData.classIndex(); |
|---|
| 586 | numericData.setClassIndex(-1); |
|---|
| 587 | numericData.deleteAttributeAt(classIndex); |
|---|
| 588 | numericData.insertAttributeAt(new Attribute("'pseudo class'"), classIndex); |
|---|
| 589 | numericData.setClassIndex(classIndex); |
|---|
| 590 | return numericData; |
|---|
| 591 | } |
|---|
| 592 | |
|---|
| 593 | /** |
|---|
| 594 | * Helper function for cutting back m_regressions to the set of classifiers |
|---|
| 595 | * (corresponsing to the number of LogitBoost iterations) that gave the |
|---|
| 596 | * smallest error. |
|---|
| 597 | * |
|---|
| 598 | * @param classifiers the original set of classifiers |
|---|
| 599 | * @return the cut back set of classifiers |
|---|
| 600 | */ |
|---|
| 601 | protected SimpleLinearRegression[][] selectRegressions(SimpleLinearRegression[][] classifiers){ |
|---|
| 602 | SimpleLinearRegression[][] goodClassifiers = |
|---|
| 603 | new SimpleLinearRegression[m_numClasses][m_numRegressions]; |
|---|
| 604 | |
|---|
| 605 | for (int j = 0; j < m_numClasses; j++) { |
|---|
| 606 | for (int i = 0; i < m_numRegressions; i++) { |
|---|
| 607 | goodClassifiers[j][i] = classifiers[j][i]; |
|---|
| 608 | } |
|---|
| 609 | } |
|---|
| 610 | return goodClassifiers; |
|---|
| 611 | } |
|---|
| 612 | |
|---|
| 613 | /** |
|---|
| 614 | * Computes the LogitBoost response variable from y/p values |
|---|
| 615 | * (actual/estimated class probabilities). |
|---|
| 616 | * |
|---|
| 617 | * @param actual the actual class probability |
|---|
| 618 | * @param p the estimated class probability |
|---|
| 619 | * @return the LogitBoost response |
|---|
| 620 | */ |
|---|
| 621 | protected double getZ(double actual, double p) { |
|---|
| 622 | double z; |
|---|
| 623 | if (actual == 1) { |
|---|
| 624 | z = 1.0 / p; |
|---|
| 625 | if (z > Z_MAX) { // threshold |
|---|
| 626 | z = Z_MAX; |
|---|
| 627 | } |
|---|
| 628 | } else { |
|---|
| 629 | z = -1.0 / (1.0 - p); |
|---|
| 630 | if (z < -Z_MAX) { // threshold |
|---|
| 631 | z = -Z_MAX; |
|---|
| 632 | } |
|---|
| 633 | } |
|---|
| 634 | return z; |
|---|
| 635 | } |
|---|
| 636 | |
|---|
| 637 | /** |
|---|
| 638 | * Computes the LogitBoost response for an array of y/p values |
|---|
| 639 | * (actual/estimated class probabilities). |
|---|
| 640 | * |
|---|
| 641 | * @param dataYs the actual class probabilities |
|---|
| 642 | * @param probs the estimated class probabilities |
|---|
| 643 | * @return the LogitBoost response |
|---|
| 644 | */ |
|---|
| 645 | protected double[][] getZs(double[][] probs, double[][] dataYs) { |
|---|
| 646 | |
|---|
| 647 | double[][] dataZs = new double[probs.length][m_numClasses]; |
|---|
| 648 | for (int j = 0; j < m_numClasses; j++) |
|---|
| 649 | for (int i = 0; i < probs.length; i++) dataZs[i][j] = getZ(dataYs[i][j], probs[i][j]); |
|---|
| 650 | return dataZs; |
|---|
| 651 | } |
|---|
| 652 | |
|---|
| 653 | /** |
|---|
| 654 | * Computes the LogitBoost weights from an array of y/p values |
|---|
| 655 | * (actual/estimated class probabilities). |
|---|
| 656 | * |
|---|
| 657 | * @param dataYs the actual class probabilities |
|---|
| 658 | * @param probs the estimated class probabilities |
|---|
| 659 | * @return the LogitBoost weights |
|---|
| 660 | */ |
|---|
| 661 | protected double[][] getWs(double[][] probs, double[][] dataYs) { |
|---|
| 662 | |
|---|
| 663 | double[][] dataWs = new double[probs.length][m_numClasses]; |
|---|
| 664 | for (int j = 0; j < m_numClasses; j++) |
|---|
| 665 | for (int i = 0; i < probs.length; i++){ |
|---|
| 666 | double z = getZ(dataYs[i][j], probs[i][j]); |
|---|
| 667 | dataWs[i][j] = (dataYs[i][j] - probs[i][j]) / z; |
|---|
| 668 | } |
|---|
| 669 | return dataWs; |
|---|
| 670 | } |
|---|
| 671 | |
|---|
| 672 | /** |
|---|
| 673 | * Computes the p-values (probabilities for the classes) from the F-values |
|---|
| 674 | * of the logistic model. |
|---|
| 675 | * |
|---|
| 676 | * @param Fs the F-values |
|---|
| 677 | * @return the p-values |
|---|
| 678 | */ |
|---|
| 679 | protected double[] probs(double[] Fs) { |
|---|
| 680 | |
|---|
| 681 | double maxF = -Double.MAX_VALUE; |
|---|
| 682 | for (int i = 0; i < Fs.length; i++) { |
|---|
| 683 | if (Fs[i] > maxF) { |
|---|
| 684 | maxF = Fs[i]; |
|---|
| 685 | } |
|---|
| 686 | } |
|---|
| 687 | double sum = 0; |
|---|
| 688 | double[] probs = new double[Fs.length]; |
|---|
| 689 | for (int i = 0; i < Fs.length; i++) { |
|---|
| 690 | probs[i] = Math.exp(Fs[i] - maxF); |
|---|
| 691 | sum += probs[i]; |
|---|
| 692 | } |
|---|
| 693 | |
|---|
| 694 | Utils.normalize(probs, sum); |
|---|
| 695 | return probs; |
|---|
| 696 | } |
|---|
| 697 | |
|---|
| 698 | /** |
|---|
| 699 | * Computes the Y-values (actual class probabilities) for a set of instances. |
|---|
| 700 | * |
|---|
| 701 | * @param data the data to compute the Y-values from |
|---|
| 702 | * @return the Y-values |
|---|
| 703 | */ |
|---|
| 704 | protected double[][] getYs(Instances data){ |
|---|
| 705 | |
|---|
| 706 | double [][] dataYs = new double [data.numInstances()][m_numClasses]; |
|---|
| 707 | for (int j = 0; j < m_numClasses; j++) { |
|---|
| 708 | for (int k = 0; k < data.numInstances(); k++) { |
|---|
| 709 | dataYs[k][j] = (data.instance(k).classValue() == j) ? |
|---|
| 710 | 1.0: 0.0; |
|---|
| 711 | } |
|---|
| 712 | } |
|---|
| 713 | return dataYs; |
|---|
| 714 | } |
|---|
| 715 | |
|---|
| 716 | /** |
|---|
| 717 | * Computes the F-values for a single instance. |
|---|
| 718 | * |
|---|
| 719 | * @param instance the instance to compute the F-values for |
|---|
| 720 | * @return the F-values |
|---|
| 721 | * @throws Exception if something goes wrong |
|---|
| 722 | */ |
|---|
| 723 | protected double[] getFs(Instance instance) throws Exception{ |
|---|
| 724 | |
|---|
| 725 | double [] pred = new double [m_numClasses]; |
|---|
| 726 | double [] instanceFs = new double [m_numClasses]; |
|---|
| 727 | |
|---|
| 728 | //add up the predictions from the simple regression functions |
|---|
| 729 | for (int i = 0; i < m_numRegressions; i++) { |
|---|
| 730 | double predSum = 0; |
|---|
| 731 | for (int j = 0; j < m_numClasses; j++) { |
|---|
| 732 | pred[j] = m_regressions[j][i].classifyInstance(instance); |
|---|
| 733 | predSum += pred[j]; |
|---|
| 734 | } |
|---|
| 735 | predSum /= m_numClasses; |
|---|
| 736 | for (int j = 0; j < m_numClasses; j++) { |
|---|
| 737 | instanceFs[j] += (pred[j] - predSum) * (m_numClasses - 1) |
|---|
| 738 | / m_numClasses; |
|---|
| 739 | } |
|---|
| 740 | } |
|---|
| 741 | |
|---|
| 742 | return instanceFs; |
|---|
| 743 | } |
|---|
| 744 | |
|---|
| 745 | /** |
|---|
| 746 | * Computes the F-values for a set of instances. |
|---|
| 747 | * |
|---|
| 748 | * @param data the data to work on |
|---|
| 749 | * @return the F-values |
|---|
| 750 | * @throws Exception if something goes wrong |
|---|
| 751 | */ |
|---|
| 752 | protected double[][] getFs(Instances data) throws Exception{ |
|---|
| 753 | |
|---|
| 754 | double[][] dataFs = new double[data.numInstances()][]; |
|---|
| 755 | |
|---|
| 756 | for (int k = 0; k < data.numInstances(); k++) { |
|---|
| 757 | dataFs[k] = getFs(data.instance(k)); |
|---|
| 758 | } |
|---|
| 759 | |
|---|
| 760 | return dataFs; |
|---|
| 761 | } |
|---|
| 762 | |
|---|
| 763 | /** |
|---|
| 764 | * Computes the p-values (probabilities for the different classes) from |
|---|
| 765 | * the F-values for a set of instances. |
|---|
| 766 | * |
|---|
| 767 | * @param dataFs the F-values |
|---|
| 768 | * @return the p-values |
|---|
| 769 | */ |
|---|
| 770 | protected double[][] getProbs(double[][] dataFs){ |
|---|
| 771 | |
|---|
| 772 | int numInstances = dataFs.length; |
|---|
| 773 | double[][] probs = new double[numInstances][]; |
|---|
| 774 | |
|---|
| 775 | for (int k = 0; k < numInstances; k++) { |
|---|
| 776 | probs[k] = probs(dataFs[k]); |
|---|
| 777 | } |
|---|
| 778 | return probs; |
|---|
| 779 | } |
|---|
| 780 | |
|---|
| 781 | /** |
|---|
| 782 | * Returns the negative loglikelihood of the Y-values (actual class probabilities) given the |
|---|
| 783 | * p-values (current probability estimates). |
|---|
| 784 | * |
|---|
| 785 | * @param dataYs the Y-values |
|---|
| 786 | * @param probs the p-values |
|---|
| 787 | * @return the likelihood |
|---|
| 788 | */ |
|---|
| 789 | protected double negativeLogLikelihood(double[][] dataYs, double[][] probs) { |
|---|
| 790 | |
|---|
| 791 | double logLikelihood = 0; |
|---|
| 792 | for (int i = 0; i < dataYs.length; i++) { |
|---|
| 793 | for (int j = 0; j < m_numClasses; j++) { |
|---|
| 794 | if (dataYs[i][j] == 1.0) { |
|---|
| 795 | logLikelihood -= Math.log(probs[i][j]); |
|---|
| 796 | } |
|---|
| 797 | } |
|---|
| 798 | } |
|---|
| 799 | return logLikelihood;// / (double)dataYs.length; |
|---|
| 800 | } |
|---|
| 801 | |
|---|
| 802 | /** |
|---|
| 803 | * Returns an array of the indices of the attributes used in the logistic model. |
|---|
| 804 | * The first dimension is the class, the second dimension holds a list of attribute indices. |
|---|
| 805 | * Attribute indices start at zero. |
|---|
| 806 | * @return the array of attribute indices |
|---|
| 807 | */ |
|---|
| 808 | public int[][] getUsedAttributes(){ |
|---|
| 809 | |
|---|
| 810 | int[][] usedAttributes = new int[m_numClasses][]; |
|---|
| 811 | |
|---|
| 812 | //first extract coefficients |
|---|
| 813 | double[][] coefficients = getCoefficients(); |
|---|
| 814 | |
|---|
| 815 | for (int j = 0; j < m_numClasses; j++){ |
|---|
| 816 | |
|---|
| 817 | //boolean array indicating if attribute used |
|---|
| 818 | boolean[] attributes = new boolean[m_numericDataHeader.numAttributes()]; |
|---|
| 819 | for (int i = 0; i < attributes.length; i++) { |
|---|
| 820 | //attribute used if coefficient > 0 |
|---|
| 821 | if (!Utils.eq(coefficients[j][i + 1],0)) attributes[i] = true; |
|---|
| 822 | } |
|---|
| 823 | |
|---|
| 824 | int numAttributes = 0; |
|---|
| 825 | for (int i = 0; i < m_numericDataHeader.numAttributes(); i++) if (attributes[i]) numAttributes++; |
|---|
| 826 | |
|---|
| 827 | //"collect" all attributes into array of indices |
|---|
| 828 | int[] usedAttributesClass = new int[numAttributes]; |
|---|
| 829 | int count = 0; |
|---|
| 830 | for (int i = 0; i < m_numericDataHeader.numAttributes(); i++) { |
|---|
| 831 | if (attributes[i]) { |
|---|
| 832 | usedAttributesClass[count] = i; |
|---|
| 833 | count++; |
|---|
| 834 | } |
|---|
| 835 | } |
|---|
| 836 | |
|---|
| 837 | usedAttributes[j] = usedAttributesClass; |
|---|
| 838 | } |
|---|
| 839 | |
|---|
| 840 | return usedAttributes; |
|---|
| 841 | } |
|---|
| 842 | |
|---|
| 843 | /** |
|---|
| 844 | * The number of LogitBoost iterations performed (= the number of simple |
|---|
| 845 | * regression functions fit). |
|---|
| 846 | * |
|---|
| 847 | * @return the number of LogitBoost iterations performed |
|---|
| 848 | */ |
|---|
| 849 | public int getNumRegressions() { |
|---|
| 850 | return m_numRegressions; |
|---|
| 851 | } |
|---|
| 852 | |
|---|
| 853 | /** |
|---|
| 854 | * Get the value of weightTrimBeta. |
|---|
| 855 | * |
|---|
| 856 | * @return Value of weightTrimBeta. |
|---|
| 857 | */ |
|---|
| 858 | public double getWeightTrimBeta(){ |
|---|
| 859 | return m_weightTrimBeta; |
|---|
| 860 | } |
|---|
| 861 | |
|---|
| 862 | /** |
|---|
| 863 | * Get the value of useAIC. |
|---|
| 864 | * |
|---|
| 865 | * @return Value of useAIC. |
|---|
| 866 | */ |
|---|
| 867 | public boolean getUseAIC(){ |
|---|
| 868 | return m_useAIC; |
|---|
| 869 | } |
|---|
| 870 | |
|---|
| 871 | /** |
|---|
| 872 | * Sets the parameter "maxIterations". |
|---|
| 873 | * |
|---|
| 874 | * @param maxIterations the maximum iterations |
|---|
| 875 | */ |
|---|
| 876 | public void setMaxIterations(int maxIterations) { |
|---|
| 877 | m_maxIterations = maxIterations; |
|---|
| 878 | } |
|---|
| 879 | |
|---|
| 880 | /** |
|---|
| 881 | * Sets the option "heuristicStop". |
|---|
| 882 | * |
|---|
| 883 | * @param heuristicStop the heuristic stop to use |
|---|
| 884 | */ |
|---|
| 885 | public void setHeuristicStop(int heuristicStop){ |
|---|
| 886 | m_heuristicStop = heuristicStop; |
|---|
| 887 | } |
|---|
| 888 | |
|---|
| 889 | /** |
|---|
| 890 | * Sets the option "weightTrimBeta". |
|---|
| 891 | */ |
|---|
| 892 | public void setWeightTrimBeta(double w){ |
|---|
| 893 | m_weightTrimBeta = w; |
|---|
| 894 | } |
|---|
| 895 | |
|---|
| 896 | /** |
|---|
| 897 | * Set the value of useAIC. |
|---|
| 898 | * |
|---|
| 899 | * @param c Value to assign to useAIC. |
|---|
| 900 | */ |
|---|
| 901 | public void setUseAIC(boolean c){ |
|---|
| 902 | m_useAIC = c; |
|---|
| 903 | } |
|---|
| 904 | |
|---|
| 905 | /** |
|---|
| 906 | * Returns the maxIterations parameter. |
|---|
| 907 | * |
|---|
| 908 | * @return the maximum iteration |
|---|
| 909 | */ |
|---|
| 910 | public int getMaxIterations(){ |
|---|
| 911 | return m_maxIterations; |
|---|
| 912 | } |
|---|
| 913 | |
|---|
| 914 | /** |
|---|
| 915 | * Returns an array holding the coefficients of the logistic model. |
|---|
| 916 | * First dimension is the class, the second one holds a list of coefficients. |
|---|
| 917 | * At position zero, the constant term of the model is stored, then, the coefficients for |
|---|
| 918 | * the attributes in ascending order. |
|---|
| 919 | * @return the array of coefficients |
|---|
| 920 | */ |
|---|
| 921 | protected double[][] getCoefficients(){ |
|---|
| 922 | double[][] coefficients = new double[m_numClasses][m_numericDataHeader.numAttributes() + 1]; |
|---|
| 923 | for (int j = 0; j < m_numClasses; j++) { |
|---|
| 924 | //go through simple regression functions and add their coefficient to the coefficient of |
|---|
| 925 | //the attribute they are built on. |
|---|
| 926 | for (int i = 0; i < m_numRegressions; i++) { |
|---|
| 927 | |
|---|
| 928 | double slope = m_regressions[j][i].getSlope(); |
|---|
| 929 | double intercept = m_regressions[j][i].getIntercept(); |
|---|
| 930 | int attribute = m_regressions[j][i].getAttributeIndex(); |
|---|
| 931 | |
|---|
| 932 | coefficients[j][0] += intercept; |
|---|
| 933 | coefficients[j][attribute + 1] += slope; |
|---|
| 934 | } |
|---|
| 935 | } |
|---|
| 936 | |
|---|
| 937 | // Need to multiply all coefficients by (J-1) / J |
|---|
| 938 | for (int j = 0; j < coefficients.length; j++) { |
|---|
| 939 | for (int i = 0; i < coefficients[0].length; i++) { |
|---|
| 940 | coefficients[j][i] *= (double)(m_numClasses - 1) / (double)m_numClasses; |
|---|
| 941 | } |
|---|
| 942 | } |
|---|
| 943 | |
|---|
| 944 | return coefficients; |
|---|
| 945 | } |
|---|
| 946 | |
|---|
| 947 | /** |
|---|
| 948 | * Returns the fraction of all attributes in the data that are used in the |
|---|
| 949 | * logistic model (in percent). |
|---|
| 950 | * An attribute is used in the model if it is used in any of the models for |
|---|
| 951 | * the different classes. |
|---|
| 952 | * |
|---|
| 953 | * @return the fraction of all attributes that are used |
|---|
| 954 | */ |
|---|
| 955 | public double percentAttributesUsed(){ |
|---|
| 956 | boolean[] attributes = new boolean[m_numericDataHeader.numAttributes()]; |
|---|
| 957 | |
|---|
| 958 | double[][] coefficients = getCoefficients(); |
|---|
| 959 | for (int j = 0; j < m_numClasses; j++){ |
|---|
| 960 | for (int i = 1; i < m_numericDataHeader.numAttributes() + 1; i++) { |
|---|
| 961 | //attribute used if it is used in any class, note coefficients are shifted by one (because |
|---|
| 962 | //of constant term). |
|---|
| 963 | if (!Utils.eq(coefficients[j][i],0)) attributes[i - 1] = true; |
|---|
| 964 | } |
|---|
| 965 | } |
|---|
| 966 | |
|---|
| 967 | //count number of used attributes (without the class attribute) |
|---|
| 968 | double count = 0; |
|---|
| 969 | for (int i = 0; i < attributes.length; i++) if (attributes[i]) count++; |
|---|
| 970 | return count / (double)(m_numericDataHeader.numAttributes() - 1) * 100.0; |
|---|
| 971 | } |
|---|
| 972 | |
|---|
| 973 | /** |
|---|
| 974 | * Returns a description of the logistic model (i.e., attributes and |
|---|
| 975 | * coefficients). |
|---|
| 976 | * |
|---|
| 977 | * @return the description of the model |
|---|
| 978 | */ |
|---|
| 979 | public String toString(){ |
|---|
| 980 | |
|---|
| 981 | StringBuffer s = new StringBuffer(); |
|---|
| 982 | |
|---|
| 983 | //get used attributes |
|---|
| 984 | int[][] attributes = getUsedAttributes(); |
|---|
| 985 | |
|---|
| 986 | //get coefficients |
|---|
| 987 | double[][] coefficients = getCoefficients(); |
|---|
| 988 | |
|---|
| 989 | for (int j = 0; j < m_numClasses; j++) { |
|---|
| 990 | s.append("\nClass "+j+" :\n"); |
|---|
| 991 | //constant term |
|---|
| 992 | s.append(Utils.doubleToString(coefficients[j][0],4,2)+" + \n"); |
|---|
| 993 | for (int i = 0; i < attributes[j].length; i++) { |
|---|
| 994 | //attribute/coefficient pairs |
|---|
| 995 | s.append("["+m_numericDataHeader.attribute(attributes[j][i]).name()+"]"); |
|---|
| 996 | s.append(" * " + Utils.doubleToString(coefficients[j][attributes[j][i]+1],4,2)); |
|---|
| 997 | if (i != attributes[j].length - 1) s.append(" +"); |
|---|
| 998 | s.append("\n"); |
|---|
| 999 | } |
|---|
| 1000 | } |
|---|
| 1001 | return new String(s); |
|---|
| 1002 | } |
|---|
| 1003 | |
|---|
| 1004 | /** |
|---|
| 1005 | * Returns class probabilities for an instance. |
|---|
| 1006 | * |
|---|
| 1007 | * @param instance the instance to compute the distribution for |
|---|
| 1008 | * @return the class probabilities |
|---|
| 1009 | * @throws Exception if distribution can't be computed successfully |
|---|
| 1010 | */ |
|---|
| 1011 | public double[] distributionForInstance(Instance instance) throws Exception { |
|---|
| 1012 | |
|---|
| 1013 | instance = (Instance)instance.copy(); |
|---|
| 1014 | |
|---|
| 1015 | //set to numeric pseudo-class |
|---|
| 1016 | instance.setDataset(m_numericDataHeader); |
|---|
| 1017 | |
|---|
| 1018 | //calculate probs via Fs |
|---|
| 1019 | return probs(getFs(instance)); |
|---|
| 1020 | } |
|---|
| 1021 | |
|---|
| 1022 | /** |
|---|
| 1023 | * Cleanup in order to save memory. |
|---|
| 1024 | */ |
|---|
| 1025 | public void cleanup() { |
|---|
| 1026 | //save just header info |
|---|
| 1027 | m_train = new Instances(m_train,0); |
|---|
| 1028 | m_numericData = null; |
|---|
| 1029 | } |
|---|
| 1030 | |
|---|
| 1031 | /** |
|---|
| 1032 | * Returns the revision string. |
|---|
| 1033 | * |
|---|
| 1034 | * @return the revision |
|---|
| 1035 | */ |
|---|
| 1036 | public String getRevision() { |
|---|
| 1037 | return RevisionUtils.extract("$Revision: 5928 $"); |
|---|
| 1038 | } |
|---|
| 1039 | } |
|---|