1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * PruneableClassifierTree.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.trees.j48; |
---|
24 | |
---|
25 | import weka.core.Capabilities; |
---|
26 | import weka.core.Instances; |
---|
27 | import weka.core.RevisionUtils; |
---|
28 | import weka.core.Utils; |
---|
29 | import weka.core.Capabilities.Capability; |
---|
30 | |
---|
31 | import java.util.Random; |
---|
32 | |
---|
33 | /** |
---|
34 | * Class for handling a tree structure that can |
---|
35 | * be pruned using a pruning set. |
---|
36 | * |
---|
37 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
38 | * @version $Revision: 5533 $ |
---|
39 | */ |
---|
40 | public class PruneableClassifierTree |
---|
41 | extends ClassifierTree { |
---|
42 | |
---|
43 | /** for serialization */ |
---|
44 | static final long serialVersionUID = -555775736857600201L; |
---|
45 | |
---|
46 | /** True if the tree is to be pruned. */ |
---|
47 | private boolean pruneTheTree = false; |
---|
48 | |
---|
49 | /** How many subsets of equal size? One used for pruning, the rest for training. */ |
---|
50 | private int numSets = 3; |
---|
51 | |
---|
52 | /** Cleanup after the tree has been built. */ |
---|
53 | private boolean m_cleanup = true; |
---|
54 | |
---|
55 | /** The random number seed. */ |
---|
56 | private int m_seed = 1; |
---|
57 | |
---|
58 | /** |
---|
59 | * Constructor for pruneable tree structure. Stores reference |
---|
60 | * to associated training data at each node. |
---|
61 | * |
---|
62 | * @param toSelectLocModel selection method for local splitting model |
---|
63 | * @param pruneTree true if the tree is to be pruned |
---|
64 | * @param num number of subsets of equal size |
---|
65 | * @param cleanup |
---|
66 | * @param seed the seed value to use |
---|
67 | * @throws Exception if something goes wrong |
---|
68 | */ |
---|
69 | public PruneableClassifierTree(ModelSelection toSelectLocModel, |
---|
70 | boolean pruneTree, int num, boolean cleanup, |
---|
71 | int seed) |
---|
72 | throws Exception { |
---|
73 | |
---|
74 | super(toSelectLocModel); |
---|
75 | |
---|
76 | pruneTheTree = pruneTree; |
---|
77 | numSets = num; |
---|
78 | m_cleanup = cleanup; |
---|
79 | m_seed = seed; |
---|
80 | } |
---|
81 | |
---|
82 | /** |
---|
83 | * Returns default capabilities of the classifier tree. |
---|
84 | * |
---|
85 | * @return the capabilities of this classifier tree |
---|
86 | */ |
---|
87 | public Capabilities getCapabilities() { |
---|
88 | Capabilities result = super.getCapabilities(); |
---|
89 | result.disableAll(); |
---|
90 | |
---|
91 | // attributes |
---|
92 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
93 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
94 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
95 | result.enable(Capability.MISSING_VALUES); |
---|
96 | |
---|
97 | // class |
---|
98 | result.enable(Capability.NOMINAL_CLASS); |
---|
99 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
100 | |
---|
101 | // instances |
---|
102 | result.setMinimumNumberInstances(0); |
---|
103 | |
---|
104 | return result; |
---|
105 | } |
---|
106 | |
---|
107 | /** |
---|
108 | * Method for building a pruneable classifier tree. |
---|
109 | * |
---|
110 | * @param data the data to build the tree from |
---|
111 | * @throws Exception if tree can't be built successfully |
---|
112 | */ |
---|
113 | public void buildClassifier(Instances data) |
---|
114 | throws Exception { |
---|
115 | |
---|
116 | // can classifier tree handle the data? |
---|
117 | getCapabilities().testWithFail(data); |
---|
118 | |
---|
119 | // remove instances with missing class |
---|
120 | data = new Instances(data); |
---|
121 | data.deleteWithMissingClass(); |
---|
122 | |
---|
123 | Random random = new Random(m_seed); |
---|
124 | data.stratify(numSets); |
---|
125 | buildTree(data.trainCV(numSets, numSets - 1, random), |
---|
126 | data.testCV(numSets, numSets - 1), false); |
---|
127 | if (pruneTheTree) { |
---|
128 | prune(); |
---|
129 | } |
---|
130 | if (m_cleanup) { |
---|
131 | cleanup(new Instances(data, 0)); |
---|
132 | } |
---|
133 | } |
---|
134 | |
---|
135 | /** |
---|
136 | * Prunes a tree. |
---|
137 | * |
---|
138 | * @throws Exception if tree can't be pruned successfully |
---|
139 | */ |
---|
140 | public void prune() throws Exception { |
---|
141 | |
---|
142 | if (!m_isLeaf) { |
---|
143 | |
---|
144 | // Prune all subtrees. |
---|
145 | for (int i = 0; i < m_sons.length; i++) |
---|
146 | son(i).prune(); |
---|
147 | |
---|
148 | // Decide if leaf is best choice. |
---|
149 | if (Utils.smOrEq(errorsForLeaf(),errorsForTree())) { |
---|
150 | |
---|
151 | // Free son Trees |
---|
152 | m_sons = null; |
---|
153 | m_isLeaf = true; |
---|
154 | |
---|
155 | // Get NoSplit Model for node. |
---|
156 | m_localModel = new NoSplit(localModel().distribution()); |
---|
157 | } |
---|
158 | } |
---|
159 | } |
---|
160 | |
---|
161 | /** |
---|
162 | * Returns a newly created tree. |
---|
163 | * |
---|
164 | * @param train the training data |
---|
165 | * @param test the test data |
---|
166 | * @return the generated tree |
---|
167 | * @throws Exception if something goes wrong |
---|
168 | */ |
---|
169 | protected ClassifierTree getNewTree(Instances train, Instances test) |
---|
170 | throws Exception { |
---|
171 | |
---|
172 | PruneableClassifierTree newTree = |
---|
173 | new PruneableClassifierTree(m_toSelectModel, pruneTheTree, numSets, m_cleanup, |
---|
174 | m_seed); |
---|
175 | newTree.buildTree(train, test, false); |
---|
176 | return newTree; |
---|
177 | } |
---|
178 | |
---|
179 | /** |
---|
180 | * Computes estimated errors for tree. |
---|
181 | * |
---|
182 | * @return the estimated errors |
---|
183 | * @throws Exception if error estimate can't be computed |
---|
184 | */ |
---|
185 | private double errorsForTree() throws Exception { |
---|
186 | |
---|
187 | double errors = 0; |
---|
188 | |
---|
189 | if (m_isLeaf) |
---|
190 | return errorsForLeaf(); |
---|
191 | else{ |
---|
192 | for (int i = 0; i < m_sons.length; i++) |
---|
193 | if (Utils.eq(localModel().distribution().perBag(i), 0)) { |
---|
194 | errors += m_test.perBag(i)- |
---|
195 | m_test.perClassPerBag(i,localModel().distribution(). |
---|
196 | maxClass()); |
---|
197 | } else |
---|
198 | errors += son(i).errorsForTree(); |
---|
199 | |
---|
200 | return errors; |
---|
201 | } |
---|
202 | } |
---|
203 | |
---|
204 | /** |
---|
205 | * Computes estimated errors for leaf. |
---|
206 | * |
---|
207 | * @return the estimated errors |
---|
208 | * @throws Exception if error estimate can't be computed |
---|
209 | */ |
---|
210 | private double errorsForLeaf() throws Exception { |
---|
211 | |
---|
212 | return m_test.total()- |
---|
213 | m_test.perClass(localModel().distribution().maxClass()); |
---|
214 | } |
---|
215 | |
---|
216 | /** |
---|
217 | * Method just exists to make program easier to read. |
---|
218 | */ |
---|
219 | private ClassifierSplitModel localModel() { |
---|
220 | |
---|
221 | return (ClassifierSplitModel)m_localModel; |
---|
222 | } |
---|
223 | |
---|
224 | /** |
---|
225 | * Method just exists to make program easier to read. |
---|
226 | */ |
---|
227 | private PruneableClassifierTree son(int index) { |
---|
228 | |
---|
229 | return (PruneableClassifierTree)m_sons[index]; |
---|
230 | } |
---|
231 | |
---|
232 | /** |
---|
233 | * Returns the revision string. |
---|
234 | * |
---|
235 | * @return the revision |
---|
236 | */ |
---|
237 | public String getRevision() { |
---|
238 | return RevisionUtils.extract("$Revision: 5533 $"); |
---|
239 | } |
---|
240 | } |
---|