1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * NBTreeNoSplit.java |
---|
19 | * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.trees.j48; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.classifiers.Evaluation; |
---|
28 | import weka.classifiers.bayes.NaiveBayesUpdateable; |
---|
29 | import weka.core.Instance; |
---|
30 | import weka.core.Instances; |
---|
31 | import weka.core.RevisionUtils; |
---|
32 | import weka.filters.Filter; |
---|
33 | import weka.filters.supervised.attribute.Discretize; |
---|
34 | |
---|
35 | import java.util.Random; |
---|
36 | |
---|
37 | /** |
---|
38 | * Class implementing a "no-split"-split (leaf node) for naive bayes |
---|
39 | * trees. |
---|
40 | * |
---|
41 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
42 | * @version $Revision: 5928 $ |
---|
43 | */ |
---|
44 | public final class NBTreeNoSplit |
---|
45 | extends ClassifierSplitModel { |
---|
46 | |
---|
47 | /** for serialization */ |
---|
48 | private static final long serialVersionUID = 7824804381545259618L; |
---|
49 | |
---|
50 | /** the naive bayes classifier */ |
---|
51 | private NaiveBayesUpdateable m_nb; |
---|
52 | |
---|
53 | /** the discretizer used */ |
---|
54 | private Discretize m_disc; |
---|
55 | |
---|
56 | /** errors on the training data at this node */ |
---|
57 | private double m_errors; |
---|
58 | |
---|
59 | public NBTreeNoSplit() { |
---|
60 | m_numSubsets = 1; |
---|
61 | } |
---|
62 | |
---|
63 | /** |
---|
64 | * Build the no-split node |
---|
65 | * |
---|
66 | * @param instances an <code>Instances</code> value |
---|
67 | * @exception Exception if an error occurs |
---|
68 | */ |
---|
69 | public final void buildClassifier(Instances instances) throws Exception { |
---|
70 | m_nb = new NaiveBayesUpdateable(); |
---|
71 | m_disc = new Discretize(); |
---|
72 | m_disc.setInputFormat(instances); |
---|
73 | Instances temp = Filter.useFilter(instances, m_disc); |
---|
74 | m_nb.buildClassifier(temp); |
---|
75 | if (temp.numInstances() >= 5) { |
---|
76 | m_errors = crossValidate(m_nb, temp, new Random(1)); |
---|
77 | } |
---|
78 | m_numSubsets = 1; |
---|
79 | } |
---|
80 | |
---|
81 | /** |
---|
82 | * Return the errors made by the naive bayes model at this node |
---|
83 | * |
---|
84 | * @return the number of errors made |
---|
85 | */ |
---|
86 | public double getErrors() { |
---|
87 | return m_errors; |
---|
88 | } |
---|
89 | |
---|
90 | /** |
---|
91 | * Return the discretizer used at this node |
---|
92 | * |
---|
93 | * @return a <code>Discretize</code> value |
---|
94 | */ |
---|
95 | public Discretize getDiscretizer() { |
---|
96 | return m_disc; |
---|
97 | } |
---|
98 | |
---|
99 | /** |
---|
100 | * Get the naive bayes model at this node |
---|
101 | * |
---|
102 | * @return a <code>NaiveBayesUpdateable</code> value |
---|
103 | */ |
---|
104 | public NaiveBayesUpdateable getNaiveBayesModel() { |
---|
105 | return m_nb; |
---|
106 | } |
---|
107 | |
---|
108 | /** |
---|
109 | * Always returns 0 because only there is only one subset. |
---|
110 | */ |
---|
111 | public final int whichSubset(Instance instance){ |
---|
112 | |
---|
113 | return 0; |
---|
114 | } |
---|
115 | |
---|
116 | /** |
---|
117 | * Always returns null because there is only one subset. |
---|
118 | */ |
---|
119 | public final double [] weights(Instance instance){ |
---|
120 | |
---|
121 | return null; |
---|
122 | } |
---|
123 | |
---|
124 | /** |
---|
125 | * Does nothing because no condition has to be satisfied. |
---|
126 | */ |
---|
127 | public final String leftSide(Instances instances){ |
---|
128 | |
---|
129 | return ""; |
---|
130 | } |
---|
131 | |
---|
132 | /** |
---|
133 | * Does nothing because no condition has to be satisfied. |
---|
134 | */ |
---|
135 | public final String rightSide(int index, Instances instances){ |
---|
136 | |
---|
137 | return ""; |
---|
138 | } |
---|
139 | |
---|
140 | /** |
---|
141 | * Returns a string containing java source code equivalent to the test |
---|
142 | * made at this node. The instance being tested is called "i". |
---|
143 | * |
---|
144 | * @param index index of the nominal value tested |
---|
145 | * @param data the data containing instance structure info |
---|
146 | * @return a value of type 'String' |
---|
147 | */ |
---|
148 | public final String sourceExpression(int index, Instances data) { |
---|
149 | |
---|
150 | return "true"; // or should this be false?? |
---|
151 | } |
---|
152 | |
---|
153 | /** |
---|
154 | * Return the probability for a class value |
---|
155 | * |
---|
156 | * @param classIndex the index of the class value |
---|
157 | * @param instance the instance to generate a probability for |
---|
158 | * @param theSubset the subset to consider |
---|
159 | * @return a probability |
---|
160 | * @exception Exception if an error occurs |
---|
161 | */ |
---|
162 | public double classProb(int classIndex, Instance instance, int theSubset) |
---|
163 | throws Exception { |
---|
164 | m_disc.input(instance); |
---|
165 | Instance temp = m_disc.output(); |
---|
166 | return m_nb.distributionForInstance(temp)[classIndex]; |
---|
167 | } |
---|
168 | |
---|
169 | /** |
---|
170 | * Return a textual description of the node |
---|
171 | * |
---|
172 | * @return a <code>String</code> value |
---|
173 | */ |
---|
174 | public String toString() { |
---|
175 | return m_nb.toString(); |
---|
176 | } |
---|
177 | |
---|
178 | /** |
---|
179 | * Utility method for fast 5-fold cross validation of a naive bayes |
---|
180 | * model |
---|
181 | * |
---|
182 | * @param fullModel a <code>NaiveBayesUpdateable</code> value |
---|
183 | * @param trainingSet an <code>Instances</code> value |
---|
184 | * @param r a <code>Random</code> value |
---|
185 | * @return a <code>double</code> value |
---|
186 | * @exception Exception if an error occurs |
---|
187 | */ |
---|
188 | public static double crossValidate(NaiveBayesUpdateable fullModel, |
---|
189 | Instances trainingSet, |
---|
190 | Random r) throws Exception { |
---|
191 | // make some copies for fast evaluation of 5-fold xval |
---|
192 | Classifier [] copies = AbstractClassifier.makeCopies(fullModel, 5); |
---|
193 | Evaluation eval = new Evaluation(trainingSet); |
---|
194 | // make some splits |
---|
195 | for (int j = 0; j < 5; j++) { |
---|
196 | Instances test = trainingSet.testCV(5, j); |
---|
197 | // unlearn these test instances |
---|
198 | for (int k = 0; k < test.numInstances(); k++) { |
---|
199 | test.instance(k).setWeight(-test.instance(k).weight()); |
---|
200 | ((NaiveBayesUpdateable)copies[j]).updateClassifier(test.instance(k)); |
---|
201 | // reset the weight back to its original value |
---|
202 | test.instance(k).setWeight(-test.instance(k).weight()); |
---|
203 | } |
---|
204 | eval.evaluateModel(copies[j], test); |
---|
205 | } |
---|
206 | return eval.incorrect(); |
---|
207 | } |
---|
208 | |
---|
209 | /** |
---|
210 | * Returns the revision string. |
---|
211 | * |
---|
212 | * @return the revision |
---|
213 | */ |
---|
214 | public String getRevision() { |
---|
215 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
216 | } |
---|
217 | } |
---|