1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * NBTreeModelSelection.java |
---|
19 | * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.trees.j48; |
---|
24 | |
---|
25 | import weka.core.Attribute; |
---|
26 | import weka.core.Instances; |
---|
27 | import weka.core.RevisionUtils; |
---|
28 | import weka.core.Utils; |
---|
29 | |
---|
30 | import java.util.Enumeration; |
---|
31 | |
---|
32 | /** |
---|
33 | * Class for selecting a NB tree split. |
---|
34 | * |
---|
35 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
36 | * @version $Revision: 1.5 $ |
---|
37 | */ |
---|
38 | public class NBTreeModelSelection |
---|
39 | extends ModelSelection { |
---|
40 | |
---|
41 | /** for serialization */ |
---|
42 | private static final long serialVersionUID = 990097748931976704L; |
---|
43 | |
---|
44 | /** Minimum number of objects in interval. */ |
---|
45 | private int m_minNoObj; |
---|
46 | |
---|
47 | /** All the training data */ |
---|
48 | private Instances m_allData; // |
---|
49 | |
---|
50 | /** |
---|
51 | * Initializes the split selection method with the given parameters. |
---|
52 | * |
---|
53 | * @param minNoObj minimum number of instances that have to occur in at least two |
---|
54 | * subsets induced by split |
---|
55 | * @param allData FULL training dataset (necessary for |
---|
56 | * selection of split points). |
---|
57 | */ |
---|
58 | public NBTreeModelSelection(int minNoObj, Instances allData) { |
---|
59 | m_minNoObj = minNoObj; |
---|
60 | m_allData = allData; |
---|
61 | } |
---|
62 | |
---|
63 | /** |
---|
64 | * Sets reference to training data to null. |
---|
65 | */ |
---|
66 | public void cleanup() { |
---|
67 | |
---|
68 | m_allData = null; |
---|
69 | } |
---|
70 | |
---|
71 | /** |
---|
72 | * Selects NBTree-type split for the given dataset. |
---|
73 | */ |
---|
74 | public final ClassifierSplitModel selectModel(Instances data){ |
---|
75 | |
---|
76 | double globalErrors = 0; |
---|
77 | |
---|
78 | double minResult; |
---|
79 | double currentResult; |
---|
80 | NBTreeSplit [] currentModel; |
---|
81 | NBTreeSplit bestModel = null; |
---|
82 | NBTreeNoSplit noSplitModel = null; |
---|
83 | int validModels = 0; |
---|
84 | boolean multiVal = true; |
---|
85 | Distribution checkDistribution; |
---|
86 | Attribute attribute; |
---|
87 | double sumOfWeights; |
---|
88 | int i; |
---|
89 | |
---|
90 | try{ |
---|
91 | // build the global model at this node |
---|
92 | noSplitModel = new NBTreeNoSplit(); |
---|
93 | noSplitModel.buildClassifier(data); |
---|
94 | if (data.numInstances() < 5) { |
---|
95 | return noSplitModel; |
---|
96 | } |
---|
97 | |
---|
98 | // evaluate it |
---|
99 | globalErrors = noSplitModel.getErrors(); |
---|
100 | if (globalErrors == 0) { |
---|
101 | return noSplitModel; |
---|
102 | } |
---|
103 | |
---|
104 | // Check if all Instances belong to one class or if not |
---|
105 | // enough Instances to split. |
---|
106 | checkDistribution = new Distribution(data); |
---|
107 | if (Utils.sm(checkDistribution.total(), m_minNoObj) || |
---|
108 | Utils.eq(checkDistribution.total(), |
---|
109 | checkDistribution.perClass(checkDistribution.maxClass()))) { |
---|
110 | return noSplitModel; |
---|
111 | } |
---|
112 | |
---|
113 | // Check if all attributes are nominal and have a |
---|
114 | // lot of values. |
---|
115 | if (m_allData != null) { |
---|
116 | Enumeration enu = data.enumerateAttributes(); |
---|
117 | while (enu.hasMoreElements()) { |
---|
118 | attribute = (Attribute) enu.nextElement(); |
---|
119 | if ((attribute.isNumeric()) || |
---|
120 | (Utils.sm((double)attribute.numValues(), |
---|
121 | (0.3*(double)m_allData.numInstances())))){ |
---|
122 | multiVal = false; |
---|
123 | break; |
---|
124 | } |
---|
125 | } |
---|
126 | } |
---|
127 | |
---|
128 | currentModel = new NBTreeSplit[data.numAttributes()]; |
---|
129 | sumOfWeights = data.sumOfWeights(); |
---|
130 | |
---|
131 | // For each attribute. |
---|
132 | for (i = 0; i < data.numAttributes(); i++){ |
---|
133 | |
---|
134 | // Apart from class attribute. |
---|
135 | if (i != (data).classIndex()){ |
---|
136 | |
---|
137 | // Get models for current attribute. |
---|
138 | currentModel[i] = new NBTreeSplit(i,m_minNoObj,sumOfWeights); |
---|
139 | currentModel[i].setGlobalModel(noSplitModel); |
---|
140 | currentModel[i].buildClassifier(data); |
---|
141 | |
---|
142 | // Check if useful split for current attribute |
---|
143 | // exists and check for enumerated attributes with |
---|
144 | // a lot of values. |
---|
145 | if (currentModel[i].checkModel()){ |
---|
146 | validModels++; |
---|
147 | } |
---|
148 | } else { |
---|
149 | currentModel[i] = null; |
---|
150 | } |
---|
151 | } |
---|
152 | |
---|
153 | // Check if any useful split was found. |
---|
154 | if (validModels == 0) { |
---|
155 | return noSplitModel; |
---|
156 | } |
---|
157 | |
---|
158 | // Find "best" attribute to split on. |
---|
159 | minResult = globalErrors; |
---|
160 | for (i=0;i<data.numAttributes();i++){ |
---|
161 | if ((i != (data).classIndex()) && |
---|
162 | (currentModel[i].checkModel())) { |
---|
163 | /* System.err.println("Errors for "+data.attribute(i).name()+" "+ |
---|
164 | currentModel[i].getErrors()); */ |
---|
165 | if (currentModel[i].getErrors() < minResult) { |
---|
166 | bestModel = currentModel[i]; |
---|
167 | minResult = currentModel[i].getErrors(); |
---|
168 | } |
---|
169 | } |
---|
170 | } |
---|
171 | // System.exit(1); |
---|
172 | // Check if useful split was found. |
---|
173 | |
---|
174 | |
---|
175 | if (((globalErrors - minResult) / globalErrors) < 0.05) { |
---|
176 | return noSplitModel; |
---|
177 | } |
---|
178 | |
---|
179 | /* if (bestModel == null) { |
---|
180 | System.err.println("This shouldn't happen! glob : "+globalErrors+ |
---|
181 | " minRes : "+minResult); |
---|
182 | System.exit(1); |
---|
183 | } */ |
---|
184 | // Set the global model for the best split |
---|
185 | // bestModel.setGlobalModel(noSplitModel); |
---|
186 | |
---|
187 | return bestModel; |
---|
188 | }catch(Exception e){ |
---|
189 | e.printStackTrace(); |
---|
190 | } |
---|
191 | return null; |
---|
192 | } |
---|
193 | |
---|
194 | /** |
---|
195 | * Selects NBTree-type split for the given dataset. |
---|
196 | */ |
---|
197 | public final ClassifierSplitModel selectModel(Instances train, Instances test) { |
---|
198 | |
---|
199 | return selectModel(train); |
---|
200 | } |
---|
201 | |
---|
202 | /** |
---|
203 | * Returns the revision string. |
---|
204 | * |
---|
205 | * @return the revision |
---|
206 | */ |
---|
207 | public String getRevision() { |
---|
208 | return RevisionUtils.extract("$Revision: 1.5 $"); |
---|
209 | } |
---|
210 | } |
---|