| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms/* |
|---|
| 4 | * This program is free software; you can redistribute it and/or modify |
|---|
| 5 | * it under the terms of the GNU General Public License as published by |
|---|
| 6 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 7 | * (at your option) any later version. |
|---|
| 8 | * |
|---|
| 9 | * This program is distributed in the hope that it will be useful, |
|---|
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 12 | * GNU General Public License for more details. |
|---|
| 13 | * |
|---|
| 14 | * You should have received a copy of the GNU General Public License |
|---|
| 15 | * along with this program; if not, write to the Free Software |
|---|
| 16 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 17 | */ |
|---|
| 18 | |
|---|
| 19 | /* |
|---|
| 20 | * NBTreeClassifierTree.java |
|---|
| 21 | * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand |
|---|
| 22 | * |
|---|
| 23 | */ |
|---|
| 24 | |
|---|
| 25 | package weka.classifiers.trees.j48; |
|---|
| 26 | |
|---|
| 27 | import weka.core.Capabilities; |
|---|
| 28 | import weka.core.Instances; |
|---|
| 29 | import weka.core.RevisionUtils; |
|---|
| 30 | import weka.core.Capabilities.Capability; |
|---|
| 31 | |
|---|
| 32 | /** |
|---|
| 33 | * Class for handling a naive bayes tree structure used for |
|---|
| 34 | * classification. |
|---|
| 35 | * |
|---|
| 36 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
|---|
| 37 | * @version $Revision: 5534 $ |
|---|
| 38 | */ |
|---|
| 39 | public class NBTreeClassifierTree |
|---|
| 40 | extends ClassifierTree { |
|---|
| 41 | |
|---|
| 42 | /** for serialization */ |
|---|
| 43 | private static final long serialVersionUID = -4472639447877404786L; |
|---|
| 44 | |
|---|
| 45 | public NBTreeClassifierTree(ModelSelection toSelectLocModel) { |
|---|
| 46 | super(toSelectLocModel); |
|---|
| 47 | } |
|---|
| 48 | |
|---|
| 49 | /** |
|---|
| 50 | * Returns default capabilities of the classifier tree. |
|---|
| 51 | * |
|---|
| 52 | * @return the capabilities of this classifier tree |
|---|
| 53 | */ |
|---|
| 54 | public Capabilities getCapabilities() { |
|---|
| 55 | Capabilities result = super.getCapabilities(); |
|---|
| 56 | result.disableAll(); |
|---|
| 57 | |
|---|
| 58 | // attributes |
|---|
| 59 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
|---|
| 60 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
|---|
| 61 | result.enable(Capability.DATE_ATTRIBUTES); |
|---|
| 62 | result.enable(Capability.MISSING_VALUES); |
|---|
| 63 | |
|---|
| 64 | // class |
|---|
| 65 | result.enable(Capability.NOMINAL_CLASS); |
|---|
| 66 | result.enable(Capability.MISSING_CLASS_VALUES); |
|---|
| 67 | |
|---|
| 68 | // instances |
|---|
| 69 | result.setMinimumNumberInstances(0); |
|---|
| 70 | |
|---|
| 71 | return result; |
|---|
| 72 | } |
|---|
| 73 | |
|---|
| 74 | /** |
|---|
| 75 | * Method for building a naive bayes classifier tree |
|---|
| 76 | * |
|---|
| 77 | * @exception Exception if something goes wrong |
|---|
| 78 | */ |
|---|
| 79 | public void buildClassifier(Instances data) throws Exception { |
|---|
| 80 | super.buildClassifier(data); |
|---|
| 81 | cleanup(new Instances(data, 0)); |
|---|
| 82 | assignIDs(-1); |
|---|
| 83 | } |
|---|
| 84 | |
|---|
| 85 | /** |
|---|
| 86 | * Assigns a uniqe id to every node in the tree. |
|---|
| 87 | * |
|---|
| 88 | public int assignIDs(int lastID) { |
|---|
| 89 | |
|---|
| 90 | int currLastID = lastID + 1; |
|---|
| 91 | |
|---|
| 92 | m_id = currLastID; |
|---|
| 93 | if (m_sons != null) { |
|---|
| 94 | for (int i = 0; i < m_sons.length; i++) { |
|---|
| 95 | currLastID = m_sons[i].assignIDs(currLastID); |
|---|
| 96 | } |
|---|
| 97 | } |
|---|
| 98 | return currLastID; |
|---|
| 99 | } */ |
|---|
| 100 | |
|---|
| 101 | /** |
|---|
| 102 | * Returns a newly created tree. |
|---|
| 103 | * |
|---|
| 104 | * @param data the training data |
|---|
| 105 | * @exception Exception if something goes wrong |
|---|
| 106 | */ |
|---|
| 107 | protected ClassifierTree getNewTree(Instances data) throws Exception { |
|---|
| 108 | |
|---|
| 109 | ClassifierTree newTree = new NBTreeClassifierTree(m_toSelectModel); |
|---|
| 110 | newTree.buildTree(data, false); |
|---|
| 111 | |
|---|
| 112 | return newTree; |
|---|
| 113 | } |
|---|
| 114 | |
|---|
| 115 | /** |
|---|
| 116 | * Returns a newly created tree. |
|---|
| 117 | * |
|---|
| 118 | * @param train the training data |
|---|
| 119 | * @param test the pruning data. |
|---|
| 120 | * @exception Exception if something goes wrong |
|---|
| 121 | */ |
|---|
| 122 | protected ClassifierTree getNewTree(Instances train, Instances test) |
|---|
| 123 | throws Exception { |
|---|
| 124 | |
|---|
| 125 | ClassifierTree newTree = new NBTreeClassifierTree(m_toSelectModel); |
|---|
| 126 | newTree.buildTree(train, test, false); |
|---|
| 127 | |
|---|
| 128 | return newTree; |
|---|
| 129 | } |
|---|
| 130 | |
|---|
| 131 | /** |
|---|
| 132 | * Print the models at the leaves |
|---|
| 133 | * |
|---|
| 134 | * @return textual description of the leaf models |
|---|
| 135 | */ |
|---|
| 136 | public String printLeafModels() { |
|---|
| 137 | StringBuffer text = new StringBuffer(); |
|---|
| 138 | |
|---|
| 139 | if (m_isLeaf) { |
|---|
| 140 | text.append("\nLeaf number: " + m_id+" "); |
|---|
| 141 | text.append(m_localModel.toString()); |
|---|
| 142 | text.append("\n"); |
|---|
| 143 | } else { |
|---|
| 144 | for (int i=0;i<m_sons.length;i++) { |
|---|
| 145 | text.append(((NBTreeClassifierTree)m_sons[i]).printLeafModels()); |
|---|
| 146 | } |
|---|
| 147 | } |
|---|
| 148 | return text.toString(); |
|---|
| 149 | } |
|---|
| 150 | |
|---|
| 151 | /** |
|---|
| 152 | * Prints tree structure. |
|---|
| 153 | */ |
|---|
| 154 | public String toString() { |
|---|
| 155 | |
|---|
| 156 | try { |
|---|
| 157 | StringBuffer text = new StringBuffer(); |
|---|
| 158 | |
|---|
| 159 | if (m_isLeaf) { |
|---|
| 160 | text.append(": NB"); |
|---|
| 161 | text.append(m_id); |
|---|
| 162 | }else |
|---|
| 163 | dumpTreeNB(0,text); |
|---|
| 164 | |
|---|
| 165 | text.append("\n"+printLeafModels()); |
|---|
| 166 | text.append("\n\nNumber of Leaves : \t"+numLeaves()+"\n"); |
|---|
| 167 | text.append("\nSize of the tree : \t"+numNodes()+"\n"); |
|---|
| 168 | |
|---|
| 169 | return text.toString(); |
|---|
| 170 | } catch (Exception e) { |
|---|
| 171 | e.printStackTrace(); |
|---|
| 172 | return "Can't print nb tree."; |
|---|
| 173 | } |
|---|
| 174 | } |
|---|
| 175 | |
|---|
| 176 | /** |
|---|
| 177 | * Help method for printing tree structure. |
|---|
| 178 | * |
|---|
| 179 | * @exception Exception if something goes wrong |
|---|
| 180 | */ |
|---|
| 181 | private void dumpTreeNB(int depth,StringBuffer text) |
|---|
| 182 | throws Exception { |
|---|
| 183 | |
|---|
| 184 | int i,j; |
|---|
| 185 | |
|---|
| 186 | for (i=0;i<m_sons.length;i++) { |
|---|
| 187 | text.append("\n");; |
|---|
| 188 | for (j=0;j<depth;j++) |
|---|
| 189 | text.append("| "); |
|---|
| 190 | text.append(m_localModel.leftSide(m_train)); |
|---|
| 191 | text.append(m_localModel.rightSide(i, m_train)); |
|---|
| 192 | if (m_sons[i].m_isLeaf) { |
|---|
| 193 | text.append(": NB "); |
|---|
| 194 | text.append(m_sons[i].m_id); |
|---|
| 195 | }else |
|---|
| 196 | ((NBTreeClassifierTree)m_sons[i]).dumpTreeNB(depth+1,text); |
|---|
| 197 | } |
|---|
| 198 | } |
|---|
| 199 | |
|---|
| 200 | /** |
|---|
| 201 | * Returns graph describing the tree. |
|---|
| 202 | * |
|---|
| 203 | * @exception Exception if something goes wrong |
|---|
| 204 | */ |
|---|
| 205 | public String graph() throws Exception { |
|---|
| 206 | |
|---|
| 207 | StringBuffer text = new StringBuffer(); |
|---|
| 208 | |
|---|
| 209 | text.append("digraph J48Tree {\n"); |
|---|
| 210 | if (m_isLeaf) { |
|---|
| 211 | text.append("N" + m_id |
|---|
| 212 | + " [label=\"" + |
|---|
| 213 | "NB model" + "\" " + |
|---|
| 214 | "shape=box style=filled "); |
|---|
| 215 | if (m_train != null && m_train.numInstances() > 0) { |
|---|
| 216 | text.append("data =\n" + m_train + "\n"); |
|---|
| 217 | text.append(",\n"); |
|---|
| 218 | |
|---|
| 219 | } |
|---|
| 220 | text.append("]\n"); |
|---|
| 221 | }else { |
|---|
| 222 | text.append("N" + m_id |
|---|
| 223 | + " [label=\"" + |
|---|
| 224 | m_localModel.leftSide(m_train) + "\" "); |
|---|
| 225 | if (m_train != null && m_train.numInstances() > 0) { |
|---|
| 226 | text.append("data =\n" + m_train + "\n"); |
|---|
| 227 | text.append(",\n"); |
|---|
| 228 | } |
|---|
| 229 | text.append("]\n"); |
|---|
| 230 | graphTree(text); |
|---|
| 231 | } |
|---|
| 232 | |
|---|
| 233 | return text.toString() +"}\n"; |
|---|
| 234 | } |
|---|
| 235 | |
|---|
| 236 | /** |
|---|
| 237 | * Help method for printing tree structure as a graph. |
|---|
| 238 | * |
|---|
| 239 | * @exception Exception if something goes wrong |
|---|
| 240 | */ |
|---|
| 241 | private void graphTree(StringBuffer text) throws Exception { |
|---|
| 242 | |
|---|
| 243 | for (int i = 0; i < m_sons.length; i++) { |
|---|
| 244 | text.append("N" + m_id |
|---|
| 245 | + "->" + |
|---|
| 246 | "N" + m_sons[i].m_id + |
|---|
| 247 | " [label=\"" + m_localModel.rightSide(i,m_train).trim() + |
|---|
| 248 | "\"]\n"); |
|---|
| 249 | if (m_sons[i].m_isLeaf) { |
|---|
| 250 | text.append("N" + m_sons[i].m_id + |
|---|
| 251 | " [label=\""+"NB Model"+"\" "+ |
|---|
| 252 | "shape=box style=filled "); |
|---|
| 253 | if (m_train != null && m_train.numInstances() > 0) { |
|---|
| 254 | text.append("data =\n" + m_sons[i].m_train + "\n"); |
|---|
| 255 | text.append(",\n"); |
|---|
| 256 | } |
|---|
| 257 | text.append("]\n"); |
|---|
| 258 | } else { |
|---|
| 259 | text.append("N" + m_sons[i].m_id + |
|---|
| 260 | " [label=\""+m_sons[i].m_localModel.leftSide(m_train) + |
|---|
| 261 | "\" "); |
|---|
| 262 | if (m_train != null && m_train.numInstances() > 0) { |
|---|
| 263 | text.append("data =\n" + m_sons[i].m_train + "\n"); |
|---|
| 264 | text.append(",\n"); |
|---|
| 265 | } |
|---|
| 266 | text.append("]\n"); |
|---|
| 267 | ((NBTreeClassifierTree)m_sons[i]).graphTree(text); |
|---|
| 268 | } |
|---|
| 269 | } |
|---|
| 270 | } |
|---|
| 271 | |
|---|
| 272 | /** |
|---|
| 273 | * Returns the revision string. |
|---|
| 274 | * |
|---|
| 275 | * @return the revision |
|---|
| 276 | */ |
|---|
| 277 | public String getRevision() { |
|---|
| 278 | return RevisionUtils.extract("$Revision: 5534 $"); |
|---|
| 279 | } |
|---|
| 280 | } |
|---|