1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms/* |
---|
4 | * This program is free software; you can redistribute it and/or modify |
---|
5 | * it under the terms of the GNU General Public License as published by |
---|
6 | * the Free Software Foundation; either version 2 of the License, or |
---|
7 | * (at your option) any later version. |
---|
8 | * |
---|
9 | * This program is distributed in the hope that it will be useful, |
---|
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
12 | * GNU General Public License for more details. |
---|
13 | * |
---|
14 | * You should have received a copy of the GNU General Public License |
---|
15 | * along with this program; if not, write to the Free Software |
---|
16 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
17 | */ |
---|
18 | |
---|
19 | /* |
---|
20 | * NBTreeClassifierTree.java |
---|
21 | * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand |
---|
22 | * |
---|
23 | */ |
---|
24 | |
---|
25 | package weka.classifiers.trees.j48; |
---|
26 | |
---|
27 | import weka.core.Capabilities; |
---|
28 | import weka.core.Instances; |
---|
29 | import weka.core.RevisionUtils; |
---|
30 | import weka.core.Capabilities.Capability; |
---|
31 | |
---|
32 | /** |
---|
33 | * Class for handling a naive bayes tree structure used for |
---|
34 | * classification. |
---|
35 | * |
---|
36 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
37 | * @version $Revision: 5534 $ |
---|
38 | */ |
---|
39 | public class NBTreeClassifierTree |
---|
40 | extends ClassifierTree { |
---|
41 | |
---|
42 | /** for serialization */ |
---|
43 | private static final long serialVersionUID = -4472639447877404786L; |
---|
44 | |
---|
45 | public NBTreeClassifierTree(ModelSelection toSelectLocModel) { |
---|
46 | super(toSelectLocModel); |
---|
47 | } |
---|
48 | |
---|
49 | /** |
---|
50 | * Returns default capabilities of the classifier tree. |
---|
51 | * |
---|
52 | * @return the capabilities of this classifier tree |
---|
53 | */ |
---|
54 | public Capabilities getCapabilities() { |
---|
55 | Capabilities result = super.getCapabilities(); |
---|
56 | result.disableAll(); |
---|
57 | |
---|
58 | // attributes |
---|
59 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
60 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
61 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
62 | result.enable(Capability.MISSING_VALUES); |
---|
63 | |
---|
64 | // class |
---|
65 | result.enable(Capability.NOMINAL_CLASS); |
---|
66 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
67 | |
---|
68 | // instances |
---|
69 | result.setMinimumNumberInstances(0); |
---|
70 | |
---|
71 | return result; |
---|
72 | } |
---|
73 | |
---|
74 | /** |
---|
75 | * Method for building a naive bayes classifier tree |
---|
76 | * |
---|
77 | * @exception Exception if something goes wrong |
---|
78 | */ |
---|
79 | public void buildClassifier(Instances data) throws Exception { |
---|
80 | super.buildClassifier(data); |
---|
81 | cleanup(new Instances(data, 0)); |
---|
82 | assignIDs(-1); |
---|
83 | } |
---|
84 | |
---|
85 | /** |
---|
86 | * Assigns a uniqe id to every node in the tree. |
---|
87 | * |
---|
88 | public int assignIDs(int lastID) { |
---|
89 | |
---|
90 | int currLastID = lastID + 1; |
---|
91 | |
---|
92 | m_id = currLastID; |
---|
93 | if (m_sons != null) { |
---|
94 | for (int i = 0; i < m_sons.length; i++) { |
---|
95 | currLastID = m_sons[i].assignIDs(currLastID); |
---|
96 | } |
---|
97 | } |
---|
98 | return currLastID; |
---|
99 | } */ |
---|
100 | |
---|
101 | /** |
---|
102 | * Returns a newly created tree. |
---|
103 | * |
---|
104 | * @param data the training data |
---|
105 | * @exception Exception if something goes wrong |
---|
106 | */ |
---|
107 | protected ClassifierTree getNewTree(Instances data) throws Exception { |
---|
108 | |
---|
109 | ClassifierTree newTree = new NBTreeClassifierTree(m_toSelectModel); |
---|
110 | newTree.buildTree(data, false); |
---|
111 | |
---|
112 | return newTree; |
---|
113 | } |
---|
114 | |
---|
115 | /** |
---|
116 | * Returns a newly created tree. |
---|
117 | * |
---|
118 | * @param train the training data |
---|
119 | * @param test the pruning data. |
---|
120 | * @exception Exception if something goes wrong |
---|
121 | */ |
---|
122 | protected ClassifierTree getNewTree(Instances train, Instances test) |
---|
123 | throws Exception { |
---|
124 | |
---|
125 | ClassifierTree newTree = new NBTreeClassifierTree(m_toSelectModel); |
---|
126 | newTree.buildTree(train, test, false); |
---|
127 | |
---|
128 | return newTree; |
---|
129 | } |
---|
130 | |
---|
131 | /** |
---|
132 | * Print the models at the leaves |
---|
133 | * |
---|
134 | * @return textual description of the leaf models |
---|
135 | */ |
---|
136 | public String printLeafModels() { |
---|
137 | StringBuffer text = new StringBuffer(); |
---|
138 | |
---|
139 | if (m_isLeaf) { |
---|
140 | text.append("\nLeaf number: " + m_id+" "); |
---|
141 | text.append(m_localModel.toString()); |
---|
142 | text.append("\n"); |
---|
143 | } else { |
---|
144 | for (int i=0;i<m_sons.length;i++) { |
---|
145 | text.append(((NBTreeClassifierTree)m_sons[i]).printLeafModels()); |
---|
146 | } |
---|
147 | } |
---|
148 | return text.toString(); |
---|
149 | } |
---|
150 | |
---|
151 | /** |
---|
152 | * Prints tree structure. |
---|
153 | */ |
---|
154 | public String toString() { |
---|
155 | |
---|
156 | try { |
---|
157 | StringBuffer text = new StringBuffer(); |
---|
158 | |
---|
159 | if (m_isLeaf) { |
---|
160 | text.append(": NB"); |
---|
161 | text.append(m_id); |
---|
162 | }else |
---|
163 | dumpTreeNB(0,text); |
---|
164 | |
---|
165 | text.append("\n"+printLeafModels()); |
---|
166 | text.append("\n\nNumber of Leaves : \t"+numLeaves()+"\n"); |
---|
167 | text.append("\nSize of the tree : \t"+numNodes()+"\n"); |
---|
168 | |
---|
169 | return text.toString(); |
---|
170 | } catch (Exception e) { |
---|
171 | e.printStackTrace(); |
---|
172 | return "Can't print nb tree."; |
---|
173 | } |
---|
174 | } |
---|
175 | |
---|
176 | /** |
---|
177 | * Help method for printing tree structure. |
---|
178 | * |
---|
179 | * @exception Exception if something goes wrong |
---|
180 | */ |
---|
181 | private void dumpTreeNB(int depth,StringBuffer text) |
---|
182 | throws Exception { |
---|
183 | |
---|
184 | int i,j; |
---|
185 | |
---|
186 | for (i=0;i<m_sons.length;i++) { |
---|
187 | text.append("\n");; |
---|
188 | for (j=0;j<depth;j++) |
---|
189 | text.append("| "); |
---|
190 | text.append(m_localModel.leftSide(m_train)); |
---|
191 | text.append(m_localModel.rightSide(i, m_train)); |
---|
192 | if (m_sons[i].m_isLeaf) { |
---|
193 | text.append(": NB "); |
---|
194 | text.append(m_sons[i].m_id); |
---|
195 | }else |
---|
196 | ((NBTreeClassifierTree)m_sons[i]).dumpTreeNB(depth+1,text); |
---|
197 | } |
---|
198 | } |
---|
199 | |
---|
200 | /** |
---|
201 | * Returns graph describing the tree. |
---|
202 | * |
---|
203 | * @exception Exception if something goes wrong |
---|
204 | */ |
---|
205 | public String graph() throws Exception { |
---|
206 | |
---|
207 | StringBuffer text = new StringBuffer(); |
---|
208 | |
---|
209 | text.append("digraph J48Tree {\n"); |
---|
210 | if (m_isLeaf) { |
---|
211 | text.append("N" + m_id |
---|
212 | + " [label=\"" + |
---|
213 | "NB model" + "\" " + |
---|
214 | "shape=box style=filled "); |
---|
215 | if (m_train != null && m_train.numInstances() > 0) { |
---|
216 | text.append("data =\n" + m_train + "\n"); |
---|
217 | text.append(",\n"); |
---|
218 | |
---|
219 | } |
---|
220 | text.append("]\n"); |
---|
221 | }else { |
---|
222 | text.append("N" + m_id |
---|
223 | + " [label=\"" + |
---|
224 | m_localModel.leftSide(m_train) + "\" "); |
---|
225 | if (m_train != null && m_train.numInstances() > 0) { |
---|
226 | text.append("data =\n" + m_train + "\n"); |
---|
227 | text.append(",\n"); |
---|
228 | } |
---|
229 | text.append("]\n"); |
---|
230 | graphTree(text); |
---|
231 | } |
---|
232 | |
---|
233 | return text.toString() +"}\n"; |
---|
234 | } |
---|
235 | |
---|
236 | /** |
---|
237 | * Help method for printing tree structure as a graph. |
---|
238 | * |
---|
239 | * @exception Exception if something goes wrong |
---|
240 | */ |
---|
241 | private void graphTree(StringBuffer text) throws Exception { |
---|
242 | |
---|
243 | for (int i = 0; i < m_sons.length; i++) { |
---|
244 | text.append("N" + m_id |
---|
245 | + "->" + |
---|
246 | "N" + m_sons[i].m_id + |
---|
247 | " [label=\"" + m_localModel.rightSide(i,m_train).trim() + |
---|
248 | "\"]\n"); |
---|
249 | if (m_sons[i].m_isLeaf) { |
---|
250 | text.append("N" + m_sons[i].m_id + |
---|
251 | " [label=\""+"NB Model"+"\" "+ |
---|
252 | "shape=box style=filled "); |
---|
253 | if (m_train != null && m_train.numInstances() > 0) { |
---|
254 | text.append("data =\n" + m_sons[i].m_train + "\n"); |
---|
255 | text.append(",\n"); |
---|
256 | } |
---|
257 | text.append("]\n"); |
---|
258 | } else { |
---|
259 | text.append("N" + m_sons[i].m_id + |
---|
260 | " [label=\""+m_sons[i].m_localModel.leftSide(m_train) + |
---|
261 | "\" "); |
---|
262 | if (m_train != null && m_train.numInstances() > 0) { |
---|
263 | text.append("data =\n" + m_sons[i].m_train + "\n"); |
---|
264 | text.append(",\n"); |
---|
265 | } |
---|
266 | text.append("]\n"); |
---|
267 | ((NBTreeClassifierTree)m_sons[i]).graphTree(text); |
---|
268 | } |
---|
269 | } |
---|
270 | } |
---|
271 | |
---|
272 | /** |
---|
273 | * Returns the revision string. |
---|
274 | * |
---|
275 | * @return the revision |
---|
276 | */ |
---|
277 | public String getRevision() { |
---|
278 | return RevisionUtils.extract("$Revision: 5534 $"); |
---|
279 | } |
---|
280 | } |
---|