1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * GraftSplit.java |
---|
19 | * Copyright (C) 2007 Geoff Webb & Janice Boughton |
---|
20 | * a split object for nodes added to a tree during grafting. |
---|
21 | * (used in classifier J48g). |
---|
22 | */ |
---|
23 | |
---|
24 | package weka.classifiers.trees.j48; |
---|
25 | |
---|
26 | import weka.core.*; |
---|
27 | |
---|
28 | /** |
---|
29 | * Class implementing a split for nodes added to a tree during grafting. |
---|
30 | * |
---|
31 | * @author Janice Boughton (jrbought@infotech.monash.edu.au) |
---|
32 | * @version $Revision 1.0 $ |
---|
33 | */ |
---|
34 | public class GraftSplit |
---|
35 | extends ClassifierSplitModel |
---|
36 | implements Comparable { |
---|
37 | |
---|
38 | /** for serialzation. */ |
---|
39 | private static final long serialVersionUID = 722773260393182051L; |
---|
40 | |
---|
41 | /** the distribution for graft values, from cases in atbop */ |
---|
42 | private Distribution m_graftdistro; |
---|
43 | |
---|
44 | /** the attribute we are splitting on */ |
---|
45 | private int m_attIndex; |
---|
46 | |
---|
47 | /** value of split point (if numeric attribute) */ |
---|
48 | private double m_splitPoint; |
---|
49 | |
---|
50 | /** dominant class of the subset specified by m_testType */ |
---|
51 | private int m_maxClass; |
---|
52 | |
---|
53 | /** dominant class of the subset not specified by m_testType */ |
---|
54 | private int m_otherLeafMaxClass; |
---|
55 | |
---|
56 | /** laplace value of the subset specified by m_testType for m_maxClass */ |
---|
57 | private double m_laplace; |
---|
58 | |
---|
59 | /** leaf for the subset specified by m_testType */ |
---|
60 | private Distribution m_leafdistro; |
---|
61 | |
---|
62 | /** |
---|
63 | * type of test: |
---|
64 | * 0: <= test |
---|
65 | * 1: > test |
---|
66 | * 2: = test |
---|
67 | * 3: != test |
---|
68 | */ |
---|
69 | private int m_testType; |
---|
70 | |
---|
71 | |
---|
72 | /** |
---|
73 | * constructor |
---|
74 | * |
---|
75 | * @param a the attribute to split on |
---|
76 | * @param v the value of a where split occurs |
---|
77 | * @param t the test type (0 is <=, 1 is >, 2 is =, 3 is !) |
---|
78 | * @param c the class to label the leaf node pointed to by test as. |
---|
79 | * @param l the laplace value (needed when sorting GraftSplits) |
---|
80 | */ |
---|
81 | public GraftSplit(int a, double v, int t, double c, double l) { |
---|
82 | |
---|
83 | m_attIndex = a; |
---|
84 | m_splitPoint = v; |
---|
85 | m_testType = t; |
---|
86 | m_maxClass = (int)c; |
---|
87 | m_laplace = l; |
---|
88 | } |
---|
89 | |
---|
90 | |
---|
91 | /** |
---|
92 | * constructor |
---|
93 | * |
---|
94 | * @param a the attribute to split on |
---|
95 | * @param v the value of a where split occurs |
---|
96 | * @param t the test type (0 is <=, 1 is >, 2 is =, 3 is !=) |
---|
97 | * @param oC the class to label the leaf node not pointed to by test as. |
---|
98 | * @param counts the distribution for this split |
---|
99 | */ |
---|
100 | public GraftSplit(int a, double v, int t, double oC, double [][] counts) |
---|
101 | throws Exception { |
---|
102 | m_attIndex = a; |
---|
103 | m_splitPoint = v; |
---|
104 | m_testType = t; |
---|
105 | m_otherLeafMaxClass = (int)oC; |
---|
106 | |
---|
107 | // only deal with binary cuts (<= and >; = and !=) |
---|
108 | m_numSubsets = 2; |
---|
109 | |
---|
110 | // which subset are we looking at for the graft? |
---|
111 | int subset = subsetOfInterest(); // this is the subset for m_leaf |
---|
112 | |
---|
113 | // create graft distribution, based on counts |
---|
114 | m_distribution = new Distribution(counts); |
---|
115 | |
---|
116 | // create a distribution object for m_leaf |
---|
117 | double [][] lcounts = new double[1][m_distribution.numClasses()]; |
---|
118 | for(int c = 0; c < lcounts[0].length; c++) { |
---|
119 | lcounts[0][c] = counts[subset][c]; |
---|
120 | } |
---|
121 | m_leafdistro = new Distribution(lcounts); |
---|
122 | |
---|
123 | // set the max class |
---|
124 | m_maxClass = m_distribution.maxClass(subset); |
---|
125 | |
---|
126 | // set the laplace value (assumes binary class) for subset of interest |
---|
127 | m_laplace = (m_distribution.perClassPerBag(subset, m_maxClass) + 1.0) |
---|
128 | / (m_distribution.perBag(subset) + 2.0); |
---|
129 | } |
---|
130 | |
---|
131 | |
---|
132 | /** |
---|
133 | * deletes the cases in data that belong to leaf pointed to by |
---|
134 | * the test (i.e. the subset of interest). this is useful so |
---|
135 | * the instances belonging to that leaf aren't passed down the |
---|
136 | * other branch. |
---|
137 | * |
---|
138 | * @param data the instances to delete from |
---|
139 | */ |
---|
140 | public void deleteGraftedCases(Instances data) { |
---|
141 | |
---|
142 | int subOfInterest = subsetOfInterest(); |
---|
143 | for(int x = 0; x < data.numInstances(); x++) { |
---|
144 | if(whichSubset(data.instance(x)) == subOfInterest) { |
---|
145 | data.delete(x--); |
---|
146 | } |
---|
147 | } |
---|
148 | } |
---|
149 | |
---|
150 | |
---|
151 | /** |
---|
152 | * builds m_graftdistro using the passed data |
---|
153 | * |
---|
154 | * @param data the instances to use when creating the distribution |
---|
155 | */ |
---|
156 | public void buildClassifier(Instances data) throws Exception { |
---|
157 | |
---|
158 | // distribution for the graft, not counting cases in atbop, only orig leaf |
---|
159 | m_graftdistro = new Distribution(2, data.numClasses()); |
---|
160 | |
---|
161 | // which subset are we looking at for the graft? |
---|
162 | int subset = subsetOfInterest(); // this is the subset for m_leaf |
---|
163 | |
---|
164 | double thisNodeCount = 0; |
---|
165 | double knownCases = 0; |
---|
166 | boolean allKnown = true; |
---|
167 | // populate distribution |
---|
168 | for(int x = 0; x < data.numInstances(); x++) { |
---|
169 | Instance instance = data.instance(x); |
---|
170 | if(instance.isMissing(m_attIndex)) { |
---|
171 | allKnown = false; |
---|
172 | continue; |
---|
173 | } |
---|
174 | knownCases += instance.weight(); |
---|
175 | int subst = whichSubset(instance); |
---|
176 | if(subst == -1) |
---|
177 | continue; |
---|
178 | m_graftdistro.add(subst, instance); |
---|
179 | if(subst == subset) { // instance belongs at m_leaf |
---|
180 | thisNodeCount += instance.weight(); |
---|
181 | } |
---|
182 | } |
---|
183 | double factor = (knownCases == 0) ? (1.0 / (double)2.0) |
---|
184 | : (thisNodeCount / knownCases); |
---|
185 | if(!allKnown) { |
---|
186 | for(int x = 0; x < data.numInstances(); x++) { |
---|
187 | if(data.instance(x).isMissing(m_attIndex)) { |
---|
188 | Instance instance = data.instance(x); |
---|
189 | int subst = whichSubset(instance); |
---|
190 | if(subst == -1) |
---|
191 | continue; |
---|
192 | instance.setWeight(instance.weight() * factor); |
---|
193 | m_graftdistro.add(subst, instance); |
---|
194 | } |
---|
195 | } |
---|
196 | } |
---|
197 | |
---|
198 | // if there are no cases at the leaf, make sure the desired |
---|
199 | // class is chosen, by setting counts to 0.01 |
---|
200 | if(m_graftdistro.perBag(subset) == 0) { |
---|
201 | double [] counts = new double[data.numClasses()]; |
---|
202 | counts[m_maxClass] = 0.01; |
---|
203 | m_graftdistro.add(subset, counts); |
---|
204 | } |
---|
205 | if(m_graftdistro.perBag((subset == 0) ? 1 : 0) == 0) { |
---|
206 | double [] counts = new double[data.numClasses()]; |
---|
207 | counts[(int)m_otherLeafMaxClass] = 0.01; |
---|
208 | m_graftdistro.add((subset == 0) ? 1 : 0, counts); |
---|
209 | } |
---|
210 | } |
---|
211 | |
---|
212 | |
---|
213 | /** |
---|
214 | * @return the NoSplit object for the leaf pointed to by m_testType branch |
---|
215 | */ |
---|
216 | public NoSplit getLeaf() { |
---|
217 | return new NoSplit(m_leafdistro); |
---|
218 | } |
---|
219 | |
---|
220 | |
---|
221 | /** |
---|
222 | * @return the NoSplit object for the leaf not pointed to by m_testType branch |
---|
223 | */ |
---|
224 | public NoSplit getOtherLeaf() { |
---|
225 | |
---|
226 | // the bag (subset) that isn't pointed to by m_testType branch |
---|
227 | int bag = (subsetOfInterest() == 0) ? 1 : 0; |
---|
228 | |
---|
229 | double [][] counts = new double[1][m_graftdistro.numClasses()]; |
---|
230 | double totals = 0; |
---|
231 | for(int c = 0; c < counts[0].length; c++) { |
---|
232 | counts[0][c] = m_graftdistro.perClassPerBag(bag, c); |
---|
233 | totals += counts[0][c]; |
---|
234 | } |
---|
235 | // if empty, make sure proper class gets chosen |
---|
236 | if(totals == 0) { |
---|
237 | counts[0][m_otherLeafMaxClass] += 0.01; |
---|
238 | } |
---|
239 | return new NoSplit(new Distribution(counts)); |
---|
240 | } |
---|
241 | |
---|
242 | |
---|
243 | /** |
---|
244 | * Prints label for subset index of instances (eg class). |
---|
245 | * |
---|
246 | * @param index the bag to dump label for |
---|
247 | * @param data to get attribute names and such |
---|
248 | * @return the label as a string |
---|
249 | * @exception Exception if something goes wrong |
---|
250 | */ |
---|
251 | public final String dumpLabelG(int index, Instances data) throws Exception { |
---|
252 | |
---|
253 | StringBuffer text; |
---|
254 | |
---|
255 | text = new StringBuffer(); |
---|
256 | text.append(((Instances)data).classAttribute(). |
---|
257 | value((index==subsetOfInterest()) ? m_maxClass : m_otherLeafMaxClass)); |
---|
258 | text.append(" ("+Utils.roundDouble(m_graftdistro.perBag(index),1)); |
---|
259 | if(Utils.gr(m_graftdistro.numIncorrect(index),0)) |
---|
260 | text.append("/" |
---|
261 | +Utils.roundDouble(m_graftdistro.numIncorrect(index),2)); |
---|
262 | |
---|
263 | // show the graft values, only if this is subsetOfInterest() |
---|
264 | if(index == subsetOfInterest()) { |
---|
265 | text.append("|"+Utils.roundDouble(m_distribution.perBag(index),2)); |
---|
266 | if(Utils.gr(m_distribution.numIncorrect(index),0)) |
---|
267 | text.append("/" |
---|
268 | +Utils.roundDouble(m_distribution.numIncorrect(index),2)); |
---|
269 | } |
---|
270 | text.append(")"); |
---|
271 | return text.toString(); |
---|
272 | } |
---|
273 | |
---|
274 | |
---|
275 | /** |
---|
276 | * @return the subset that is specified by the test type |
---|
277 | */ |
---|
278 | public int subsetOfInterest() { |
---|
279 | if(m_testType == 2) |
---|
280 | return 0; |
---|
281 | if(m_testType == 3) |
---|
282 | return 1; |
---|
283 | return m_testType; |
---|
284 | } |
---|
285 | |
---|
286 | |
---|
287 | /** |
---|
288 | * @return the number of positive cases in the subset of interest |
---|
289 | */ |
---|
290 | public double positivesForSubsetOfInterest() { |
---|
291 | return (m_distribution.perClassPerBag(subsetOfInterest(), m_maxClass)); |
---|
292 | } |
---|
293 | |
---|
294 | |
---|
295 | /** |
---|
296 | * @param subset the subset to get the positives for |
---|
297 | * @return the number of positive cases in the specified subset |
---|
298 | */ |
---|
299 | public double positives(int subset) { |
---|
300 | return (m_distribution.perClassPerBag(subset, |
---|
301 | m_distribution.maxClass(subset))); |
---|
302 | } |
---|
303 | |
---|
304 | |
---|
305 | /** |
---|
306 | * @return the number of instances in the subset of interest |
---|
307 | */ |
---|
308 | public double totalForSubsetOfInterest() { |
---|
309 | return (m_distribution.perBag(subsetOfInterest())); |
---|
310 | } |
---|
311 | |
---|
312 | |
---|
313 | /** |
---|
314 | * @param subset the index of the bag to get the total for |
---|
315 | * @return the number of instances in the subset |
---|
316 | */ |
---|
317 | public double totalForSubset(int subset) { |
---|
318 | return (m_distribution.perBag(subset)); |
---|
319 | } |
---|
320 | |
---|
321 | |
---|
322 | /** |
---|
323 | * Prints left side of condition satisfied by instances. |
---|
324 | * |
---|
325 | * @param data the data. |
---|
326 | */ |
---|
327 | public String leftSide(Instances data) { |
---|
328 | return data.attribute(m_attIndex).name(); |
---|
329 | } |
---|
330 | |
---|
331 | |
---|
332 | /** |
---|
333 | * @return the index of the attribute to split on |
---|
334 | */ |
---|
335 | public int attribute() { |
---|
336 | return m_attIndex; |
---|
337 | } |
---|
338 | |
---|
339 | |
---|
340 | /** |
---|
341 | * Prints condition satisfied by instances in subset index. |
---|
342 | */ |
---|
343 | public final String rightSide(int index, Instances data) { |
---|
344 | |
---|
345 | StringBuffer text; |
---|
346 | |
---|
347 | text = new StringBuffer(); |
---|
348 | if(data.attribute(m_attIndex).isNominal()) |
---|
349 | if(index == 0) |
---|
350 | text.append(" = "+ |
---|
351 | data.attribute(m_attIndex).value((int)m_splitPoint)); |
---|
352 | else |
---|
353 | text.append(" != "+ |
---|
354 | data.attribute(m_attIndex).value((int)m_splitPoint)); |
---|
355 | else |
---|
356 | if(index == 0) |
---|
357 | text.append(" <= "+ |
---|
358 | Utils.doubleToString(m_splitPoint,6)); |
---|
359 | else |
---|
360 | text.append(" > "+ |
---|
361 | Utils.doubleToString(m_splitPoint,6)); |
---|
362 | return text.toString(); |
---|
363 | } |
---|
364 | |
---|
365 | |
---|
366 | /** |
---|
367 | * Returns a string containing java source code equivalent to the test |
---|
368 | * made at this node. The instance being tested is called "i". |
---|
369 | * |
---|
370 | * @param index index of the nominal value tested |
---|
371 | * @param data the data containing instance structure info |
---|
372 | * @return a value of type 'String' |
---|
373 | */ |
---|
374 | public final String sourceExpression(int index, Instances data) { |
---|
375 | |
---|
376 | StringBuffer expr = null; |
---|
377 | if(index < 0) { |
---|
378 | return "i[" + m_attIndex + "] == null"; |
---|
379 | } |
---|
380 | if(data.attribute(m_attIndex).isNominal()) { |
---|
381 | if(index == 0) |
---|
382 | expr = new StringBuffer("i["); |
---|
383 | else |
---|
384 | expr = new StringBuffer("!i["); |
---|
385 | expr.append(m_attIndex).append("]"); |
---|
386 | expr.append(".equals(\"").append(data.attribute(m_attIndex) |
---|
387 | .value((int)m_splitPoint)).append("\")"); |
---|
388 | } else { |
---|
389 | expr = new StringBuffer("((Double) i["); |
---|
390 | expr.append(m_attIndex).append("])"); |
---|
391 | if(index == 0) { |
---|
392 | expr.append(".doubleValue() <= ").append(m_splitPoint); |
---|
393 | } else { |
---|
394 | expr.append(".doubleValue() > ").append(m_splitPoint); |
---|
395 | } |
---|
396 | } |
---|
397 | return expr.toString(); |
---|
398 | } |
---|
399 | |
---|
400 | |
---|
401 | /** |
---|
402 | * @param instance the instance to produce the weights for |
---|
403 | * @return a double array of weights, null if only belongs to one subset |
---|
404 | */ |
---|
405 | public double [] weights(Instance instance) { |
---|
406 | |
---|
407 | double [] weights; |
---|
408 | int i; |
---|
409 | |
---|
410 | if(instance.isMissing(m_attIndex)) { |
---|
411 | weights = new double [m_numSubsets]; |
---|
412 | for(i=0;i<m_numSubsets;i++) { |
---|
413 | weights [i] = m_graftdistro.perBag(i)/m_graftdistro.total(); |
---|
414 | } |
---|
415 | return weights; |
---|
416 | } else { |
---|
417 | return null; |
---|
418 | } |
---|
419 | } |
---|
420 | |
---|
421 | |
---|
422 | /** |
---|
423 | * @param instance the instance for which to determine the subset |
---|
424 | * @return an int indicating the subset this instance belongs to |
---|
425 | */ |
---|
426 | public int whichSubset(Instance instance) { |
---|
427 | |
---|
428 | if(instance.isMissing(m_attIndex)) |
---|
429 | return -1; |
---|
430 | |
---|
431 | if(instance.attribute(m_attIndex).isNominal()) { |
---|
432 | // in the case of nominal, m_splitPoint is the = value, all else is != |
---|
433 | if(instance.value(m_attIndex) == m_splitPoint) |
---|
434 | return 0; |
---|
435 | else |
---|
436 | return 1; |
---|
437 | } else { |
---|
438 | if(Utils.smOrEq(instance.value(m_attIndex), m_splitPoint)) |
---|
439 | return 0; |
---|
440 | else |
---|
441 | return 1; |
---|
442 | } |
---|
443 | } |
---|
444 | |
---|
445 | |
---|
446 | /** |
---|
447 | * @return the value of the split point |
---|
448 | */ |
---|
449 | public double splitPoint() { |
---|
450 | return m_splitPoint; |
---|
451 | } |
---|
452 | |
---|
453 | /** |
---|
454 | * @return the dominate class for the subset of interest |
---|
455 | */ |
---|
456 | public int maxClassForSubsetOfInterest() { |
---|
457 | return m_maxClass; |
---|
458 | } |
---|
459 | |
---|
460 | /** |
---|
461 | * @return the laplace value for maxClass of subset of interest |
---|
462 | */ |
---|
463 | public double laplaceForSubsetOfInterest() { |
---|
464 | return m_laplace; |
---|
465 | } |
---|
466 | |
---|
467 | /** |
---|
468 | * returns the test type |
---|
469 | * @return value of testtype |
---|
470 | */ |
---|
471 | public int testType() { |
---|
472 | return m_testType; |
---|
473 | } |
---|
474 | |
---|
475 | /** |
---|
476 | * method needed for sorting a collection of GraftSplits by laplace value |
---|
477 | * @param g the graft split to compare to this one |
---|
478 | * @return -1, 0, or 1 if this GraftSplit laplace is <, = or > than that of g |
---|
479 | */ |
---|
480 | public int compareTo(Object g) { |
---|
481 | |
---|
482 | if(m_laplace > ((GraftSplit)g).laplaceForSubsetOfInterest()) |
---|
483 | return 1; |
---|
484 | if(m_laplace < ((GraftSplit)g).laplaceForSubsetOfInterest()) |
---|
485 | return -1; |
---|
486 | return 0; |
---|
487 | } |
---|
488 | |
---|
489 | /** |
---|
490 | * returns the probability for instance for the specified class |
---|
491 | * @param classIndex the index of the class |
---|
492 | * @param instance the instance to get the probability for |
---|
493 | * @param theSubset the subset |
---|
494 | */ |
---|
495 | public final double classProb(int classIndex, Instance instance, |
---|
496 | int theSubset) throws Exception { |
---|
497 | |
---|
498 | if (theSubset <= -1) { |
---|
499 | double [] weights = weights(instance); |
---|
500 | if (weights == null) { |
---|
501 | return m_distribution.prob(classIndex); |
---|
502 | } else { |
---|
503 | double prob = 0; |
---|
504 | for (int i = 0; i < weights.length; i++) { |
---|
505 | prob += weights[i] * m_distribution.prob(classIndex, i); |
---|
506 | } |
---|
507 | return prob; |
---|
508 | } |
---|
509 | } else { |
---|
510 | if (Utils.gr(m_distribution.perBag(theSubset), 0)) { |
---|
511 | return m_distribution.prob(classIndex, theSubset); |
---|
512 | } else { |
---|
513 | return m_distribution.prob(classIndex); |
---|
514 | } |
---|
515 | } |
---|
516 | } |
---|
517 | |
---|
518 | |
---|
519 | /** |
---|
520 | * method for returning information about this GraftSplit |
---|
521 | * @param data instances for determining names of attributes and values |
---|
522 | * @return a string showing this GraftSplit's information |
---|
523 | */ |
---|
524 | public String toString(Instances data) { |
---|
525 | |
---|
526 | String theTest; |
---|
527 | if(m_testType == 0) |
---|
528 | theTest = " <= "; |
---|
529 | else if(m_testType == 1) |
---|
530 | theTest = " > "; |
---|
531 | else if(m_testType == 2) |
---|
532 | theTest = " = "; |
---|
533 | else |
---|
534 | theTest = " != "; |
---|
535 | |
---|
536 | if(data.attribute(m_attIndex).isNominal()) |
---|
537 | theTest += data.attribute(m_attIndex).value((int)m_splitPoint); |
---|
538 | else |
---|
539 | theTest += Double.toString(m_splitPoint); |
---|
540 | |
---|
541 | return data.attribute(m_attIndex).name() + theTest |
---|
542 | + " (" + Double.toString(m_laplace) + ") --> " |
---|
543 | + data.attribute(data.classIndex()).value(m_maxClass); |
---|
544 | } |
---|
545 | |
---|
546 | /** |
---|
547 | * Returns the revision string. |
---|
548 | * |
---|
549 | * @return the revision |
---|
550 | */ |
---|
551 | public String getRevision() { |
---|
552 | return RevisionUtils.extract("$Revision: 1.2 $"); |
---|
553 | } |
---|
554 | } |
---|