1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * EntropySplitCrit.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.trees.j48; |
---|
24 | |
---|
25 | import weka.core.RevisionUtils; |
---|
26 | import weka.core.Utils; |
---|
27 | |
---|
28 | /** |
---|
29 | * Class for computing the entropy for a given distribution. |
---|
30 | * |
---|
31 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
32 | * @version $Revision: 1.8 $ |
---|
33 | */ |
---|
34 | public final class EntropySplitCrit |
---|
35 | extends EntropyBasedSplitCrit { |
---|
36 | |
---|
37 | /** for serialization */ |
---|
38 | private static final long serialVersionUID = 5986252682266803935L; |
---|
39 | |
---|
40 | /** |
---|
41 | * Computes entropy for given distribution. |
---|
42 | */ |
---|
43 | public final double splitCritValue(Distribution bags) { |
---|
44 | |
---|
45 | return newEnt(bags); |
---|
46 | } |
---|
47 | |
---|
48 | /** |
---|
49 | * Computes entropy of test distribution with respect to training distribution. |
---|
50 | */ |
---|
51 | public final double splitCritValue(Distribution train, Distribution test) { |
---|
52 | |
---|
53 | double result = 0; |
---|
54 | int numClasses = 0; |
---|
55 | int i, j; |
---|
56 | |
---|
57 | // Find out relevant number of classes |
---|
58 | for (j = 0; j < test.numClasses(); j++) |
---|
59 | if (Utils.gr(train.perClass(j), 0) || Utils.gr(test.perClass(j), 0)) |
---|
60 | numClasses++; |
---|
61 | |
---|
62 | // Compute entropy of test data with respect to training data |
---|
63 | for (i = 0; i < test.numBags(); i++) |
---|
64 | if (Utils.gr(test.perBag(i),0)) { |
---|
65 | for (j = 0; j < test.numClasses(); j++) |
---|
66 | if (Utils.gr(test.perClassPerBag(i, j), 0)) |
---|
67 | result -= test.perClassPerBag(i, j)* |
---|
68 | Math.log(train.perClassPerBag(i, j) + 1); |
---|
69 | result += test.perBag(i) * Math.log(train.perBag(i) + numClasses); |
---|
70 | } |
---|
71 | |
---|
72 | return result / log2; |
---|
73 | } |
---|
74 | |
---|
75 | /** |
---|
76 | * Returns the revision string. |
---|
77 | * |
---|
78 | * @return the revision |
---|
79 | */ |
---|
80 | public String getRevision() { |
---|
81 | return RevisionUtils.extract("$Revision: 1.8 $"); |
---|
82 | } |
---|
83 | } |
---|