1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * ClassifierSplitModel.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.trees.j48; |
---|
24 | |
---|
25 | import weka.core.Instance; |
---|
26 | import weka.core.Instances; |
---|
27 | import weka.core.RevisionHandler; |
---|
28 | import weka.core.Utils; |
---|
29 | |
---|
30 | import java.io.Serializable; |
---|
31 | |
---|
32 | /** |
---|
33 | * Abstract class for classification models that can be used |
---|
34 | * recursively to split the data. |
---|
35 | * |
---|
36 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
37 | * @version $Revision: 1.11 $ |
---|
38 | */ |
---|
39 | public abstract class ClassifierSplitModel |
---|
40 | implements Cloneable, Serializable, RevisionHandler { |
---|
41 | |
---|
42 | /** for serialization */ |
---|
43 | private static final long serialVersionUID = 4280730118393457457L; |
---|
44 | |
---|
45 | /** Distribution of class values. */ |
---|
46 | protected Distribution m_distribution; |
---|
47 | |
---|
48 | /** Number of created subsets. */ |
---|
49 | protected int m_numSubsets; |
---|
50 | |
---|
51 | /** |
---|
52 | * Allows to clone a model (shallow copy). |
---|
53 | */ |
---|
54 | public Object clone() { |
---|
55 | |
---|
56 | Object clone = null; |
---|
57 | |
---|
58 | try { |
---|
59 | clone = super.clone(); |
---|
60 | } catch (CloneNotSupportedException e) { |
---|
61 | } |
---|
62 | return clone; |
---|
63 | } |
---|
64 | |
---|
65 | /** |
---|
66 | * Builds the classifier split model for the given set of instances. |
---|
67 | * |
---|
68 | * @exception Exception if something goes wrong |
---|
69 | */ |
---|
70 | public abstract void buildClassifier(Instances instances) throws Exception; |
---|
71 | |
---|
72 | /** |
---|
73 | * Checks if generated model is valid. |
---|
74 | */ |
---|
75 | public final boolean checkModel() { |
---|
76 | |
---|
77 | if (m_numSubsets > 0) |
---|
78 | return true; |
---|
79 | else |
---|
80 | return false; |
---|
81 | } |
---|
82 | |
---|
83 | /** |
---|
84 | * Classifies a given instance. |
---|
85 | * |
---|
86 | * @exception Exception if something goes wrong |
---|
87 | */ |
---|
88 | public final double classifyInstance(Instance instance) |
---|
89 | throws Exception { |
---|
90 | |
---|
91 | int theSubset; |
---|
92 | |
---|
93 | theSubset = whichSubset(instance); |
---|
94 | if (theSubset > -1) |
---|
95 | return (double)m_distribution.maxClass(theSubset); |
---|
96 | else |
---|
97 | return (double)m_distribution.maxClass(); |
---|
98 | } |
---|
99 | |
---|
100 | /** |
---|
101 | * Gets class probability for instance. |
---|
102 | * |
---|
103 | * @exception Exception if something goes wrong |
---|
104 | */ |
---|
105 | public double classProb(int classIndex, Instance instance, int theSubset) |
---|
106 | throws Exception { |
---|
107 | |
---|
108 | if (theSubset > -1) { |
---|
109 | return m_distribution.prob(classIndex,theSubset); |
---|
110 | } else { |
---|
111 | double [] weights = weights(instance); |
---|
112 | if (weights == null) { |
---|
113 | return m_distribution.prob(classIndex); |
---|
114 | } else { |
---|
115 | double prob = 0; |
---|
116 | for (int i = 0; i < weights.length; i++) { |
---|
117 | prob += weights[i] * m_distribution.prob(classIndex, i); |
---|
118 | } |
---|
119 | return prob; |
---|
120 | } |
---|
121 | } |
---|
122 | } |
---|
123 | |
---|
124 | /** |
---|
125 | * Gets class probability for instance. |
---|
126 | * |
---|
127 | * @exception Exception if something goes wrong |
---|
128 | */ |
---|
129 | public double classProbLaplace(int classIndex, Instance instance, |
---|
130 | int theSubset) throws Exception { |
---|
131 | |
---|
132 | if (theSubset > -1) { |
---|
133 | return m_distribution.laplaceProb(classIndex, theSubset); |
---|
134 | } else { |
---|
135 | double [] weights = weights(instance); |
---|
136 | if (weights == null) { |
---|
137 | return m_distribution.laplaceProb(classIndex); |
---|
138 | } else { |
---|
139 | double prob = 0; |
---|
140 | for (int i = 0; i < weights.length; i++) { |
---|
141 | prob += weights[i] * m_distribution.laplaceProb(classIndex, i); |
---|
142 | } |
---|
143 | return prob; |
---|
144 | } |
---|
145 | } |
---|
146 | } |
---|
147 | |
---|
148 | /** |
---|
149 | * Returns coding costs of model. Returns 0 if not overwritten. |
---|
150 | */ |
---|
151 | public double codingCost() { |
---|
152 | |
---|
153 | return 0; |
---|
154 | } |
---|
155 | |
---|
156 | /** |
---|
157 | * Returns the distribution of class values induced by the model. |
---|
158 | */ |
---|
159 | public final Distribution distribution() { |
---|
160 | |
---|
161 | return m_distribution; |
---|
162 | } |
---|
163 | |
---|
164 | /** |
---|
165 | * Prints left side of condition satisfied by instances. |
---|
166 | * |
---|
167 | * @param data the data. |
---|
168 | */ |
---|
169 | public abstract String leftSide(Instances data); |
---|
170 | |
---|
171 | /** |
---|
172 | * Prints left side of condition satisfied by instances in subset index. |
---|
173 | */ |
---|
174 | public abstract String rightSide(int index,Instances data); |
---|
175 | |
---|
176 | /** |
---|
177 | * Prints label for subset index of instances (eg class). |
---|
178 | * |
---|
179 | * @exception Exception if something goes wrong |
---|
180 | */ |
---|
181 | public final String dumpLabel(int index,Instances data) throws Exception { |
---|
182 | |
---|
183 | StringBuffer text; |
---|
184 | |
---|
185 | text = new StringBuffer(); |
---|
186 | text.append(((Instances)data).classAttribute(). |
---|
187 | value(m_distribution.maxClass(index))); |
---|
188 | text.append(" ("+Utils.roundDouble(m_distribution.perBag(index),2)); |
---|
189 | if (Utils.gr(m_distribution.numIncorrect(index),0)) |
---|
190 | text.append("/"+Utils.roundDouble(m_distribution.numIncorrect(index),2)); |
---|
191 | text.append(")"); |
---|
192 | |
---|
193 | return text.toString(); |
---|
194 | } |
---|
195 | |
---|
196 | public final String sourceClass(int index, Instances data) throws Exception { |
---|
197 | |
---|
198 | System.err.println("sourceClass"); |
---|
199 | return (new StringBuffer(m_distribution.maxClass(index))).toString(); |
---|
200 | } |
---|
201 | |
---|
202 | public abstract String sourceExpression(int index, Instances data); |
---|
203 | |
---|
204 | /** |
---|
205 | * Prints the split model. |
---|
206 | * |
---|
207 | * @exception Exception if something goes wrong |
---|
208 | */ |
---|
209 | public final String dumpModel(Instances data) throws Exception { |
---|
210 | |
---|
211 | StringBuffer text; |
---|
212 | int i; |
---|
213 | |
---|
214 | text = new StringBuffer(); |
---|
215 | for (i=0;i<m_numSubsets;i++) { |
---|
216 | text.append(leftSide(data)+rightSide(i,data)+": "); |
---|
217 | text.append(dumpLabel(i,data)+"\n"); |
---|
218 | } |
---|
219 | return text.toString(); |
---|
220 | } |
---|
221 | |
---|
222 | /** |
---|
223 | * Returns the number of created subsets for the split. |
---|
224 | */ |
---|
225 | public final int numSubsets() { |
---|
226 | |
---|
227 | return m_numSubsets; |
---|
228 | } |
---|
229 | |
---|
230 | /** |
---|
231 | * Sets distribution associated with model. |
---|
232 | */ |
---|
233 | public void resetDistribution(Instances data) throws Exception { |
---|
234 | |
---|
235 | m_distribution = new Distribution(data, this); |
---|
236 | } |
---|
237 | |
---|
238 | /** |
---|
239 | * Splits the given set of instances into subsets. |
---|
240 | * |
---|
241 | * @exception Exception if something goes wrong |
---|
242 | */ |
---|
243 | public final Instances [] split(Instances data) |
---|
244 | throws Exception { |
---|
245 | |
---|
246 | Instances [] instances = new Instances [m_numSubsets]; |
---|
247 | double [] weights; |
---|
248 | double newWeight; |
---|
249 | Instance instance; |
---|
250 | int subset, i, j; |
---|
251 | |
---|
252 | for (j=0;j<m_numSubsets;j++) |
---|
253 | instances[j] = new Instances((Instances)data, |
---|
254 | data.numInstances()); |
---|
255 | for (i = 0; i < data.numInstances(); i++) { |
---|
256 | instance = ((Instances) data).instance(i); |
---|
257 | weights = weights(instance); |
---|
258 | subset = whichSubset(instance); |
---|
259 | if (subset > -1) |
---|
260 | instances[subset].add(instance); |
---|
261 | else |
---|
262 | for (j = 0; j < m_numSubsets; j++) |
---|
263 | if (Utils.gr(weights[j],0)) { |
---|
264 | newWeight = weights[j]*instance.weight(); |
---|
265 | instances[j].add(instance); |
---|
266 | instances[j].lastInstance().setWeight(newWeight); |
---|
267 | } |
---|
268 | } |
---|
269 | for (j = 0; j < m_numSubsets; j++) |
---|
270 | instances[j].compactify(); |
---|
271 | |
---|
272 | return instances; |
---|
273 | } |
---|
274 | |
---|
275 | /** |
---|
276 | * Returns weights if instance is assigned to more than one subset. |
---|
277 | * Returns null if instance is only assigned to one subset. |
---|
278 | */ |
---|
279 | public abstract double [] weights(Instance instance); |
---|
280 | |
---|
281 | /** |
---|
282 | * Returns index of subset instance is assigned to. |
---|
283 | * Returns -1 if instance is assigned to more than one subset. |
---|
284 | * |
---|
285 | * @exception Exception if something goes wrong |
---|
286 | */ |
---|
287 | public abstract int whichSubset(Instance instance) throws Exception; |
---|
288 | } |
---|
289 | |
---|
290 | |
---|
291 | |
---|
292 | |
---|
293 | |
---|