1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * C45PruneableClassifierTree.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.trees.j48; |
---|
24 | |
---|
25 | import weka.core.Capabilities; |
---|
26 | import weka.core.Instances; |
---|
27 | import weka.core.RevisionUtils; |
---|
28 | import weka.core.Utils; |
---|
29 | import weka.core.Capabilities.Capability; |
---|
30 | |
---|
31 | /** |
---|
32 | * Class for handling a tree structure that can |
---|
33 | * be pruned using C4.5 procedures. |
---|
34 | * |
---|
35 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
36 | * @version $Revision: 6073 $ |
---|
37 | */ |
---|
38 | |
---|
39 | public class C45PruneableClassifierTree |
---|
40 | extends ClassifierTree { |
---|
41 | |
---|
42 | /** for serialization */ |
---|
43 | static final long serialVersionUID = -4813820170260388194L; |
---|
44 | |
---|
45 | /** True if the tree is to be pruned. */ |
---|
46 | boolean m_pruneTheTree = false; |
---|
47 | |
---|
48 | /** True if the tree is to be collapsed. */ |
---|
49 | boolean m_collapseTheTree = false; |
---|
50 | |
---|
51 | /** The confidence factor for pruning. */ |
---|
52 | float m_CF = 0.25f; |
---|
53 | |
---|
54 | /** Is subtree raising to be performed? */ |
---|
55 | boolean m_subtreeRaising = true; |
---|
56 | |
---|
57 | /** Cleanup after the tree has been built. */ |
---|
58 | boolean m_cleanup = true; |
---|
59 | |
---|
60 | /** |
---|
61 | * Constructor for pruneable tree structure. Stores reference |
---|
62 | * to associated training data at each node. |
---|
63 | * |
---|
64 | * @param toSelectLocModel selection method for local splitting model |
---|
65 | * @param pruneTree true if the tree is to be pruned |
---|
66 | * @param cf the confidence factor for pruning |
---|
67 | * @param raiseTree |
---|
68 | * @param cleanup |
---|
69 | * @throws Exception if something goes wrong |
---|
70 | */ |
---|
71 | public C45PruneableClassifierTree(ModelSelection toSelectLocModel, |
---|
72 | boolean pruneTree,float cf, |
---|
73 | boolean raiseTree, |
---|
74 | boolean cleanup, |
---|
75 | boolean collapseTree) |
---|
76 | throws Exception { |
---|
77 | |
---|
78 | super(toSelectLocModel); |
---|
79 | |
---|
80 | m_pruneTheTree = pruneTree; |
---|
81 | m_CF = cf; |
---|
82 | m_subtreeRaising = raiseTree; |
---|
83 | m_cleanup = cleanup; |
---|
84 | m_collapseTheTree = collapseTree; |
---|
85 | } |
---|
86 | |
---|
87 | /** |
---|
88 | * Returns default capabilities of the classifier tree. |
---|
89 | * |
---|
90 | * @return the capabilities of this classifier tree |
---|
91 | */ |
---|
92 | public Capabilities getCapabilities() { |
---|
93 | Capabilities result = super.getCapabilities(); |
---|
94 | result.disableAll(); |
---|
95 | |
---|
96 | // attributes |
---|
97 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
98 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
99 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
100 | result.enable(Capability.MISSING_VALUES); |
---|
101 | |
---|
102 | // class |
---|
103 | result.enable(Capability.NOMINAL_CLASS); |
---|
104 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
105 | |
---|
106 | // instances |
---|
107 | result.setMinimumNumberInstances(0); |
---|
108 | |
---|
109 | return result; |
---|
110 | } |
---|
111 | |
---|
112 | /** |
---|
113 | * Method for building a pruneable classifier tree. |
---|
114 | * |
---|
115 | * @param data the data for building the tree |
---|
116 | * @throws Exception if something goes wrong |
---|
117 | */ |
---|
118 | public void buildClassifier(Instances data) throws Exception { |
---|
119 | |
---|
120 | // can classifier tree handle the data? |
---|
121 | getCapabilities().testWithFail(data); |
---|
122 | |
---|
123 | // remove instances with missing class |
---|
124 | data = new Instances(data); |
---|
125 | data.deleteWithMissingClass(); |
---|
126 | |
---|
127 | buildTree(data, m_subtreeRaising); |
---|
128 | if (m_collapseTheTree) { |
---|
129 | collapse(); |
---|
130 | } |
---|
131 | if (m_pruneTheTree) { |
---|
132 | prune(); |
---|
133 | } |
---|
134 | if (m_cleanup) { |
---|
135 | cleanup(new Instances(data, 0)); |
---|
136 | } |
---|
137 | } |
---|
138 | |
---|
139 | /** |
---|
140 | * Collapses a tree to a node if training error doesn't increase. |
---|
141 | */ |
---|
142 | public final void collapse(){ |
---|
143 | |
---|
144 | double errorsOfSubtree; |
---|
145 | double errorsOfTree; |
---|
146 | int i; |
---|
147 | |
---|
148 | if (!m_isLeaf){ |
---|
149 | errorsOfSubtree = getTrainingErrors(); |
---|
150 | errorsOfTree = localModel().distribution().numIncorrect(); |
---|
151 | if (errorsOfSubtree >= errorsOfTree-1E-3){ |
---|
152 | |
---|
153 | // Free adjacent trees |
---|
154 | m_sons = null; |
---|
155 | m_isLeaf = true; |
---|
156 | |
---|
157 | // Get NoSplit Model for tree. |
---|
158 | m_localModel = new NoSplit(localModel().distribution()); |
---|
159 | }else |
---|
160 | for (i=0;i<m_sons.length;i++) |
---|
161 | son(i).collapse(); |
---|
162 | } |
---|
163 | } |
---|
164 | |
---|
165 | /** |
---|
166 | * Prunes a tree using C4.5's pruning procedure. |
---|
167 | * |
---|
168 | * @throws Exception if something goes wrong |
---|
169 | */ |
---|
170 | public void prune() throws Exception { |
---|
171 | |
---|
172 | double errorsLargestBranch; |
---|
173 | double errorsLeaf; |
---|
174 | double errorsTree; |
---|
175 | int indexOfLargestBranch; |
---|
176 | C45PruneableClassifierTree largestBranch; |
---|
177 | int i; |
---|
178 | |
---|
179 | if (!m_isLeaf){ |
---|
180 | |
---|
181 | // Prune all subtrees. |
---|
182 | for (i=0;i<m_sons.length;i++) |
---|
183 | son(i).prune(); |
---|
184 | |
---|
185 | // Compute error for largest branch |
---|
186 | indexOfLargestBranch = localModel().distribution().maxBag(); |
---|
187 | if (m_subtreeRaising) { |
---|
188 | errorsLargestBranch = son(indexOfLargestBranch). |
---|
189 | getEstimatedErrorsForBranch((Instances)m_train); |
---|
190 | } else { |
---|
191 | errorsLargestBranch = Double.MAX_VALUE; |
---|
192 | } |
---|
193 | |
---|
194 | // Compute error if this Tree would be leaf |
---|
195 | errorsLeaf = |
---|
196 | getEstimatedErrorsForDistribution(localModel().distribution()); |
---|
197 | |
---|
198 | // Compute error for the whole subtree |
---|
199 | errorsTree = getEstimatedErrors(); |
---|
200 | |
---|
201 | // Decide if leaf is best choice. |
---|
202 | if (Utils.smOrEq(errorsLeaf,errorsTree+0.1) && |
---|
203 | Utils.smOrEq(errorsLeaf,errorsLargestBranch+0.1)){ |
---|
204 | |
---|
205 | // Free son Trees |
---|
206 | m_sons = null; |
---|
207 | m_isLeaf = true; |
---|
208 | |
---|
209 | // Get NoSplit Model for node. |
---|
210 | m_localModel = new NoSplit(localModel().distribution()); |
---|
211 | return; |
---|
212 | } |
---|
213 | |
---|
214 | // Decide if largest branch is better choice |
---|
215 | // than whole subtree. |
---|
216 | if (Utils.smOrEq(errorsLargestBranch,errorsTree+0.1)){ |
---|
217 | largestBranch = son(indexOfLargestBranch); |
---|
218 | m_sons = largestBranch.m_sons; |
---|
219 | m_localModel = largestBranch.localModel(); |
---|
220 | m_isLeaf = largestBranch.m_isLeaf; |
---|
221 | newDistribution(m_train); |
---|
222 | prune(); |
---|
223 | } |
---|
224 | } |
---|
225 | } |
---|
226 | |
---|
227 | /** |
---|
228 | * Returns a newly created tree. |
---|
229 | * |
---|
230 | * @param data the data to work with |
---|
231 | * @return the new tree |
---|
232 | * @throws Exception if something goes wrong |
---|
233 | */ |
---|
234 | protected ClassifierTree getNewTree(Instances data) throws Exception { |
---|
235 | |
---|
236 | C45PruneableClassifierTree newTree = |
---|
237 | new C45PruneableClassifierTree(m_toSelectModel, m_pruneTheTree, m_CF, |
---|
238 | m_subtreeRaising, m_cleanup, m_collapseTheTree); |
---|
239 | newTree.buildTree((Instances)data, m_subtreeRaising); |
---|
240 | |
---|
241 | return newTree; |
---|
242 | } |
---|
243 | |
---|
244 | /** |
---|
245 | * Computes estimated errors for tree. |
---|
246 | * |
---|
247 | * @return the estimated errors |
---|
248 | */ |
---|
249 | private double getEstimatedErrors(){ |
---|
250 | |
---|
251 | double errors = 0; |
---|
252 | int i; |
---|
253 | |
---|
254 | if (m_isLeaf) |
---|
255 | return getEstimatedErrorsForDistribution(localModel().distribution()); |
---|
256 | else{ |
---|
257 | for (i=0;i<m_sons.length;i++) |
---|
258 | errors = errors+son(i).getEstimatedErrors(); |
---|
259 | return errors; |
---|
260 | } |
---|
261 | } |
---|
262 | |
---|
263 | /** |
---|
264 | * Computes estimated errors for one branch. |
---|
265 | * |
---|
266 | * @param data the data to work with |
---|
267 | * @return the estimated errors |
---|
268 | * @throws Exception if something goes wrong |
---|
269 | */ |
---|
270 | private double getEstimatedErrorsForBranch(Instances data) |
---|
271 | throws Exception { |
---|
272 | |
---|
273 | Instances [] localInstances; |
---|
274 | double errors = 0; |
---|
275 | int i; |
---|
276 | |
---|
277 | if (m_isLeaf) |
---|
278 | return getEstimatedErrorsForDistribution(new Distribution(data)); |
---|
279 | else{ |
---|
280 | Distribution savedDist = localModel().m_distribution; |
---|
281 | localModel().resetDistribution(data); |
---|
282 | localInstances = (Instances[])localModel().split(data); |
---|
283 | localModel().m_distribution = savedDist; |
---|
284 | for (i=0;i<m_sons.length;i++) |
---|
285 | errors = errors+ |
---|
286 | son(i).getEstimatedErrorsForBranch(localInstances[i]); |
---|
287 | return errors; |
---|
288 | } |
---|
289 | } |
---|
290 | |
---|
291 | /** |
---|
292 | * Computes estimated errors for leaf. |
---|
293 | * |
---|
294 | * @param theDistribution the distribution to use |
---|
295 | * @return the estimated errors |
---|
296 | */ |
---|
297 | private double getEstimatedErrorsForDistribution(Distribution |
---|
298 | theDistribution){ |
---|
299 | |
---|
300 | if (Utils.eq(theDistribution.total(),0)) |
---|
301 | return 0; |
---|
302 | else |
---|
303 | return theDistribution.numIncorrect()+ |
---|
304 | Stats.addErrs(theDistribution.total(), |
---|
305 | theDistribution.numIncorrect(),m_CF); |
---|
306 | } |
---|
307 | |
---|
308 | /** |
---|
309 | * Computes errors of tree on training data. |
---|
310 | * |
---|
311 | * @return the training errors |
---|
312 | */ |
---|
313 | private double getTrainingErrors(){ |
---|
314 | |
---|
315 | double errors = 0; |
---|
316 | int i; |
---|
317 | |
---|
318 | if (m_isLeaf) |
---|
319 | return localModel().distribution().numIncorrect(); |
---|
320 | else{ |
---|
321 | for (i=0;i<m_sons.length;i++) |
---|
322 | errors = errors+son(i).getTrainingErrors(); |
---|
323 | return errors; |
---|
324 | } |
---|
325 | } |
---|
326 | |
---|
327 | /** |
---|
328 | * Method just exists to make program easier to read. |
---|
329 | * |
---|
330 | * @return the local split model |
---|
331 | */ |
---|
332 | private ClassifierSplitModel localModel(){ |
---|
333 | |
---|
334 | return (ClassifierSplitModel)m_localModel; |
---|
335 | } |
---|
336 | |
---|
337 | /** |
---|
338 | * Computes new distributions of instances for nodes |
---|
339 | * in tree. |
---|
340 | * |
---|
341 | * @param data the data to compute the distributions for |
---|
342 | * @throws Exception if something goes wrong |
---|
343 | */ |
---|
344 | private void newDistribution(Instances data) throws Exception { |
---|
345 | |
---|
346 | Instances [] localInstances; |
---|
347 | |
---|
348 | localModel().resetDistribution(data); |
---|
349 | m_train = data; |
---|
350 | if (!m_isLeaf){ |
---|
351 | localInstances = |
---|
352 | (Instances [])localModel().split(data); |
---|
353 | for (int i = 0; i < m_sons.length; i++) |
---|
354 | son(i).newDistribution(localInstances[i]); |
---|
355 | } else { |
---|
356 | |
---|
357 | // Check whether there are some instances at the leaf now! |
---|
358 | if (!Utils.eq(data.sumOfWeights(), 0)) { |
---|
359 | m_isEmpty = false; |
---|
360 | } |
---|
361 | } |
---|
362 | } |
---|
363 | |
---|
364 | /** |
---|
365 | * Method just exists to make program easier to read. |
---|
366 | */ |
---|
367 | private C45PruneableClassifierTree son(int index){ |
---|
368 | |
---|
369 | return (C45PruneableClassifierTree)m_sons[index]; |
---|
370 | } |
---|
371 | |
---|
372 | /** |
---|
373 | * Returns the revision string. |
---|
374 | * |
---|
375 | * @return the revision |
---|
376 | */ |
---|
377 | public String getRevision() { |
---|
378 | return RevisionUtils.extract("$Revision: 6073 $"); |
---|
379 | } |
---|
380 | } |
---|