1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * C45ModelSelection.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.trees.j48; |
---|
24 | |
---|
25 | import weka.core.Attribute; |
---|
26 | import weka.core.Instances; |
---|
27 | import weka.core.RevisionUtils; |
---|
28 | import weka.core.Utils; |
---|
29 | |
---|
30 | import java.util.Enumeration; |
---|
31 | |
---|
32 | /** |
---|
33 | * Class for selecting a C4.5-type split for a given dataset. |
---|
34 | * |
---|
35 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
36 | * @version $Revision: 6073 $ |
---|
37 | */ |
---|
38 | public class C45ModelSelection |
---|
39 | extends ModelSelection { |
---|
40 | |
---|
41 | /** for serialization */ |
---|
42 | private static final long serialVersionUID = 3372204862440821989L; |
---|
43 | |
---|
44 | /** Minimum number of objects in interval. */ |
---|
45 | private int m_minNoObj; |
---|
46 | |
---|
47 | /** Use MDL correction? */ |
---|
48 | private boolean m_useMDLcorrection; |
---|
49 | |
---|
50 | /** All the training data */ |
---|
51 | private Instances m_allData; // |
---|
52 | |
---|
53 | /** |
---|
54 | * Initializes the split selection method with the given parameters. |
---|
55 | * |
---|
56 | * @param minNoObj minimum number of instances that have to occur in at least two |
---|
57 | * subsets induced by split |
---|
58 | * @param allData FULL training dataset (necessary for |
---|
59 | * selection of split points). |
---|
60 | * @param useMDLcorrection whether to use MDL adjustement when |
---|
61 | * finding splits on numeric attributes |
---|
62 | */ |
---|
63 | public C45ModelSelection(int minNoObj, Instances allData, |
---|
64 | boolean useMDLcorrection) { |
---|
65 | m_minNoObj = minNoObj; |
---|
66 | m_allData = allData; |
---|
67 | m_useMDLcorrection = useMDLcorrection; |
---|
68 | } |
---|
69 | |
---|
70 | /** |
---|
71 | * Sets reference to training data to null. |
---|
72 | */ |
---|
73 | public void cleanup() { |
---|
74 | |
---|
75 | m_allData = null; |
---|
76 | } |
---|
77 | |
---|
78 | /** |
---|
79 | * Selects C4.5-type split for the given dataset. |
---|
80 | */ |
---|
81 | public final ClassifierSplitModel selectModel(Instances data){ |
---|
82 | |
---|
83 | double minResult; |
---|
84 | double currentResult; |
---|
85 | C45Split [] currentModel; |
---|
86 | C45Split bestModel = null; |
---|
87 | NoSplit noSplitModel = null; |
---|
88 | double averageInfoGain = 0; |
---|
89 | int validModels = 0; |
---|
90 | boolean multiVal = true; |
---|
91 | Distribution checkDistribution; |
---|
92 | Attribute attribute; |
---|
93 | double sumOfWeights; |
---|
94 | int i; |
---|
95 | |
---|
96 | try{ |
---|
97 | |
---|
98 | // Check if all Instances belong to one class or if not |
---|
99 | // enough Instances to split. |
---|
100 | checkDistribution = new Distribution(data); |
---|
101 | noSplitModel = new NoSplit(checkDistribution); |
---|
102 | if (Utils.sm(checkDistribution.total(),2*m_minNoObj) || |
---|
103 | Utils.eq(checkDistribution.total(), |
---|
104 | checkDistribution.perClass(checkDistribution.maxClass()))) |
---|
105 | return noSplitModel; |
---|
106 | |
---|
107 | // Check if all attributes are nominal and have a |
---|
108 | // lot of values. |
---|
109 | if (m_allData != null) { |
---|
110 | Enumeration enu = data.enumerateAttributes(); |
---|
111 | while (enu.hasMoreElements()) { |
---|
112 | attribute = (Attribute) enu.nextElement(); |
---|
113 | if ((attribute.isNumeric()) || |
---|
114 | (Utils.sm((double)attribute.numValues(), |
---|
115 | (0.3*(double)m_allData.numInstances())))){ |
---|
116 | multiVal = false; |
---|
117 | break; |
---|
118 | } |
---|
119 | } |
---|
120 | } |
---|
121 | |
---|
122 | currentModel = new C45Split[data.numAttributes()]; |
---|
123 | sumOfWeights = data.sumOfWeights(); |
---|
124 | |
---|
125 | // For each attribute. |
---|
126 | for (i = 0; i < data.numAttributes(); i++){ |
---|
127 | |
---|
128 | // Apart from class attribute. |
---|
129 | if (i != (data).classIndex()){ |
---|
130 | |
---|
131 | // Get models for current attribute. |
---|
132 | currentModel[i] = new C45Split(i,m_minNoObj,sumOfWeights,m_useMDLcorrection); |
---|
133 | currentModel[i].buildClassifier(data); |
---|
134 | |
---|
135 | // Check if useful split for current attribute |
---|
136 | // exists and check for enumerated attributes with |
---|
137 | // a lot of values. |
---|
138 | if (currentModel[i].checkModel()) |
---|
139 | if (m_allData != null) { |
---|
140 | if ((data.attribute(i).isNumeric()) || |
---|
141 | (multiVal || Utils.sm((double)data.attribute(i).numValues(), |
---|
142 | (0.3*(double)m_allData.numInstances())))){ |
---|
143 | averageInfoGain = averageInfoGain+currentModel[i].infoGain(); |
---|
144 | validModels++; |
---|
145 | } |
---|
146 | } else { |
---|
147 | averageInfoGain = averageInfoGain+currentModel[i].infoGain(); |
---|
148 | validModels++; |
---|
149 | } |
---|
150 | }else |
---|
151 | currentModel[i] = null; |
---|
152 | } |
---|
153 | |
---|
154 | // Check if any useful split was found. |
---|
155 | if (validModels == 0) |
---|
156 | return noSplitModel; |
---|
157 | averageInfoGain = averageInfoGain/(double)validModels; |
---|
158 | |
---|
159 | // Find "best" attribute to split on. |
---|
160 | minResult = 0; |
---|
161 | for (i=0;i<data.numAttributes();i++){ |
---|
162 | if ((i != (data).classIndex()) && |
---|
163 | (currentModel[i].checkModel())) |
---|
164 | |
---|
165 | // Use 1E-3 here to get a closer approximation to the original |
---|
166 | // implementation. |
---|
167 | if ((currentModel[i].infoGain() >= (averageInfoGain-1E-3)) && |
---|
168 | Utils.gr(currentModel[i].gainRatio(),minResult)){ |
---|
169 | bestModel = currentModel[i]; |
---|
170 | minResult = currentModel[i].gainRatio(); |
---|
171 | } |
---|
172 | } |
---|
173 | |
---|
174 | // Check if useful split was found. |
---|
175 | if (Utils.eq(minResult,0)) |
---|
176 | return noSplitModel; |
---|
177 | |
---|
178 | // Add all Instances with unknown values for the corresponding |
---|
179 | // attribute to the distribution for the model, so that |
---|
180 | // the complete distribution is stored with the model. |
---|
181 | bestModel.distribution(). |
---|
182 | addInstWithUnknown(data,bestModel.attIndex()); |
---|
183 | |
---|
184 | // Set the split point analogue to C45 if attribute numeric. |
---|
185 | if (m_allData != null) |
---|
186 | bestModel.setSplitPoint(m_allData); |
---|
187 | return bestModel; |
---|
188 | }catch(Exception e){ |
---|
189 | e.printStackTrace(); |
---|
190 | } |
---|
191 | return null; |
---|
192 | } |
---|
193 | |
---|
194 | /** |
---|
195 | * Selects C4.5-type split for the given dataset. |
---|
196 | */ |
---|
197 | public final ClassifierSplitModel selectModel(Instances train, Instances test) { |
---|
198 | |
---|
199 | return selectModel(train); |
---|
200 | } |
---|
201 | |
---|
202 | /** |
---|
203 | * Returns the revision string. |
---|
204 | * |
---|
205 | * @return the revision |
---|
206 | */ |
---|
207 | public String getRevision() { |
---|
208 | return RevisionUtils.extract("$Revision: 6073 $"); |
---|
209 | } |
---|
210 | } |
---|