1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * BinC45Split.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.trees.j48; |
---|
24 | |
---|
25 | import weka.core.Instance; |
---|
26 | import weka.core.Instances; |
---|
27 | import weka.core.RevisionUtils; |
---|
28 | import weka.core.Utils; |
---|
29 | |
---|
30 | import java.util.Enumeration; |
---|
31 | |
---|
32 | /** |
---|
33 | * Class implementing a binary C4.5-like split on an attribute. |
---|
34 | * |
---|
35 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
36 | * @version $Revision: 6073 $ |
---|
37 | */ |
---|
38 | public class BinC45Split |
---|
39 | extends ClassifierSplitModel { |
---|
40 | |
---|
41 | /** for serialization */ |
---|
42 | private static final long serialVersionUID = -1278776919563022474L; |
---|
43 | |
---|
44 | /** Attribute to split on. */ |
---|
45 | private int m_attIndex; |
---|
46 | |
---|
47 | /** Minimum number of objects in a split. */ |
---|
48 | private int m_minNoObj; |
---|
49 | |
---|
50 | /** Use MDL correction? */ |
---|
51 | private boolean m_useMDLcorrection; |
---|
52 | |
---|
53 | /** Value of split point. */ |
---|
54 | private double m_splitPoint; |
---|
55 | |
---|
56 | /** InfoGain of split. */ |
---|
57 | private double m_infoGain; |
---|
58 | |
---|
59 | /** GainRatio of split. */ |
---|
60 | private double m_gainRatio; |
---|
61 | |
---|
62 | /** The sum of the weights of the instances. */ |
---|
63 | private double m_sumOfWeights; |
---|
64 | |
---|
65 | /** Static reference to splitting criterion. */ |
---|
66 | private static InfoGainSplitCrit m_infoGainCrit = new InfoGainSplitCrit(); |
---|
67 | |
---|
68 | /** Static reference to splitting criterion. */ |
---|
69 | private static GainRatioSplitCrit m_gainRatioCrit = new GainRatioSplitCrit(); |
---|
70 | |
---|
71 | /** |
---|
72 | * Initializes the split model. |
---|
73 | */ |
---|
74 | public BinC45Split(int attIndex,int minNoObj,double sumOfWeights, |
---|
75 | boolean useMDLcorrection) { |
---|
76 | |
---|
77 | // Get index of attribute to split on. |
---|
78 | m_attIndex = attIndex; |
---|
79 | |
---|
80 | // Set minimum number of objects. |
---|
81 | m_minNoObj = minNoObj; |
---|
82 | |
---|
83 | // Set sum of weights; |
---|
84 | m_sumOfWeights = sumOfWeights; |
---|
85 | |
---|
86 | // Whether to use the MDL correction for numeric attributes |
---|
87 | m_useMDLcorrection = useMDLcorrection; |
---|
88 | } |
---|
89 | |
---|
90 | /** |
---|
91 | * Creates a C4.5-type split on the given data. |
---|
92 | * |
---|
93 | * @exception Exception if something goes wrong |
---|
94 | */ |
---|
95 | public void buildClassifier(Instances trainInstances) |
---|
96 | throws Exception { |
---|
97 | |
---|
98 | // Initialize the remaining instance variables. |
---|
99 | m_numSubsets = 0; |
---|
100 | m_splitPoint = Double.MAX_VALUE; |
---|
101 | m_infoGain = 0; |
---|
102 | m_gainRatio = 0; |
---|
103 | |
---|
104 | // Different treatment for enumerated and numeric |
---|
105 | // attributes. |
---|
106 | if (trainInstances.attribute(m_attIndex).isNominal()){ |
---|
107 | handleEnumeratedAttribute(trainInstances); |
---|
108 | }else{ |
---|
109 | trainInstances.sort(trainInstances.attribute(m_attIndex)); |
---|
110 | handleNumericAttribute(trainInstances); |
---|
111 | } |
---|
112 | } |
---|
113 | |
---|
114 | /** |
---|
115 | * Returns index of attribute for which split was generated. |
---|
116 | */ |
---|
117 | public final int attIndex(){ |
---|
118 | |
---|
119 | return m_attIndex; |
---|
120 | } |
---|
121 | |
---|
122 | /** |
---|
123 | * Returns the split point (numeric attribute only). |
---|
124 | * |
---|
125 | * @return the split point used for a test on a numeric attribute |
---|
126 | */ |
---|
127 | public double splitPoint() { |
---|
128 | return m_splitPoint; |
---|
129 | } |
---|
130 | |
---|
131 | /** |
---|
132 | * Returns (C4.5-type) gain ratio for the generated split. |
---|
133 | */ |
---|
134 | public final double gainRatio(){ |
---|
135 | return m_gainRatio; |
---|
136 | } |
---|
137 | |
---|
138 | /** |
---|
139 | * Gets class probability for instance. |
---|
140 | * |
---|
141 | * @exception Exception if something goes wrong |
---|
142 | */ |
---|
143 | public final double classProb(int classIndex,Instance instance, |
---|
144 | int theSubset) throws Exception { |
---|
145 | |
---|
146 | if (theSubset <= -1) { |
---|
147 | double [] weights = weights(instance); |
---|
148 | if (weights == null) { |
---|
149 | return m_distribution.prob(classIndex); |
---|
150 | } else { |
---|
151 | double prob = 0; |
---|
152 | for (int i = 0; i < weights.length; i++) { |
---|
153 | prob += weights[i] * m_distribution.prob(classIndex, i); |
---|
154 | } |
---|
155 | return prob; |
---|
156 | } |
---|
157 | } else { |
---|
158 | if (Utils.gr(m_distribution.perBag(theSubset), 0)) { |
---|
159 | return m_distribution.prob(classIndex, theSubset); |
---|
160 | } else { |
---|
161 | return m_distribution.prob(classIndex); |
---|
162 | } |
---|
163 | } |
---|
164 | } |
---|
165 | |
---|
166 | /** |
---|
167 | * Creates split on enumerated attribute. |
---|
168 | * |
---|
169 | * @exception Exception if something goes wrong |
---|
170 | */ |
---|
171 | private void handleEnumeratedAttribute(Instances trainInstances) |
---|
172 | throws Exception { |
---|
173 | |
---|
174 | Distribution newDistribution,secondDistribution; |
---|
175 | int numAttValues; |
---|
176 | double currIG,currGR; |
---|
177 | Instance instance; |
---|
178 | int i; |
---|
179 | |
---|
180 | numAttValues = trainInstances.attribute(m_attIndex).numValues(); |
---|
181 | newDistribution = new Distribution(numAttValues, |
---|
182 | trainInstances.numClasses()); |
---|
183 | |
---|
184 | // Only Instances with known values are relevant. |
---|
185 | Enumeration enu = trainInstances.enumerateInstances(); |
---|
186 | while (enu.hasMoreElements()) { |
---|
187 | instance = (Instance) enu.nextElement(); |
---|
188 | if (!instance.isMissing(m_attIndex)) |
---|
189 | newDistribution.add((int)instance.value(m_attIndex),instance); |
---|
190 | } |
---|
191 | m_distribution = newDistribution; |
---|
192 | |
---|
193 | // For all values |
---|
194 | for (i = 0; i < numAttValues; i++){ |
---|
195 | |
---|
196 | if (Utils.grOrEq(newDistribution.perBag(i),m_minNoObj)){ |
---|
197 | secondDistribution = new Distribution(newDistribution,i); |
---|
198 | |
---|
199 | // Check if minimum number of Instances in the two |
---|
200 | // subsets. |
---|
201 | if (secondDistribution.check(m_minNoObj)){ |
---|
202 | m_numSubsets = 2; |
---|
203 | currIG = m_infoGainCrit.splitCritValue(secondDistribution, |
---|
204 | m_sumOfWeights); |
---|
205 | currGR = m_gainRatioCrit.splitCritValue(secondDistribution, |
---|
206 | m_sumOfWeights, |
---|
207 | currIG); |
---|
208 | if ((i == 0) || Utils.gr(currGR,m_gainRatio)){ |
---|
209 | m_gainRatio = currGR; |
---|
210 | m_infoGain = currIG; |
---|
211 | m_splitPoint = (double)i; |
---|
212 | m_distribution = secondDistribution; |
---|
213 | } |
---|
214 | } |
---|
215 | } |
---|
216 | } |
---|
217 | } |
---|
218 | |
---|
219 | /** |
---|
220 | * Creates split on numeric attribute. |
---|
221 | * |
---|
222 | * @exception Exception if something goes wrong |
---|
223 | */ |
---|
224 | private void handleNumericAttribute(Instances trainInstances) |
---|
225 | throws Exception { |
---|
226 | |
---|
227 | int firstMiss; |
---|
228 | int next = 1; |
---|
229 | int last = 0; |
---|
230 | int index = 0; |
---|
231 | int splitIndex = -1; |
---|
232 | double currentInfoGain; |
---|
233 | double defaultEnt; |
---|
234 | double minSplit; |
---|
235 | Instance instance; |
---|
236 | int i; |
---|
237 | |
---|
238 | // Current attribute is a numeric attribute. |
---|
239 | m_distribution = new Distribution(2,trainInstances.numClasses()); |
---|
240 | |
---|
241 | // Only Instances with known values are relevant. |
---|
242 | Enumeration enu = trainInstances.enumerateInstances(); |
---|
243 | i = 0; |
---|
244 | while (enu.hasMoreElements()) { |
---|
245 | instance = (Instance) enu.nextElement(); |
---|
246 | if (instance.isMissing(m_attIndex)) |
---|
247 | break; |
---|
248 | m_distribution.add(1,instance); |
---|
249 | i++; |
---|
250 | } |
---|
251 | firstMiss = i; |
---|
252 | |
---|
253 | // Compute minimum number of Instances required in each |
---|
254 | // subset. |
---|
255 | minSplit = 0.1*(m_distribution.total())/ |
---|
256 | ((double)trainInstances.numClasses()); |
---|
257 | if (Utils.smOrEq(minSplit,m_minNoObj)) |
---|
258 | minSplit = m_minNoObj; |
---|
259 | else |
---|
260 | if (Utils.gr(minSplit,25)) |
---|
261 | minSplit = 25; |
---|
262 | |
---|
263 | // Enough Instances with known values? |
---|
264 | if (Utils.sm((double)firstMiss,2*minSplit)) |
---|
265 | return; |
---|
266 | |
---|
267 | // Compute values of criteria for all possible split |
---|
268 | // indices. |
---|
269 | defaultEnt = m_infoGainCrit.oldEnt(m_distribution); |
---|
270 | while (next < firstMiss){ |
---|
271 | |
---|
272 | if (trainInstances.instance(next-1).value(m_attIndex)+1e-5 < |
---|
273 | trainInstances.instance(next).value(m_attIndex)){ |
---|
274 | |
---|
275 | // Move class values for all Instances up to next |
---|
276 | // possible split point. |
---|
277 | m_distribution.shiftRange(1,0,trainInstances,last,next); |
---|
278 | |
---|
279 | // Check if enough Instances in each subset and compute |
---|
280 | // values for criteria. |
---|
281 | if (Utils.grOrEq(m_distribution.perBag(0),minSplit) && |
---|
282 | Utils.grOrEq(m_distribution.perBag(1),minSplit)){ |
---|
283 | currentInfoGain = m_infoGainCrit. |
---|
284 | splitCritValue(m_distribution,m_sumOfWeights, |
---|
285 | defaultEnt); |
---|
286 | if (Utils.gr(currentInfoGain,m_infoGain)){ |
---|
287 | m_infoGain = currentInfoGain; |
---|
288 | splitIndex = next-1; |
---|
289 | } |
---|
290 | index++; |
---|
291 | } |
---|
292 | last = next; |
---|
293 | } |
---|
294 | next++; |
---|
295 | } |
---|
296 | |
---|
297 | // Was there any useful split? |
---|
298 | if (index == 0) |
---|
299 | return; |
---|
300 | |
---|
301 | // Compute modified information gain for best split. |
---|
302 | if (m_useMDLcorrection) { |
---|
303 | m_infoGain = m_infoGain-(Utils.log2(index)/m_sumOfWeights); |
---|
304 | } |
---|
305 | if (Utils.smOrEq(m_infoGain,0)) |
---|
306 | return; |
---|
307 | |
---|
308 | // Set instance variables' values to values for |
---|
309 | // best split. |
---|
310 | m_numSubsets = 2; |
---|
311 | m_splitPoint = |
---|
312 | (trainInstances.instance(splitIndex+1).value(m_attIndex)+ |
---|
313 | trainInstances.instance(splitIndex).value(m_attIndex))/2; |
---|
314 | |
---|
315 | // In case we have a numerical precision problem we need to choose the |
---|
316 | // smaller value |
---|
317 | if (m_splitPoint == trainInstances.instance(splitIndex + 1).value(m_attIndex)) { |
---|
318 | m_splitPoint = trainInstances.instance(splitIndex).value(m_attIndex); |
---|
319 | } |
---|
320 | |
---|
321 | // Restore distributioN for best split. |
---|
322 | m_distribution = new Distribution(2,trainInstances.numClasses()); |
---|
323 | m_distribution.addRange(0,trainInstances,0,splitIndex+1); |
---|
324 | m_distribution.addRange(1,trainInstances,splitIndex+1,firstMiss); |
---|
325 | |
---|
326 | // Compute modified gain ratio for best split. |
---|
327 | m_gainRatio = m_gainRatioCrit. |
---|
328 | splitCritValue(m_distribution,m_sumOfWeights, |
---|
329 | m_infoGain); |
---|
330 | } |
---|
331 | |
---|
332 | /** |
---|
333 | * Returns (C4.5-type) information gain for the generated split. |
---|
334 | */ |
---|
335 | public final double infoGain(){ |
---|
336 | |
---|
337 | return m_infoGain; |
---|
338 | } |
---|
339 | |
---|
340 | /** |
---|
341 | * Prints left side of condition. |
---|
342 | * |
---|
343 | * @param data the data to get the attribute name from. |
---|
344 | * @return the attribute name |
---|
345 | */ |
---|
346 | public final String leftSide(Instances data){ |
---|
347 | |
---|
348 | return data.attribute(m_attIndex).name(); |
---|
349 | } |
---|
350 | |
---|
351 | /** |
---|
352 | * Prints the condition satisfied by instances in a subset. |
---|
353 | * |
---|
354 | * @param index of subset and training set. |
---|
355 | */ |
---|
356 | public final String rightSide(int index,Instances data){ |
---|
357 | |
---|
358 | StringBuffer text; |
---|
359 | |
---|
360 | text = new StringBuffer(); |
---|
361 | if (data.attribute(m_attIndex).isNominal()){ |
---|
362 | if (index == 0) |
---|
363 | text.append(" = "+ |
---|
364 | data.attribute(m_attIndex).value((int)m_splitPoint)); |
---|
365 | else |
---|
366 | text.append(" != "+ |
---|
367 | data.attribute(m_attIndex).value((int)m_splitPoint)); |
---|
368 | }else |
---|
369 | if (index == 0) |
---|
370 | text.append(" <= "+m_splitPoint); |
---|
371 | else |
---|
372 | text.append(" > "+m_splitPoint); |
---|
373 | |
---|
374 | return text.toString(); |
---|
375 | } |
---|
376 | |
---|
377 | /** |
---|
378 | * Returns a string containing java source code equivalent to the test |
---|
379 | * made at this node. The instance being tested is called "i". |
---|
380 | * |
---|
381 | * @param index index of the nominal value tested |
---|
382 | * @param data the data containing instance structure info |
---|
383 | * @return a value of type 'String' |
---|
384 | */ |
---|
385 | public final String sourceExpression(int index, Instances data) { |
---|
386 | |
---|
387 | StringBuffer expr = null; |
---|
388 | if (index < 0) { |
---|
389 | return "i[" + m_attIndex + "] == null"; |
---|
390 | } |
---|
391 | if (data.attribute(m_attIndex).isNominal()) { |
---|
392 | if (index == 0) { |
---|
393 | expr = new StringBuffer("i["); |
---|
394 | } else { |
---|
395 | expr = new StringBuffer("!i["); |
---|
396 | } |
---|
397 | expr.append(m_attIndex).append("]"); |
---|
398 | expr.append(".equals(\"").append(data.attribute(m_attIndex) |
---|
399 | .value((int)m_splitPoint)).append("\")"); |
---|
400 | } else { |
---|
401 | expr = new StringBuffer("((Double) i["); |
---|
402 | expr.append(m_attIndex).append("])"); |
---|
403 | if (index == 0) { |
---|
404 | expr.append(".doubleValue() <= ").append(m_splitPoint); |
---|
405 | } else { |
---|
406 | expr.append(".doubleValue() > ").append(m_splitPoint); |
---|
407 | } |
---|
408 | } |
---|
409 | return expr.toString(); |
---|
410 | } |
---|
411 | |
---|
412 | /** |
---|
413 | * Sets split point to greatest value in given data smaller or equal to |
---|
414 | * old split point. |
---|
415 | * (C4.5 does this for some strange reason). |
---|
416 | */ |
---|
417 | public final void setSplitPoint(Instances allInstances){ |
---|
418 | |
---|
419 | double newSplitPoint = -Double.MAX_VALUE; |
---|
420 | double tempValue; |
---|
421 | Instance instance; |
---|
422 | |
---|
423 | if ((!allInstances.attribute(m_attIndex).isNominal()) && |
---|
424 | (m_numSubsets > 1)){ |
---|
425 | Enumeration enu = allInstances.enumerateInstances(); |
---|
426 | while (enu.hasMoreElements()) { |
---|
427 | instance = (Instance) enu.nextElement(); |
---|
428 | if (!instance.isMissing(m_attIndex)){ |
---|
429 | tempValue = instance.value(m_attIndex); |
---|
430 | if (Utils.gr(tempValue,newSplitPoint) && |
---|
431 | Utils.smOrEq(tempValue,m_splitPoint)) |
---|
432 | newSplitPoint = tempValue; |
---|
433 | } |
---|
434 | } |
---|
435 | m_splitPoint = newSplitPoint; |
---|
436 | } |
---|
437 | } |
---|
438 | |
---|
439 | /** |
---|
440 | * Sets distribution associated with model. |
---|
441 | */ |
---|
442 | public void resetDistribution(Instances data) throws Exception { |
---|
443 | |
---|
444 | Instances insts = new Instances(data, data.numInstances()); |
---|
445 | for (int i = 0; i < data.numInstances(); i++) { |
---|
446 | if (whichSubset(data.instance(i)) > -1) { |
---|
447 | insts.add(data.instance(i)); |
---|
448 | } |
---|
449 | } |
---|
450 | Distribution newD = new Distribution(insts, this); |
---|
451 | newD.addInstWithUnknown(data, m_attIndex); |
---|
452 | m_distribution = newD; |
---|
453 | } |
---|
454 | |
---|
455 | /** |
---|
456 | * Returns weights if instance is assigned to more than one subset. |
---|
457 | * Returns null if instance is only assigned to one subset. |
---|
458 | */ |
---|
459 | public final double [] weights(Instance instance){ |
---|
460 | |
---|
461 | double [] weights; |
---|
462 | int i; |
---|
463 | |
---|
464 | if (instance.isMissing(m_attIndex)){ |
---|
465 | weights = new double [m_numSubsets]; |
---|
466 | for (i=0;i<m_numSubsets;i++) |
---|
467 | weights [i] = m_distribution.perBag(i)/m_distribution.total(); |
---|
468 | return weights; |
---|
469 | }else{ |
---|
470 | return null; |
---|
471 | } |
---|
472 | } |
---|
473 | |
---|
474 | /** |
---|
475 | * Returns index of subset instance is assigned to. |
---|
476 | * Returns -1 if instance is assigned to more than one subset. |
---|
477 | * |
---|
478 | * @exception Exception if something goes wrong |
---|
479 | */ |
---|
480 | |
---|
481 | public final int whichSubset(Instance instance) throws Exception { |
---|
482 | |
---|
483 | if (instance.isMissing(m_attIndex)) |
---|
484 | return -1; |
---|
485 | else{ |
---|
486 | if (instance.attribute(m_attIndex).isNominal()){ |
---|
487 | if ((int)m_splitPoint == (int)instance.value(m_attIndex)) |
---|
488 | return 0; |
---|
489 | else |
---|
490 | return 1; |
---|
491 | }else |
---|
492 | if (Utils.smOrEq(instance.value(m_attIndex),m_splitPoint)) |
---|
493 | return 0; |
---|
494 | else |
---|
495 | return 1; |
---|
496 | } |
---|
497 | } |
---|
498 | |
---|
499 | /** |
---|
500 | * Returns the revision string. |
---|
501 | * |
---|
502 | * @return the revision |
---|
503 | */ |
---|
504 | public String getRevision() { |
---|
505 | return RevisionUtils.extract("$Revision: 6073 $"); |
---|
506 | } |
---|
507 | } |
---|