1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * FTNode.java |
---|
19 | * Copyright (C) 2007 University of Porto, Porto, Portugal |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.trees.ft; |
---|
24 | |
---|
25 | import weka.classifiers.functions.SimpleLinearRegression; |
---|
26 | import weka.classifiers.trees.j48.BinC45ModelSelection; |
---|
27 | import weka.classifiers.trees.j48.BinC45Split; |
---|
28 | import weka.classifiers.trees.j48.C45Split; |
---|
29 | import weka.classifiers.trees.j48.ClassifierSplitModel; |
---|
30 | import weka.classifiers.trees.j48.Distribution; |
---|
31 | import weka.classifiers.trees.j48.ModelSelection; |
---|
32 | import weka.classifiers.trees.j48.Stats; |
---|
33 | import weka.classifiers.trees.lmt.LogisticBase; |
---|
34 | import weka.core.Attribute; |
---|
35 | import weka.core.Instance; |
---|
36 | import weka.core.Instances; |
---|
37 | import weka.core.RevisionUtils; |
---|
38 | import weka.core.Utils; |
---|
39 | import weka.filters.Filter; |
---|
40 | import weka.filters.supervised.attribute.NominalToBinary; |
---|
41 | |
---|
42 | import java.util.Vector; |
---|
43 | |
---|
44 | /** |
---|
45 | * Abstract class for Functional tree structure. |
---|
46 | * |
---|
47 | * @author Jo\~{a}o Gama |
---|
48 | * @author Carlos Ferreira |
---|
49 | * |
---|
50 | * @version $Revision: 4899 $ |
---|
51 | */ |
---|
52 | public abstract class FTtree |
---|
53 | extends LogisticBase { |
---|
54 | |
---|
55 | /** for serialization */ |
---|
56 | static final long serialVersionUID = 1862737145870398755L; |
---|
57 | |
---|
58 | /** Total number of training instances. */ |
---|
59 | protected double m_totalInstanceWeight; |
---|
60 | |
---|
61 | /** Node id*/ |
---|
62 | protected int m_id; |
---|
63 | |
---|
64 | /** ID of logistic model at leaf*/ |
---|
65 | protected int m_leafModelNum; |
---|
66 | |
---|
67 | /**minimum number of instances at which a node is considered for splitting*/ |
---|
68 | protected int m_minNumInstances; |
---|
69 | |
---|
70 | /**ModelSelection object (for splitting)*/ |
---|
71 | protected ModelSelection m_modelSelection; |
---|
72 | |
---|
73 | /**Filter to convert nominal attributes to binary*/ |
---|
74 | protected NominalToBinary m_nominalToBinary; |
---|
75 | |
---|
76 | /**Simple regression functions fit by LogitBoost at higher levels in the tree*/ |
---|
77 | protected SimpleLinearRegression[][] m_higherRegressions; |
---|
78 | |
---|
79 | /**Number of simple regression functions fit by LogitBoost at higher levels in the tree*/ |
---|
80 | protected int m_numHigherRegressions = 0; |
---|
81 | |
---|
82 | /**Number of instances at the node*/ |
---|
83 | protected int m_numInstances; |
---|
84 | |
---|
85 | /**The ClassifierSplitModel (for splitting)*/ |
---|
86 | protected ClassifierSplitModel m_localModel; |
---|
87 | |
---|
88 | /**Auxiliary copy ClassifierSplitModel (for splitting)*/ |
---|
89 | protected ClassifierSplitModel m_auxLocalModel; |
---|
90 | |
---|
91 | /**Array of children of the node*/ |
---|
92 | protected FTtree[] m_sons; |
---|
93 | |
---|
94 | /** Stores leaf class value */ |
---|
95 | protected int m_leafclass; |
---|
96 | |
---|
97 | /**True if node is leaf*/ |
---|
98 | protected boolean m_isLeaf; |
---|
99 | |
---|
100 | /**True if node has or splits on constructor */ |
---|
101 | protected boolean m_hasConstr=true; |
---|
102 | |
---|
103 | /** Constructor error */ |
---|
104 | protected double m_constError=0; |
---|
105 | |
---|
106 | /** Confidence level */ |
---|
107 | protected float m_CF = 0.10f; |
---|
108 | |
---|
109 | /** |
---|
110 | * Method for building a Functional Tree (only called for the root node). |
---|
111 | * Grows an initial Functional Tree. |
---|
112 | * |
---|
113 | * @param data the data to train with |
---|
114 | * @throws Exception if something goes wrong |
---|
115 | */ |
---|
116 | public abstract void buildClassifier(Instances data) throws Exception; |
---|
117 | |
---|
118 | /** |
---|
119 | * Abstract method for building the tree structure. |
---|
120 | * Builds a logistic model, splits the node and recursively builds tree for child nodes. |
---|
121 | * @param data the training data passed on to this node |
---|
122 | * @param higherRegressions An array of regression functions produced by LogitBoost at higher |
---|
123 | * levels in the tree. They represent a logistic regression model that is refined locally |
---|
124 | * at this node. |
---|
125 | * @param totalInstanceWeight the total number of training examples |
---|
126 | * @param higherNumParameters effective number of parameters in the logistic regression model built |
---|
127 | * in parent nodes |
---|
128 | * @throws Exception if something goes wrong |
---|
129 | */ |
---|
130 | public abstract void buildTree(Instances data, SimpleLinearRegression[][] higherRegressions, |
---|
131 | double totalInstanceWeight, double higherNumParameters) throws Exception; |
---|
132 | |
---|
133 | /** |
---|
134 | * Abstract Method that prunes a tree using C4.5 pruning procedure. |
---|
135 | * |
---|
136 | * @exception Exception if something goes wrong |
---|
137 | */ |
---|
138 | public abstract double prune() throws Exception; |
---|
139 | |
---|
140 | /** Inserts new attributes in current dataset or instance |
---|
141 | * |
---|
142 | * @exception Exception if something goes wrong |
---|
143 | */ |
---|
144 | protected Instances insertNewAttr(Instances data) throws Exception{ |
---|
145 | |
---|
146 | int i; |
---|
147 | for (i=0; i<data.classAttribute().numValues(); i++) |
---|
148 | { |
---|
149 | data.insertAttributeAt( new Attribute("N"+ i), i); |
---|
150 | } |
---|
151 | return data; |
---|
152 | } |
---|
153 | |
---|
154 | /** Removes extended attributes in current dataset or instance |
---|
155 | * |
---|
156 | * @exception Exception if something goes wrong |
---|
157 | */ |
---|
158 | protected Instances removeExtAttributes(Instances data) throws Exception{ |
---|
159 | |
---|
160 | for (int i=0; i< data.classAttribute().numValues(); i++) |
---|
161 | { |
---|
162 | data.deleteAttributeAt(0); |
---|
163 | } |
---|
164 | return data; |
---|
165 | } |
---|
166 | |
---|
167 | /** |
---|
168 | * Computes estimated errors for tree. |
---|
169 | */ |
---|
170 | protected double getEstimatedErrors(){ |
---|
171 | |
---|
172 | double errors = 0; |
---|
173 | int i; |
---|
174 | |
---|
175 | if (m_isLeaf) |
---|
176 | return getEstimatedErrorsForDistribution(m_localModel.distribution()); |
---|
177 | else{ |
---|
178 | for (i=0;i<m_sons.length;i++) |
---|
179 | errors = errors+ m_sons[i].getEstimatedErrors(); |
---|
180 | |
---|
181 | return errors; |
---|
182 | } |
---|
183 | } |
---|
184 | |
---|
185 | /** |
---|
186 | * Computes estimated errors for one branch. |
---|
187 | * |
---|
188 | * @exception Exception if something goes wrong |
---|
189 | */ |
---|
190 | protected double getEstimatedErrorsForBranch(Instances data) |
---|
191 | throws Exception { |
---|
192 | |
---|
193 | Instances [] localInstances; |
---|
194 | double errors = 0; |
---|
195 | int i; |
---|
196 | |
---|
197 | if (m_isLeaf) |
---|
198 | return getEstimatedErrorsForDistribution(new Distribution(data)); |
---|
199 | else{ |
---|
200 | Distribution savedDist = m_localModel.distribution(); |
---|
201 | m_localModel.resetDistribution(data); |
---|
202 | localInstances = (Instances[])m_localModel.split(data); |
---|
203 | //m_localModel.m_distribution=savedDist; |
---|
204 | for (i=0;i<m_sons.length;i++) |
---|
205 | errors = errors+ |
---|
206 | m_sons[i].getEstimatedErrorsForBranch(localInstances[i]); |
---|
207 | return errors; |
---|
208 | } |
---|
209 | } |
---|
210 | |
---|
211 | /** |
---|
212 | * Computes estimated errors for leaf. |
---|
213 | */ |
---|
214 | protected double getEstimatedErrorsForDistribution(Distribution |
---|
215 | theDistribution){ |
---|
216 | double numInc; |
---|
217 | double numTotal; |
---|
218 | if (Utils.eq(theDistribution.total(),0)) |
---|
219 | return 0; |
---|
220 | else// stats.addErrs returns p - numberofincorrect.=p |
---|
221 | { |
---|
222 | numInc=theDistribution.numIncorrect(); |
---|
223 | numTotal=theDistribution.total(); |
---|
224 | return ((Stats.addErrs(numTotal, numInc,m_CF)) + numInc)/numTotal; |
---|
225 | } |
---|
226 | |
---|
227 | } |
---|
228 | |
---|
229 | /** |
---|
230 | * Computes estimated errors for Constructor Model. |
---|
231 | */ |
---|
232 | protected double getEtimateConstModel(Distribution theDistribution){ |
---|
233 | double numInc; |
---|
234 | double numTotal; |
---|
235 | if (Utils.eq(theDistribution.total(),0)) |
---|
236 | return 0; |
---|
237 | else// stats.addErrs returns p - numberofincorrect.=p |
---|
238 | { |
---|
239 | numTotal=theDistribution.total(); |
---|
240 | return ((Stats.addErrs(numTotal,m_constError,m_CF)) + m_constError)/numTotal; |
---|
241 | } |
---|
242 | } |
---|
243 | |
---|
244 | |
---|
245 | /** |
---|
246 | * Method to count the number of inner nodes in the tree |
---|
247 | * @return the number of inner nodes |
---|
248 | */ |
---|
249 | public int getNumInnerNodes(){ |
---|
250 | if (m_isLeaf) return 0; |
---|
251 | int numNodes = 1; |
---|
252 | for (int i = 0; i < m_sons.length; i++) numNodes += m_sons[i].getNumInnerNodes(); |
---|
253 | return numNodes; |
---|
254 | } |
---|
255 | |
---|
256 | /** |
---|
257 | * Returns the number of leaves in the tree. |
---|
258 | * Leaves are only counted if their logistic model has changed compared to the one of the parent node. |
---|
259 | * @return the number of leaves |
---|
260 | */ |
---|
261 | public int getNumLeaves(){ |
---|
262 | int numLeaves; |
---|
263 | if (!m_isLeaf) { |
---|
264 | numLeaves = 0; |
---|
265 | int numEmptyLeaves = 0; |
---|
266 | for (int i = 0; i < m_sons.length; i++) { |
---|
267 | numLeaves += m_sons[i].getNumLeaves(); |
---|
268 | if (m_sons[i].m_isLeaf && !m_sons[i].hasModels()) numEmptyLeaves++; |
---|
269 | } |
---|
270 | if (numEmptyLeaves > 1) { |
---|
271 | numLeaves -= (numEmptyLeaves - 1); |
---|
272 | } |
---|
273 | } else { |
---|
274 | numLeaves = 1; |
---|
275 | } |
---|
276 | return numLeaves; |
---|
277 | } |
---|
278 | |
---|
279 | |
---|
280 | |
---|
281 | /** |
---|
282 | * Merges two arrays of regression functions into one |
---|
283 | * @param a1 one array |
---|
284 | * @param a2 the other array |
---|
285 | * |
---|
286 | * @return an array that contains all entries from both input arrays |
---|
287 | */ |
---|
288 | protected SimpleLinearRegression[][] mergeArrays(SimpleLinearRegression[][] a1, |
---|
289 | SimpleLinearRegression[][] a2){ |
---|
290 | int numModels1 = a1[0].length; |
---|
291 | int numModels2 = a2[0].length; |
---|
292 | |
---|
293 | SimpleLinearRegression[][] result = |
---|
294 | new SimpleLinearRegression[m_numClasses][numModels1 + numModels2]; |
---|
295 | |
---|
296 | for (int i = 0; i < m_numClasses; i++) |
---|
297 | for (int j = 0; j < numModels1; j++) { |
---|
298 | result[i][j] = a1[i][j]; |
---|
299 | } |
---|
300 | for (int i = 0; i < m_numClasses; i++) |
---|
301 | for (int j = 0; j < numModels2; j++) result[i][j+numModels1] = a2[i][j]; |
---|
302 | return result; |
---|
303 | } |
---|
304 | |
---|
305 | /** |
---|
306 | * Return a list of all inner nodes in the tree |
---|
307 | * @return the list of nodes |
---|
308 | */ |
---|
309 | public Vector getNodes(){ |
---|
310 | Vector nodeList = new Vector(); |
---|
311 | getNodes(nodeList); |
---|
312 | return nodeList; |
---|
313 | } |
---|
314 | |
---|
315 | /** |
---|
316 | * Fills a list with all inner nodes in the tree |
---|
317 | * |
---|
318 | * @param nodeList the list to be filled |
---|
319 | */ |
---|
320 | public void getNodes(Vector nodeList) { |
---|
321 | if (!m_isLeaf) { |
---|
322 | nodeList.add(this); |
---|
323 | for (int i = 0; i < m_sons.length; i++) m_sons[i].getNodes(nodeList); |
---|
324 | } |
---|
325 | } |
---|
326 | |
---|
327 | /** |
---|
328 | * Returns a numeric version of a set of instances. |
---|
329 | * All nominal attributes are replaced by binary ones, and the class variable is replaced |
---|
330 | * by a pseudo-class variable that is used by LogitBoost. |
---|
331 | */ |
---|
332 | protected Instances getNumericData(Instances train) throws Exception{ |
---|
333 | |
---|
334 | Instances filteredData = new Instances(train); |
---|
335 | m_nominalToBinary = new NominalToBinary(); |
---|
336 | m_nominalToBinary.setInputFormat(filteredData); |
---|
337 | filteredData = Filter.useFilter(filteredData, m_nominalToBinary); |
---|
338 | |
---|
339 | return super.getNumericData(filteredData); |
---|
340 | } |
---|
341 | |
---|
342 | /** |
---|
343 | * Computes the F-values of LogitBoost for an instance from the current logistic model at the node |
---|
344 | * Note that this also takes into account the (partial) logistic model fit at higher levels in |
---|
345 | * the tree. |
---|
346 | * @param instance the instance |
---|
347 | * @return the array of F-values |
---|
348 | */ |
---|
349 | protected double[] getFs(Instance instance) throws Exception{ |
---|
350 | |
---|
351 | double [] pred = new double [m_numClasses]; |
---|
352 | |
---|
353 | //Need to take into account partial model fit at higher levels in the tree (m_higherRegressions) |
---|
354 | //and the part of the model fit at this node (m_regressions). |
---|
355 | |
---|
356 | //Fs from m_regressions (use method of LogisticBase) |
---|
357 | double [] instanceFs = super.getFs(instance); |
---|
358 | |
---|
359 | //Fs from m_higherRegressions |
---|
360 | for (int i = 0; i < m_numHigherRegressions; i++) { |
---|
361 | double predSum = 0; |
---|
362 | for (int j = 0; j < m_numClasses; j++) { |
---|
363 | pred[j] = m_higherRegressions[j][i].classifyInstance(instance); |
---|
364 | predSum += pred[j]; |
---|
365 | } |
---|
366 | predSum /= m_numClasses; |
---|
367 | for (int j = 0; j < m_numClasses; j++) { |
---|
368 | instanceFs[j] += (pred[j] - predSum) * (m_numClasses - 1) |
---|
369 | / m_numClasses; |
---|
370 | } |
---|
371 | } |
---|
372 | return instanceFs; |
---|
373 | } |
---|
374 | |
---|
375 | /** |
---|
376 | * |
---|
377 | * @param probsConst |
---|
378 | */ |
---|
379 | public int getConstError(double[] probsConst) |
---|
380 | { |
---|
381 | return Utils.maxIndex(probsConst); |
---|
382 | } |
---|
383 | |
---|
384 | /** |
---|
385 | *Returns true if the logistic regression model at this node has changed compared to the |
---|
386 | *one at the parent node. |
---|
387 | *@return whether it has changed |
---|
388 | */ |
---|
389 | public boolean hasModels() { |
---|
390 | return (m_numRegressions > 0); |
---|
391 | } |
---|
392 | |
---|
393 | /** |
---|
394 | * Returns the class probabilities for an instance according to the logistic model at the node. |
---|
395 | * @param instance the instance |
---|
396 | * @return the array of probabilities |
---|
397 | */ |
---|
398 | public double[] modelDistributionForInstance(Instance instance) throws Exception { |
---|
399 | |
---|
400 | //make copy and convert nominal attributes |
---|
401 | instance = (Instance)instance.copy(); |
---|
402 | m_nominalToBinary.input(instance); |
---|
403 | instance = m_nominalToBinary.output(); |
---|
404 | |
---|
405 | //set numeric pseudo-class |
---|
406 | instance.setDataset(m_numericDataHeader); |
---|
407 | |
---|
408 | return probs(getFs(instance)); |
---|
409 | } |
---|
410 | |
---|
411 | /** |
---|
412 | * Returns the class probabilities for an instance given by the Functional tree. |
---|
413 | * @param instance the instance |
---|
414 | * @return the array of probabilities |
---|
415 | */ |
---|
416 | public abstract double[] distributionForInstance(Instance instance) throws Exception; |
---|
417 | |
---|
418 | |
---|
419 | |
---|
420 | /** |
---|
421 | * Returns a description of the Functional tree (tree structure and logistic models) |
---|
422 | * @return describing string |
---|
423 | */ |
---|
424 | public String toString(){ |
---|
425 | //assign numbers to logistic regression functions at leaves |
---|
426 | assignLeafModelNumbers(0); |
---|
427 | try{ |
---|
428 | StringBuffer text = new StringBuffer(); |
---|
429 | |
---|
430 | if (m_isLeaf && !m_hasConstr) { |
---|
431 | text.append(": "); |
---|
432 | text.append("Class"+"="+ m_leafclass); |
---|
433 | //text.append("FT_"+m_leafModelNum+":"+getModelParameters()); |
---|
434 | } else { |
---|
435 | |
---|
436 | if (m_isLeaf && m_hasConstr) { |
---|
437 | text.append(": "); |
---|
438 | text.append("FT_"+m_leafModelNum+":"+getModelParameters()); |
---|
439 | |
---|
440 | } else { |
---|
441 | dumpTree(0,text); |
---|
442 | } |
---|
443 | } |
---|
444 | text.append("\n\nNumber of Leaves : \t"+numLeaves()+"\n"); |
---|
445 | text.append("\nSize of the Tree : \t"+numNodes()+"\n"); |
---|
446 | |
---|
447 | //This prints logistic models after the tree, comment out if only tree should be printed |
---|
448 | text.append(modelsToString()); |
---|
449 | return text.toString(); |
---|
450 | } catch (Exception e){ |
---|
451 | return "Can't print logistic model tree"; |
---|
452 | } |
---|
453 | } |
---|
454 | |
---|
455 | /** |
---|
456 | * Returns the number of leaves (normal count). |
---|
457 | * @return the number of leaves |
---|
458 | */ |
---|
459 | public int numLeaves() { |
---|
460 | if (m_isLeaf) return 1; |
---|
461 | int numLeaves = 0; |
---|
462 | for (int i = 0; i < m_sons.length; i++) numLeaves += m_sons[i].numLeaves(); |
---|
463 | return numLeaves; |
---|
464 | } |
---|
465 | |
---|
466 | /** |
---|
467 | * Returns the number of nodes. |
---|
468 | * @return the number of nodes |
---|
469 | */ |
---|
470 | public int numNodes() { |
---|
471 | if (m_isLeaf) return 1; |
---|
472 | int numNodes = 1; |
---|
473 | for (int i = 0; i < m_sons.length; i++) numNodes += m_sons[i].numNodes(); |
---|
474 | return numNodes; |
---|
475 | } |
---|
476 | |
---|
477 | /** |
---|
478 | * Returns a string describing the number of LogitBoost iterations performed at this node, the total number |
---|
479 | * of LogitBoost iterations performed (including iterations at higher levels in the tree), and the number |
---|
480 | * of training examples at this node. |
---|
481 | * @return the describing string |
---|
482 | */ |
---|
483 | public String getModelParameters(){ |
---|
484 | |
---|
485 | StringBuffer text = new StringBuffer(); |
---|
486 | int numModels = m_numRegressions+m_numHigherRegressions; |
---|
487 | text.append(m_numRegressions+"/"+numModels+" ("+m_numInstances+")"); |
---|
488 | return text.toString(); |
---|
489 | } |
---|
490 | |
---|
491 | /** |
---|
492 | * Help method for printing tree structure. |
---|
493 | * |
---|
494 | * @throws Exception if something goes wrong |
---|
495 | */ |
---|
496 | protected void dumpTree(int depth,StringBuffer text) |
---|
497 | throws Exception { |
---|
498 | |
---|
499 | for (int i = 0; i < m_sons.length; i++) { |
---|
500 | text.append("\n"); |
---|
501 | for (int j = 0; j < depth; j++) |
---|
502 | text.append("| "); |
---|
503 | if(m_hasConstr) |
---|
504 | text.append(m_localModel.leftSide(m_train)+ "#" + m_id); |
---|
505 | else |
---|
506 | text.append(m_localModel.leftSide(m_train)); |
---|
507 | text.append(m_localModel.rightSide(i, m_train) ); |
---|
508 | if (m_sons[i].m_isLeaf && m_sons[i].m_hasConstr ) { |
---|
509 | text.append(": "); |
---|
510 | text.append("FT_"+m_sons[i].m_leafModelNum+":"+m_sons[i].getModelParameters()); |
---|
511 | }else { |
---|
512 | if(m_sons[i].m_isLeaf && !m_sons[i].m_hasConstr) |
---|
513 | { |
---|
514 | text.append(": "); |
---|
515 | text.append("Class"+"="+ m_sons[i].m_leafclass); |
---|
516 | } |
---|
517 | else{ |
---|
518 | |
---|
519 | m_sons[i].dumpTree(depth+1,text); |
---|
520 | } |
---|
521 | } |
---|
522 | } |
---|
523 | } |
---|
524 | |
---|
525 | /** |
---|
526 | * Assigns unique IDs to all nodes in the tree |
---|
527 | */ |
---|
528 | public int assignIDs(int lastID) { |
---|
529 | |
---|
530 | int currLastID = lastID + 1; |
---|
531 | |
---|
532 | m_id = currLastID; |
---|
533 | if (m_sons != null) { |
---|
534 | for (int i = 0; i < m_sons.length; i++) { |
---|
535 | currLastID = m_sons[i].assignIDs(currLastID); |
---|
536 | } |
---|
537 | } |
---|
538 | return currLastID; |
---|
539 | } |
---|
540 | |
---|
541 | /** |
---|
542 | * Assigns numbers to the logistic regression models at the leaves of the tree |
---|
543 | */ |
---|
544 | public int assignLeafModelNumbers(int leafCounter) { |
---|
545 | if (!m_isLeaf) { |
---|
546 | m_leafModelNum = 0; |
---|
547 | for (int i = 0; i < m_sons.length; i++){ |
---|
548 | leafCounter = m_sons[i].assignLeafModelNumbers(leafCounter); |
---|
549 | } |
---|
550 | } else { |
---|
551 | leafCounter++; |
---|
552 | m_leafModelNum = leafCounter; |
---|
553 | } |
---|
554 | return leafCounter; |
---|
555 | } |
---|
556 | |
---|
557 | /** |
---|
558 | * Returns an array containing the coefficients of the logistic regression function at this node. |
---|
559 | * @return the array of coefficients, first dimension is the class, second the attribute. |
---|
560 | */ |
---|
561 | protected double[][] getCoefficients(){ |
---|
562 | |
---|
563 | //Need to take into account partial model fit at higher levels in the tree (m_higherRegressions) |
---|
564 | //and the part of the model fit at this node (m_regressions). |
---|
565 | |
---|
566 | //get coefficients from m_regressions: use method of LogisticBase |
---|
567 | double[][] coefficients = super.getCoefficients(); |
---|
568 | //get coefficients from m_higherRegressions: |
---|
569 | double constFactor = (double)(m_numClasses - 1) / (double)m_numClasses; // (J - 1)/J |
---|
570 | for (int j = 0; j < m_numClasses; j++) { |
---|
571 | for (int i = 0; i < m_numHigherRegressions; i++) { |
---|
572 | double slope = m_higherRegressions[j][i].getSlope(); |
---|
573 | double intercept = m_higherRegressions[j][i].getIntercept(); |
---|
574 | int attribute = m_higherRegressions[j][i].getAttributeIndex(); |
---|
575 | coefficients[j][0] += constFactor * intercept; |
---|
576 | coefficients[j][attribute + 1] += constFactor * slope; |
---|
577 | } |
---|
578 | } |
---|
579 | |
---|
580 | return coefficients; |
---|
581 | } |
---|
582 | |
---|
583 | /** |
---|
584 | * Returns a string describing the logistic regression function at the node. |
---|
585 | */ |
---|
586 | public String modelsToString(){ |
---|
587 | |
---|
588 | StringBuffer text = new StringBuffer(); |
---|
589 | if (m_isLeaf && m_hasConstr) { |
---|
590 | text.append("FT_"+m_leafModelNum+":"+super.toString()); |
---|
591 | |
---|
592 | }else{ |
---|
593 | if (!m_isLeaf && m_hasConstr) { |
---|
594 | if (m_modelSelection instanceof BinC45ModelSelection){ |
---|
595 | text.append("FT_N"+((BinC45Split)m_localModel).attIndex()+"#"+m_id +":"+super.toString()); |
---|
596 | }else{ |
---|
597 | text.append("FT_N"+((C45Split)m_localModel).attIndex()+"#"+m_id +":"+super.toString()); |
---|
598 | } |
---|
599 | for (int i = 0; i < m_sons.length; i++) { |
---|
600 | text.append("\n"+ m_sons[i].modelsToString()); |
---|
601 | } |
---|
602 | }else{ |
---|
603 | if (!m_isLeaf && !m_hasConstr) |
---|
604 | { |
---|
605 | for (int i = 0; i < m_sons.length; i++) { |
---|
606 | text.append("\n"+ m_sons[i].modelsToString()); |
---|
607 | } |
---|
608 | }else{ |
---|
609 | if (m_isLeaf && !m_hasConstr) |
---|
610 | { |
---|
611 | text.append(""); |
---|
612 | } |
---|
613 | } |
---|
614 | |
---|
615 | } |
---|
616 | } |
---|
617 | |
---|
618 | return text.toString(); |
---|
619 | } |
---|
620 | |
---|
621 | /** |
---|
622 | * Returns graph describing the tree. |
---|
623 | * |
---|
624 | * @throws Exception if something goes wrong |
---|
625 | */ |
---|
626 | public String graph() throws Exception { |
---|
627 | |
---|
628 | StringBuffer text = new StringBuffer(); |
---|
629 | |
---|
630 | assignIDs(-1); |
---|
631 | assignLeafModelNumbers(0); |
---|
632 | text.append("digraph FTree {\n"); |
---|
633 | if (m_isLeaf && m_hasConstr) { |
---|
634 | text.append("N" + m_id + " [label=\"FT_"+m_leafModelNum+":"+getModelParameters()+"\" " + |
---|
635 | "shape=box style=filled"); |
---|
636 | text.append("]\n"); |
---|
637 | }else{ |
---|
638 | if (m_isLeaf && !m_hasConstr){ |
---|
639 | text.append("N" + m_id + " [label=\"Class="+m_leafclass+ "\" " + |
---|
640 | "shape=box style=filled"); |
---|
641 | text.append("]\n"); |
---|
642 | |
---|
643 | }else { |
---|
644 | text.append("N" + m_id |
---|
645 | + " [label=\"" + |
---|
646 | m_localModel.leftSide(m_train) + "\" "); |
---|
647 | text.append("]\n"); |
---|
648 | graphTree(text); |
---|
649 | } |
---|
650 | } |
---|
651 | return text.toString() +"}\n"; |
---|
652 | } |
---|
653 | |
---|
654 | /** |
---|
655 | * Helper function for graph description of tree |
---|
656 | * |
---|
657 | * @throws Exception if something goes wrong |
---|
658 | */ |
---|
659 | protected void graphTree(StringBuffer text) throws Exception { |
---|
660 | |
---|
661 | for (int i = 0; i < m_sons.length; i++) { |
---|
662 | text.append("N" + m_id |
---|
663 | + "->" + |
---|
664 | "N" + m_sons[i].m_id + |
---|
665 | " [label=\"" + m_localModel.rightSide(i,m_train).trim() + |
---|
666 | "\"]\n"); |
---|
667 | if (m_sons[i].m_isLeaf && m_sons[i].m_hasConstr) { |
---|
668 | text.append("N" +m_sons[i].m_id + " [label=\"FT_"+m_sons[i].m_leafModelNum+":"+ |
---|
669 | m_sons[i].getModelParameters()+"\" " + "shape=box style=filled"); |
---|
670 | text.append("]\n"); |
---|
671 | } else { |
---|
672 | if (m_sons[i].m_isLeaf && !m_sons[i].m_hasConstr) { |
---|
673 | text.append("N" +m_sons[i].m_id + " [label=\"Class="+m_sons[i].m_leafclass+"\" " + "shape=box style=filled"); |
---|
674 | text.append("]\n"); |
---|
675 | }else{ |
---|
676 | text.append("N" + m_sons[i].m_id + |
---|
677 | " [label=\""+m_sons[i].m_localModel.leftSide(m_train) + |
---|
678 | "\" "); |
---|
679 | text.append("]\n"); |
---|
680 | m_sons[i].graphTree(text); |
---|
681 | } |
---|
682 | } |
---|
683 | } |
---|
684 | } |
---|
685 | |
---|
686 | /** |
---|
687 | * Cleanup in order to save memory. |
---|
688 | */ |
---|
689 | public void cleanup() { |
---|
690 | super.cleanup(); |
---|
691 | if (!m_isLeaf) { |
---|
692 | for (int i = 0; i < m_sons.length; i++) m_sons[i].cleanup(); |
---|
693 | } |
---|
694 | } |
---|
695 | |
---|
696 | /** |
---|
697 | * Returns the revision string. |
---|
698 | * |
---|
699 | * @return the revision |
---|
700 | */ |
---|
701 | public String getRevision() { |
---|
702 | return RevisionUtils.extract("$Revision: 4899 $"); |
---|
703 | } |
---|
704 | } |
---|