[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * SimpleCart.java |
---|
| 19 | * Copyright (C) 2007 Haijian Shi |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers.trees; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Evaluation; |
---|
| 26 | import weka.classifiers.RandomizableClassifier; |
---|
| 27 | import weka.core.AdditionalMeasureProducer; |
---|
| 28 | import weka.core.Attribute; |
---|
| 29 | import weka.core.Capabilities; |
---|
| 30 | import weka.core.Instance; |
---|
| 31 | import weka.core.Instances; |
---|
| 32 | import weka.core.Option; |
---|
| 33 | import weka.core.RevisionUtils; |
---|
| 34 | import weka.core.TechnicalInformation; |
---|
| 35 | import weka.core.TechnicalInformationHandler; |
---|
| 36 | import weka.core.Utils; |
---|
| 37 | import weka.core.Capabilities.Capability; |
---|
| 38 | import weka.core.TechnicalInformation.Field; |
---|
| 39 | import weka.core.TechnicalInformation.Type; |
---|
| 40 | import weka.core.matrix.Matrix; |
---|
| 41 | |
---|
| 42 | import java.util.Arrays; |
---|
| 43 | import java.util.Enumeration; |
---|
| 44 | import java.util.Random; |
---|
| 45 | import java.util.Vector; |
---|
| 46 | |
---|
| 47 | /** |
---|
| 48 | <!-- globalinfo-start --> |
---|
| 49 | * Class implementing minimal cost-complexity pruning.<br/> |
---|
| 50 | * Note when dealing with missing values, use "fractional instances" method instead of surrogate split method.<br/> |
---|
| 51 | * <br/> |
---|
| 52 | * For more information, see:<br/> |
---|
| 53 | * <br/> |
---|
| 54 | * Leo Breiman, Jerome H. Friedman, Richard A. Olshen, Charles J. Stone (1984). Classification and Regression Trees. Wadsworth International Group, Belmont, California. |
---|
| 55 | * <p/> |
---|
| 56 | <!-- globalinfo-end --> |
---|
| 57 | * |
---|
| 58 | <!-- technical-bibtex-start --> |
---|
| 59 | * BibTeX: |
---|
| 60 | * <pre> |
---|
| 61 | * @book{Breiman1984, |
---|
| 62 | * address = {Belmont, California}, |
---|
| 63 | * author = {Leo Breiman and Jerome H. Friedman and Richard A. Olshen and Charles J. Stone}, |
---|
| 64 | * publisher = {Wadsworth International Group}, |
---|
| 65 | * title = {Classification and Regression Trees}, |
---|
| 66 | * year = {1984} |
---|
| 67 | * } |
---|
| 68 | * </pre> |
---|
| 69 | * <p/> |
---|
| 70 | <!-- technical-bibtex-end --> |
---|
| 71 | * |
---|
| 72 | <!-- options-start --> |
---|
| 73 | * Valid options are: <p/> |
---|
| 74 | * |
---|
| 75 | * <pre> -S <num> |
---|
| 76 | * Random number seed. |
---|
| 77 | * (default 1)</pre> |
---|
| 78 | * |
---|
| 79 | * <pre> -D |
---|
| 80 | * If set, classifier is run in debug mode and |
---|
| 81 | * may output additional info to the console</pre> |
---|
| 82 | * |
---|
| 83 | * <pre> -M <min no> |
---|
| 84 | * The minimal number of instances at the terminal nodes. |
---|
| 85 | * (default 2)</pre> |
---|
| 86 | * |
---|
| 87 | * <pre> -N <num folds> |
---|
| 88 | * The number of folds used in the minimal cost-complexity pruning. |
---|
| 89 | * (default 5)</pre> |
---|
| 90 | * |
---|
| 91 | * <pre> -U |
---|
| 92 | * Don't use the minimal cost-complexity pruning. |
---|
| 93 | * (default yes).</pre> |
---|
| 94 | * |
---|
| 95 | * <pre> -H |
---|
| 96 | * Don't use the heuristic method for binary split. |
---|
| 97 | * (default true).</pre> |
---|
| 98 | * |
---|
| 99 | * <pre> -A |
---|
| 100 | * Use 1 SE rule to make pruning decision. |
---|
| 101 | * (default no).</pre> |
---|
| 102 | * |
---|
| 103 | * <pre> -C |
---|
| 104 | * Percentage of training data size (0-1]. |
---|
| 105 | * (default 1).</pre> |
---|
| 106 | * |
---|
| 107 | <!-- options-end --> |
---|
| 108 | * |
---|
| 109 | * @author Haijian Shi (hs69@cs.waikato.ac.nz) |
---|
| 110 | * @version $Revision: 5987 $ |
---|
| 111 | */ |
---|
| 112 | public class SimpleCart |
---|
| 113 | extends RandomizableClassifier |
---|
| 114 | implements AdditionalMeasureProducer, TechnicalInformationHandler { |
---|
| 115 | |
---|
| 116 | /** For serialization. */ |
---|
| 117 | private static final long serialVersionUID = 4154189200352566053L; |
---|
| 118 | |
---|
| 119 | /** Training data. */ |
---|
| 120 | protected Instances m_train; |
---|
| 121 | |
---|
| 122 | /** Successor nodes. */ |
---|
| 123 | protected SimpleCart[] m_Successors; |
---|
| 124 | |
---|
| 125 | /** Attribute used to split data. */ |
---|
| 126 | protected Attribute m_Attribute; |
---|
| 127 | |
---|
| 128 | /** Split point for a numeric attribute. */ |
---|
| 129 | protected double m_SplitValue; |
---|
| 130 | |
---|
| 131 | /** Split subset used to split data for nominal attributes. */ |
---|
| 132 | protected String m_SplitString; |
---|
| 133 | |
---|
| 134 | /** Class value if the node is leaf. */ |
---|
| 135 | protected double m_ClassValue; |
---|
| 136 | |
---|
| 137 | /** Class attriubte of data. */ |
---|
| 138 | protected Attribute m_ClassAttribute; |
---|
| 139 | |
---|
| 140 | /** Minimum number of instances in at the terminal nodes. */ |
---|
| 141 | protected double m_minNumObj = 2; |
---|
| 142 | |
---|
| 143 | /** Number of folds for minimal cost-complexity pruning. */ |
---|
| 144 | protected int m_numFoldsPruning = 5; |
---|
| 145 | |
---|
| 146 | /** Alpha-value (for pruning) at the node. */ |
---|
| 147 | protected double m_Alpha; |
---|
| 148 | |
---|
| 149 | /** Number of training examples misclassified by the model (subtree rooted). */ |
---|
| 150 | protected double m_numIncorrectModel; |
---|
| 151 | |
---|
| 152 | /** Number of training examples misclassified by the model (subtree not rooted). */ |
---|
| 153 | protected double m_numIncorrectTree; |
---|
| 154 | |
---|
| 155 | /** Indicate if the node is a leaf node. */ |
---|
| 156 | protected boolean m_isLeaf; |
---|
| 157 | |
---|
| 158 | /** If use minimal cost-compexity pruning. */ |
---|
| 159 | protected boolean m_Prune = true; |
---|
| 160 | |
---|
| 161 | /** Total number of instances used to build the classifier. */ |
---|
| 162 | protected int m_totalTrainInstances; |
---|
| 163 | |
---|
| 164 | /** Proportion for each branch. */ |
---|
| 165 | protected double[] m_Props; |
---|
| 166 | |
---|
| 167 | /** Class probabilities. */ |
---|
| 168 | protected double[] m_ClassProbs = null; |
---|
| 169 | |
---|
| 170 | /** Distributions of leaf node (or temporary leaf node in minimal cost-complexity pruning) */ |
---|
| 171 | protected double[] m_Distribution; |
---|
| 172 | |
---|
| 173 | /** If use huristic search for nominal attributes in multi-class problems (default true). */ |
---|
| 174 | protected boolean m_Heuristic = true; |
---|
| 175 | |
---|
| 176 | /** If use the 1SE rule to make final decision tree. */ |
---|
| 177 | protected boolean m_UseOneSE = false; |
---|
| 178 | |
---|
| 179 | /** Training data size. */ |
---|
| 180 | protected double m_SizePer = 1; |
---|
| 181 | |
---|
| 182 | /** |
---|
| 183 | * Return a description suitable for displaying in the explorer/experimenter. |
---|
| 184 | * |
---|
| 185 | * @return a description suitable for displaying in the |
---|
| 186 | * explorer/experimenter |
---|
| 187 | */ |
---|
| 188 | public String globalInfo() { |
---|
| 189 | return |
---|
| 190 | "Class implementing minimal cost-complexity pruning.\n" |
---|
| 191 | + "Note when dealing with missing values, use \"fractional " |
---|
| 192 | + "instances\" method instead of surrogate split method.\n\n" |
---|
| 193 | + "For more information, see:\n\n" |
---|
| 194 | + getTechnicalInformation().toString(); |
---|
| 195 | } |
---|
| 196 | |
---|
| 197 | /** |
---|
| 198 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 199 | * detailed information about the technical background of this class, |
---|
| 200 | * e.g., paper reference or book this class is based on. |
---|
| 201 | * |
---|
| 202 | * @return the technical information about this class |
---|
| 203 | */ |
---|
| 204 | public TechnicalInformation getTechnicalInformation() { |
---|
| 205 | TechnicalInformation result; |
---|
| 206 | |
---|
| 207 | result = new TechnicalInformation(Type.BOOK); |
---|
| 208 | result.setValue(Field.AUTHOR, "Leo Breiman and Jerome H. Friedman and Richard A. Olshen and Charles J. Stone"); |
---|
| 209 | result.setValue(Field.YEAR, "1984"); |
---|
| 210 | result.setValue(Field.TITLE, "Classification and Regression Trees"); |
---|
| 211 | result.setValue(Field.PUBLISHER, "Wadsworth International Group"); |
---|
| 212 | result.setValue(Field.ADDRESS, "Belmont, California"); |
---|
| 213 | |
---|
| 214 | return result; |
---|
| 215 | } |
---|
| 216 | |
---|
| 217 | /** |
---|
| 218 | * Returns default capabilities of the classifier. |
---|
| 219 | * |
---|
| 220 | * @return the capabilities of this classifier |
---|
| 221 | */ |
---|
| 222 | public Capabilities getCapabilities() { |
---|
| 223 | Capabilities result = super.getCapabilities(); |
---|
| 224 | result.disableAll(); |
---|
| 225 | |
---|
| 226 | // attributes |
---|
| 227 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 228 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 229 | result.enable(Capability.MISSING_VALUES); |
---|
| 230 | |
---|
| 231 | // class |
---|
| 232 | result.enable(Capability.NOMINAL_CLASS); |
---|
| 233 | |
---|
| 234 | return result; |
---|
| 235 | } |
---|
| 236 | |
---|
| 237 | /** |
---|
| 238 | * Build the classifier. |
---|
| 239 | * |
---|
| 240 | * @param data the training instances |
---|
| 241 | * @throws Exception if something goes wrong |
---|
| 242 | */ |
---|
| 243 | public void buildClassifier(Instances data) throws Exception { |
---|
| 244 | |
---|
| 245 | getCapabilities().testWithFail(data); |
---|
| 246 | data = new Instances(data); |
---|
| 247 | data.deleteWithMissingClass(); |
---|
| 248 | |
---|
| 249 | // unpruned CART decision tree |
---|
| 250 | if (!m_Prune) { |
---|
| 251 | |
---|
| 252 | // calculate sorted indices and weights, and compute initial class counts. |
---|
| 253 | int[][] sortedIndices = new int[data.numAttributes()][0]; |
---|
| 254 | double[][] weights = new double[data.numAttributes()][0]; |
---|
| 255 | double[] classProbs = new double[data.numClasses()]; |
---|
| 256 | double totalWeight = computeSortedInfo(data,sortedIndices, weights,classProbs); |
---|
| 257 | |
---|
| 258 | makeTree(data, data.numInstances(),sortedIndices,weights,classProbs, |
---|
| 259 | totalWeight,m_minNumObj, m_Heuristic); |
---|
| 260 | return; |
---|
| 261 | } |
---|
| 262 | |
---|
| 263 | Random random = new Random(m_Seed); |
---|
| 264 | Instances cvData = new Instances(data); |
---|
| 265 | cvData.randomize(random); |
---|
| 266 | cvData = new Instances(cvData,0,(int)(cvData.numInstances()*m_SizePer)-1); |
---|
| 267 | cvData.stratify(m_numFoldsPruning); |
---|
| 268 | |
---|
| 269 | double[][] alphas = new double[m_numFoldsPruning][]; |
---|
| 270 | double[][] errors = new double[m_numFoldsPruning][]; |
---|
| 271 | |
---|
| 272 | // calculate errors and alphas for each fold |
---|
| 273 | for (int i = 0; i < m_numFoldsPruning; i++) { |
---|
| 274 | |
---|
| 275 | //for every fold, grow tree on training set and fix error on test set. |
---|
| 276 | Instances train = cvData.trainCV(m_numFoldsPruning, i); |
---|
| 277 | Instances test = cvData.testCV(m_numFoldsPruning, i); |
---|
| 278 | |
---|
| 279 | // calculate sorted indices and weights, and compute initial class counts for each fold |
---|
| 280 | int[][] sortedIndices = new int[train.numAttributes()][0]; |
---|
| 281 | double[][] weights = new double[train.numAttributes()][0]; |
---|
| 282 | double[] classProbs = new double[train.numClasses()]; |
---|
| 283 | double totalWeight = computeSortedInfo(train,sortedIndices, weights,classProbs); |
---|
| 284 | |
---|
| 285 | makeTree(train, train.numInstances(),sortedIndices,weights,classProbs, |
---|
| 286 | totalWeight,m_minNumObj, m_Heuristic); |
---|
| 287 | |
---|
| 288 | int numNodes = numInnerNodes(); |
---|
| 289 | alphas[i] = new double[numNodes + 2]; |
---|
| 290 | errors[i] = new double[numNodes + 2]; |
---|
| 291 | |
---|
| 292 | // prune back and log alpha-values and errors on test set |
---|
| 293 | prune(alphas[i], errors[i], test); |
---|
| 294 | } |
---|
| 295 | |
---|
| 296 | // calculate sorted indices and weights, and compute initial class counts on all training instances |
---|
| 297 | int[][] sortedIndices = new int[data.numAttributes()][0]; |
---|
| 298 | double[][] weights = new double[data.numAttributes()][0]; |
---|
| 299 | double[] classProbs = new double[data.numClasses()]; |
---|
| 300 | double totalWeight = computeSortedInfo(data,sortedIndices, weights,classProbs); |
---|
| 301 | |
---|
| 302 | //build tree using all the data |
---|
| 303 | makeTree(data, data.numInstances(),sortedIndices,weights,classProbs, |
---|
| 304 | totalWeight,m_minNumObj, m_Heuristic); |
---|
| 305 | |
---|
| 306 | int numNodes = numInnerNodes(); |
---|
| 307 | |
---|
| 308 | double[] treeAlphas = new double[numNodes + 2]; |
---|
| 309 | |
---|
| 310 | // prune back and log alpha-values |
---|
| 311 | int iterations = prune(treeAlphas, null, null); |
---|
| 312 | |
---|
| 313 | double[] treeErrors = new double[numNodes + 2]; |
---|
| 314 | |
---|
| 315 | // for each pruned subtree, find the cross-validated error |
---|
| 316 | for (int i = 0; i <= iterations; i++){ |
---|
| 317 | //compute midpoint alphas |
---|
| 318 | double alpha = Math.sqrt(treeAlphas[i] * treeAlphas[i+1]); |
---|
| 319 | double error = 0; |
---|
| 320 | for (int k = 0; k < m_numFoldsPruning; k++) { |
---|
| 321 | int l = 0; |
---|
| 322 | while (alphas[k][l] <= alpha) l++; |
---|
| 323 | error += errors[k][l - 1]; |
---|
| 324 | } |
---|
| 325 | treeErrors[i] = error/m_numFoldsPruning; |
---|
| 326 | } |
---|
| 327 | |
---|
| 328 | // find best alpha |
---|
| 329 | int best = -1; |
---|
| 330 | double bestError = Double.MAX_VALUE; |
---|
| 331 | for (int i = iterations; i >= 0; i--) { |
---|
| 332 | if (treeErrors[i] < bestError) { |
---|
| 333 | bestError = treeErrors[i]; |
---|
| 334 | best = i; |
---|
| 335 | } |
---|
| 336 | } |
---|
| 337 | |
---|
| 338 | // 1 SE rule to choose expansion |
---|
| 339 | if (m_UseOneSE) { |
---|
| 340 | double oneSE = Math.sqrt(bestError*(1-bestError)/(data.numInstances())); |
---|
| 341 | for (int i = iterations; i >= 0; i--) { |
---|
| 342 | if (treeErrors[i] <= bestError+oneSE) { |
---|
| 343 | best = i; |
---|
| 344 | break; |
---|
| 345 | } |
---|
| 346 | } |
---|
| 347 | } |
---|
| 348 | |
---|
| 349 | double bestAlpha = Math.sqrt(treeAlphas[best] * treeAlphas[best + 1]); |
---|
| 350 | |
---|
| 351 | //"unprune" final tree (faster than regrowing it) |
---|
| 352 | unprune(); |
---|
| 353 | prune(bestAlpha); |
---|
| 354 | } |
---|
| 355 | |
---|
| 356 | /** |
---|
| 357 | * Make binary decision tree recursively. |
---|
| 358 | * |
---|
| 359 | * @param data the training instances |
---|
| 360 | * @param totalInstances total number of instances |
---|
| 361 | * @param sortedIndices sorted indices of the instances |
---|
| 362 | * @param weights weights of the instances |
---|
| 363 | * @param classProbs class probabilities |
---|
| 364 | * @param totalWeight total weight of instances |
---|
| 365 | * @param minNumObj minimal number of instances at leaf nodes |
---|
| 366 | * @param useHeuristic if use heuristic search for nominal attributes in multi-class problem |
---|
| 367 | * @throws Exception if something goes wrong |
---|
| 368 | */ |
---|
| 369 | protected void makeTree(Instances data, int totalInstances, int[][] sortedIndices, |
---|
| 370 | double[][] weights, double[] classProbs, double totalWeight, double minNumObj, |
---|
| 371 | boolean useHeuristic) throws Exception{ |
---|
| 372 | |
---|
| 373 | // if no instances have reached this node (normally won't happen) |
---|
| 374 | if (totalWeight == 0){ |
---|
| 375 | m_Attribute = null; |
---|
| 376 | m_ClassValue = Utils.missingValue(); |
---|
| 377 | m_Distribution = new double[data.numClasses()]; |
---|
| 378 | return; |
---|
| 379 | } |
---|
| 380 | |
---|
| 381 | m_totalTrainInstances = totalInstances; |
---|
| 382 | m_isLeaf = true; |
---|
| 383 | |
---|
| 384 | m_ClassProbs = new double[classProbs.length]; |
---|
| 385 | m_Distribution = new double[classProbs.length]; |
---|
| 386 | System.arraycopy(classProbs, 0, m_ClassProbs, 0, classProbs.length); |
---|
| 387 | System.arraycopy(classProbs, 0, m_Distribution, 0, classProbs.length); |
---|
| 388 | if (Utils.sum(m_ClassProbs)!=0) Utils.normalize(m_ClassProbs); |
---|
| 389 | |
---|
| 390 | // Compute class distributions and value of splitting |
---|
| 391 | // criterion for each attribute |
---|
| 392 | double[][][] dists = new double[data.numAttributes()][0][0]; |
---|
| 393 | double[][] props = new double[data.numAttributes()][0]; |
---|
| 394 | double[][] totalSubsetWeights = new double[data.numAttributes()][2]; |
---|
| 395 | double[] splits = new double[data.numAttributes()]; |
---|
| 396 | String[] splitString = new String[data.numAttributes()]; |
---|
| 397 | double[] giniGains = new double[data.numAttributes()]; |
---|
| 398 | |
---|
| 399 | // for each attribute find split information |
---|
| 400 | for (int i = 0; i < data.numAttributes(); i++) { |
---|
| 401 | Attribute att = data.attribute(i); |
---|
| 402 | if (i==data.classIndex()) continue; |
---|
| 403 | if (att.isNumeric()) { |
---|
| 404 | // numeric attribute |
---|
| 405 | splits[i] = numericDistribution(props, dists, att, sortedIndices[i], |
---|
| 406 | weights[i], totalSubsetWeights, giniGains, data); |
---|
| 407 | } else { |
---|
| 408 | // nominal attribute |
---|
| 409 | splitString[i] = nominalDistribution(props, dists, att, sortedIndices[i], |
---|
| 410 | weights[i], totalSubsetWeights, giniGains, data, useHeuristic); |
---|
| 411 | } |
---|
| 412 | } |
---|
| 413 | |
---|
| 414 | // Find best attribute (split with maximum Gini gain) |
---|
| 415 | int attIndex = Utils.maxIndex(giniGains); |
---|
| 416 | m_Attribute = data.attribute(attIndex); |
---|
| 417 | |
---|
| 418 | m_train = new Instances(data, sortedIndices[attIndex].length); |
---|
| 419 | for (int i=0; i<sortedIndices[attIndex].length; i++) { |
---|
| 420 | Instance inst = data.instance(sortedIndices[attIndex][i]); |
---|
| 421 | Instance instCopy = (Instance)inst.copy(); |
---|
| 422 | instCopy.setWeight(weights[attIndex][i]); |
---|
| 423 | m_train.add(instCopy); |
---|
| 424 | } |
---|
| 425 | |
---|
| 426 | // Check if node does not contain enough instances, or if it can not be split, |
---|
| 427 | // or if it is pure. If does, make leaf. |
---|
| 428 | if (totalWeight < 2 * minNumObj || giniGains[attIndex]==0 || |
---|
| 429 | props[attIndex][0]==0 || props[attIndex][1]==0) { |
---|
| 430 | makeLeaf(data); |
---|
| 431 | } |
---|
| 432 | |
---|
| 433 | else { |
---|
| 434 | m_Props = props[attIndex]; |
---|
| 435 | int[][][] subsetIndices = new int[2][data.numAttributes()][0]; |
---|
| 436 | double[][][] subsetWeights = new double[2][data.numAttributes()][0]; |
---|
| 437 | |
---|
| 438 | // numeric split |
---|
| 439 | if (m_Attribute.isNumeric()) m_SplitValue = splits[attIndex]; |
---|
| 440 | |
---|
| 441 | // nominal split |
---|
| 442 | else m_SplitString = splitString[attIndex]; |
---|
| 443 | |
---|
| 444 | splitData(subsetIndices, subsetWeights, m_Attribute, m_SplitValue, |
---|
| 445 | m_SplitString, sortedIndices, weights, data); |
---|
| 446 | |
---|
| 447 | // If split of the node results in a node with less than minimal number of isntances, |
---|
| 448 | // make the node leaf node. |
---|
| 449 | if (subsetIndices[0][attIndex].length<minNumObj || |
---|
| 450 | subsetIndices[1][attIndex].length<minNumObj) { |
---|
| 451 | makeLeaf(data); |
---|
| 452 | return; |
---|
| 453 | } |
---|
| 454 | |
---|
| 455 | // Otherwise, split the node. |
---|
| 456 | m_isLeaf = false; |
---|
| 457 | m_Successors = new SimpleCart[2]; |
---|
| 458 | for (int i = 0; i < 2; i++) { |
---|
| 459 | m_Successors[i] = new SimpleCart(); |
---|
| 460 | m_Successors[i].makeTree(data, m_totalTrainInstances, subsetIndices[i], |
---|
| 461 | subsetWeights[i],dists[attIndex][i], totalSubsetWeights[attIndex][i], |
---|
| 462 | minNumObj, useHeuristic); |
---|
| 463 | } |
---|
| 464 | } |
---|
| 465 | } |
---|
| 466 | |
---|
| 467 | /** |
---|
| 468 | * Prunes the original tree using the CART pruning scheme, given a |
---|
| 469 | * cost-complexity parameter alpha. |
---|
| 470 | * |
---|
| 471 | * @param alpha the cost-complexity parameter |
---|
| 472 | * @throws Exception if something goes wrong |
---|
| 473 | */ |
---|
| 474 | public void prune(double alpha) throws Exception { |
---|
| 475 | |
---|
| 476 | Vector nodeList; |
---|
| 477 | |
---|
| 478 | // determine training error of pruned subtrees (both with and without replacing a subtree), |
---|
| 479 | // and calculate alpha-values from them |
---|
| 480 | modelErrors(); |
---|
| 481 | treeErrors(); |
---|
| 482 | calculateAlphas(); |
---|
| 483 | |
---|
| 484 | // get list of all inner nodes in the tree |
---|
| 485 | nodeList = getInnerNodes(); |
---|
| 486 | |
---|
| 487 | boolean prune = (nodeList.size() > 0); |
---|
| 488 | double preAlpha = Double.MAX_VALUE; |
---|
| 489 | while (prune) { |
---|
| 490 | |
---|
| 491 | // select node with minimum alpha |
---|
| 492 | SimpleCart nodeToPrune = nodeToPrune(nodeList); |
---|
| 493 | |
---|
| 494 | // want to prune if its alpha is smaller than alpha |
---|
| 495 | if (nodeToPrune.m_Alpha > alpha) { |
---|
| 496 | break; |
---|
| 497 | } |
---|
| 498 | |
---|
| 499 | nodeToPrune.makeLeaf(nodeToPrune.m_train); |
---|
| 500 | |
---|
| 501 | // normally would not happen |
---|
| 502 | if (nodeToPrune.m_Alpha==preAlpha) { |
---|
| 503 | nodeToPrune.makeLeaf(nodeToPrune.m_train); |
---|
| 504 | treeErrors(); |
---|
| 505 | calculateAlphas(); |
---|
| 506 | nodeList = getInnerNodes(); |
---|
| 507 | prune = (nodeList.size() > 0); |
---|
| 508 | continue; |
---|
| 509 | } |
---|
| 510 | preAlpha = nodeToPrune.m_Alpha; |
---|
| 511 | |
---|
| 512 | //update tree errors and alphas |
---|
| 513 | treeErrors(); |
---|
| 514 | calculateAlphas(); |
---|
| 515 | |
---|
| 516 | nodeList = getInnerNodes(); |
---|
| 517 | prune = (nodeList.size() > 0); |
---|
| 518 | } |
---|
| 519 | } |
---|
| 520 | |
---|
| 521 | /** |
---|
| 522 | * Method for performing one fold in the cross-validation of minimal |
---|
| 523 | * cost-complexity pruning. Generates a sequence of alpha-values with error |
---|
| 524 | * estimates for the corresponding (partially pruned) trees, given the test |
---|
| 525 | * set of that fold. |
---|
| 526 | * |
---|
| 527 | * @param alphas array to hold the generated alpha-values |
---|
| 528 | * @param errors array to hold the corresponding error estimates |
---|
| 529 | * @param test test set of that fold (to obtain error estimates) |
---|
| 530 | * @return the iteration of the pruning |
---|
| 531 | * @throws Exception if something goes wrong |
---|
| 532 | */ |
---|
| 533 | public int prune(double[] alphas, double[] errors, Instances test) |
---|
| 534 | throws Exception { |
---|
| 535 | |
---|
| 536 | Vector nodeList; |
---|
| 537 | |
---|
| 538 | // determine training error of subtrees (both with and without replacing a subtree), |
---|
| 539 | // and calculate alpha-values from them |
---|
| 540 | modelErrors(); |
---|
| 541 | treeErrors(); |
---|
| 542 | calculateAlphas(); |
---|
| 543 | |
---|
| 544 | // get list of all inner nodes in the tree |
---|
| 545 | nodeList = getInnerNodes(); |
---|
| 546 | |
---|
| 547 | boolean prune = (nodeList.size() > 0); |
---|
| 548 | |
---|
| 549 | //alpha_0 is always zero (unpruned tree) |
---|
| 550 | alphas[0] = 0; |
---|
| 551 | |
---|
| 552 | Evaluation eval; |
---|
| 553 | |
---|
| 554 | // error of unpruned tree |
---|
| 555 | if (errors != null) { |
---|
| 556 | eval = new Evaluation(test); |
---|
| 557 | eval.evaluateModel(this, test); |
---|
| 558 | errors[0] = eval.errorRate(); |
---|
| 559 | } |
---|
| 560 | |
---|
| 561 | int iteration = 0; |
---|
| 562 | double preAlpha = Double.MAX_VALUE; |
---|
| 563 | while (prune) { |
---|
| 564 | |
---|
| 565 | iteration++; |
---|
| 566 | |
---|
| 567 | // get node with minimum alpha |
---|
| 568 | SimpleCart nodeToPrune = nodeToPrune(nodeList); |
---|
| 569 | |
---|
| 570 | // do not set m_sons null, want to unprune |
---|
| 571 | nodeToPrune.m_isLeaf = true; |
---|
| 572 | |
---|
| 573 | // normally would not happen |
---|
| 574 | if (nodeToPrune.m_Alpha==preAlpha) { |
---|
| 575 | iteration--; |
---|
| 576 | treeErrors(); |
---|
| 577 | calculateAlphas(); |
---|
| 578 | nodeList = getInnerNodes(); |
---|
| 579 | prune = (nodeList.size() > 0); |
---|
| 580 | continue; |
---|
| 581 | } |
---|
| 582 | |
---|
| 583 | // get alpha-value of node |
---|
| 584 | alphas[iteration] = nodeToPrune.m_Alpha; |
---|
| 585 | |
---|
| 586 | // log error |
---|
| 587 | if (errors != null) { |
---|
| 588 | eval = new Evaluation(test); |
---|
| 589 | eval.evaluateModel(this, test); |
---|
| 590 | errors[iteration] = eval.errorRate(); |
---|
| 591 | } |
---|
| 592 | preAlpha = nodeToPrune.m_Alpha; |
---|
| 593 | |
---|
| 594 | //update errors/alphas |
---|
| 595 | treeErrors(); |
---|
| 596 | calculateAlphas(); |
---|
| 597 | |
---|
| 598 | nodeList = getInnerNodes(); |
---|
| 599 | prune = (nodeList.size() > 0); |
---|
| 600 | } |
---|
| 601 | |
---|
| 602 | //set last alpha 1 to indicate end |
---|
| 603 | alphas[iteration + 1] = 1.0; |
---|
| 604 | return iteration; |
---|
| 605 | } |
---|
| 606 | |
---|
| 607 | /** |
---|
| 608 | * Method to "unprune" the CART tree. Sets all leaf-fields to false. |
---|
| 609 | * Faster than re-growing the tree because CART do not have to be fit again. |
---|
| 610 | */ |
---|
| 611 | protected void unprune() { |
---|
| 612 | if (m_Successors != null) { |
---|
| 613 | m_isLeaf = false; |
---|
| 614 | for (int i = 0; i < m_Successors.length; i++) m_Successors[i].unprune(); |
---|
| 615 | } |
---|
| 616 | } |
---|
| 617 | |
---|
| 618 | /** |
---|
| 619 | * Compute distributions, proportions and total weights of two successor |
---|
| 620 | * nodes for a given numeric attribute. |
---|
| 621 | * |
---|
| 622 | * @param props proportions of each two branches for each attribute |
---|
| 623 | * @param dists class distributions of two branches for each attribute |
---|
| 624 | * @param att numeric att split on |
---|
| 625 | * @param sortedIndices sorted indices of instances for the attirubte |
---|
| 626 | * @param weights weights of instances for the attirbute |
---|
| 627 | * @param subsetWeights total weight of two branches split based on the attribute |
---|
| 628 | * @param giniGains Gini gains for each attribute |
---|
| 629 | * @param data training instances |
---|
| 630 | * @return Gini gain the given numeric attribute |
---|
| 631 | * @throws Exception if something goes wrong |
---|
| 632 | */ |
---|
| 633 | protected double numericDistribution(double[][] props, double[][][] dists, |
---|
| 634 | Attribute att, int[] sortedIndices, double[] weights, double[][] subsetWeights, |
---|
| 635 | double[] giniGains, Instances data) |
---|
| 636 | throws Exception { |
---|
| 637 | |
---|
| 638 | double splitPoint = Double.NaN; |
---|
| 639 | double[][] dist = null; |
---|
| 640 | int numClasses = data.numClasses(); |
---|
| 641 | int i; // differ instances with or without missing values |
---|
| 642 | |
---|
| 643 | double[][] currDist = new double[2][numClasses]; |
---|
| 644 | dist = new double[2][numClasses]; |
---|
| 645 | |
---|
| 646 | // Move all instances without missing values into second subset |
---|
| 647 | double[] parentDist = new double[numClasses]; |
---|
| 648 | int missingStart = 0; |
---|
| 649 | for (int j = 0; j < sortedIndices.length; j++) { |
---|
| 650 | Instance inst = data.instance(sortedIndices[j]); |
---|
| 651 | if (!inst.isMissing(att)) { |
---|
| 652 | missingStart ++; |
---|
| 653 | currDist[1][(int)inst.classValue()] += weights[j]; |
---|
| 654 | } |
---|
| 655 | parentDist[(int)inst.classValue()] += weights[j]; |
---|
| 656 | } |
---|
| 657 | System.arraycopy(currDist[1], 0, dist[1], 0, dist[1].length); |
---|
| 658 | |
---|
| 659 | // Try all possible split points |
---|
| 660 | double currSplit = data.instance(sortedIndices[0]).value(att); |
---|
| 661 | double currGiniGain; |
---|
| 662 | double bestGiniGain = -Double.MAX_VALUE; |
---|
| 663 | |
---|
| 664 | for (i = 0; i < sortedIndices.length; i++) { |
---|
| 665 | Instance inst = data.instance(sortedIndices[i]); |
---|
| 666 | if (inst.isMissing(att)) { |
---|
| 667 | break; |
---|
| 668 | } |
---|
| 669 | if (inst.value(att) > currSplit) { |
---|
| 670 | |
---|
| 671 | double[][] tempDist = new double[2][numClasses]; |
---|
| 672 | for (int k=0; k<2; k++) { |
---|
| 673 | //tempDist[k] = currDist[k]; |
---|
| 674 | System.arraycopy(currDist[k], 0, tempDist[k], 0, tempDist[k].length); |
---|
| 675 | } |
---|
| 676 | |
---|
| 677 | double[] tempProps = new double[2]; |
---|
| 678 | for (int k=0; k<2; k++) { |
---|
| 679 | tempProps[k] = Utils.sum(tempDist[k]); |
---|
| 680 | } |
---|
| 681 | |
---|
| 682 | if (Utils.sum(tempProps) !=0) Utils.normalize(tempProps); |
---|
| 683 | |
---|
| 684 | // split missing values |
---|
| 685 | int index = missingStart; |
---|
| 686 | while (index < sortedIndices.length) { |
---|
| 687 | Instance insta = data.instance(sortedIndices[index]); |
---|
| 688 | for (int j = 0; j < 2; j++) { |
---|
| 689 | tempDist[j][(int)insta.classValue()] += tempProps[j] * weights[index]; |
---|
| 690 | } |
---|
| 691 | index++; |
---|
| 692 | } |
---|
| 693 | |
---|
| 694 | currGiniGain = computeGiniGain(parentDist,tempDist); |
---|
| 695 | |
---|
| 696 | if (currGiniGain > bestGiniGain) { |
---|
| 697 | bestGiniGain = currGiniGain; |
---|
| 698 | |
---|
| 699 | // clean split point |
---|
| 700 | // splitPoint = Math.rint((inst.value(att) + currSplit)/2.0*100000)/100000.0; |
---|
| 701 | splitPoint = (inst.value(att) + currSplit) / 2.0; |
---|
| 702 | |
---|
| 703 | for (int j = 0; j < currDist.length; j++) { |
---|
| 704 | System.arraycopy(tempDist[j], 0, dist[j], 0, |
---|
| 705 | dist[j].length); |
---|
| 706 | } |
---|
| 707 | } |
---|
| 708 | } |
---|
| 709 | currSplit = inst.value(att); |
---|
| 710 | currDist[0][(int)inst.classValue()] += weights[i]; |
---|
| 711 | currDist[1][(int)inst.classValue()] -= weights[i]; |
---|
| 712 | } |
---|
| 713 | |
---|
| 714 | // Compute weights |
---|
| 715 | int attIndex = att.index(); |
---|
| 716 | props[attIndex] = new double[2]; |
---|
| 717 | for (int k = 0; k < 2; k++) { |
---|
| 718 | props[attIndex][k] = Utils.sum(dist[k]); |
---|
| 719 | } |
---|
| 720 | if (Utils.sum(props[attIndex]) != 0) Utils.normalize(props[attIndex]); |
---|
| 721 | |
---|
| 722 | // Compute subset weights |
---|
| 723 | subsetWeights[attIndex] = new double[2]; |
---|
| 724 | for (int j = 0; j < 2; j++) { |
---|
| 725 | subsetWeights[attIndex][j] += Utils.sum(dist[j]); |
---|
| 726 | } |
---|
| 727 | |
---|
| 728 | // clean Gini gain |
---|
| 729 | //giniGains[attIndex] = Math.rint(bestGiniGain*10000000)/10000000.0; |
---|
| 730 | giniGains[attIndex] = bestGiniGain; |
---|
| 731 | dists[attIndex] = dist; |
---|
| 732 | |
---|
| 733 | return splitPoint; |
---|
| 734 | } |
---|
| 735 | |
---|
| 736 | /** |
---|
| 737 | * Compute distributions, proportions and total weights of two successor |
---|
| 738 | * nodes for a given nominal attribute. |
---|
| 739 | * |
---|
| 740 | * @param props proportions of each two branches for each attribute |
---|
| 741 | * @param dists class distributions of two branches for each attribute |
---|
| 742 | * @param att numeric att split on |
---|
| 743 | * @param sortedIndices sorted indices of instances for the attirubte |
---|
| 744 | * @param weights weights of instances for the attirbute |
---|
| 745 | * @param subsetWeights total weight of two branches split based on the attribute |
---|
| 746 | * @param giniGains Gini gains for each attribute |
---|
| 747 | * @param data training instances |
---|
| 748 | * @param useHeuristic if use heuristic search |
---|
| 749 | * @return Gini gain for the given nominal attribute |
---|
| 750 | * @throws Exception if something goes wrong |
---|
| 751 | */ |
---|
| 752 | protected String nominalDistribution(double[][] props, double[][][] dists, |
---|
| 753 | Attribute att, int[] sortedIndices, double[] weights, double[][] subsetWeights, |
---|
| 754 | double[] giniGains, Instances data, boolean useHeuristic) |
---|
| 755 | throws Exception { |
---|
| 756 | |
---|
| 757 | String[] values = new String[att.numValues()]; |
---|
| 758 | int numCat = values.length; // number of values of the attribute |
---|
| 759 | int numClasses = data.numClasses(); |
---|
| 760 | |
---|
| 761 | String bestSplitString = ""; |
---|
| 762 | double bestGiniGain = -Double.MAX_VALUE; |
---|
| 763 | |
---|
| 764 | // class frequency for each value |
---|
| 765 | int[] classFreq = new int[numCat]; |
---|
| 766 | for (int j=0; j<numCat; j++) classFreq[j] = 0; |
---|
| 767 | |
---|
| 768 | double[] parentDist = new double[numClasses]; |
---|
| 769 | double[][] currDist = new double[2][numClasses]; |
---|
| 770 | double[][] dist = new double[2][numClasses]; |
---|
| 771 | int missingStart = 0; |
---|
| 772 | |
---|
| 773 | for (int i = 0; i < sortedIndices.length; i++) { |
---|
| 774 | Instance inst = data.instance(sortedIndices[i]); |
---|
| 775 | if (!inst.isMissing(att)) { |
---|
| 776 | missingStart++; |
---|
| 777 | classFreq[(int)inst.value(att)] ++; |
---|
| 778 | } |
---|
| 779 | parentDist[(int)inst.classValue()] += weights[i]; |
---|
| 780 | } |
---|
| 781 | |
---|
| 782 | // count the number of values that class frequency is not 0 |
---|
| 783 | int nonEmpty = 0; |
---|
| 784 | for (int j=0; j<numCat; j++) { |
---|
| 785 | if (classFreq[j]!=0) nonEmpty ++; |
---|
| 786 | } |
---|
| 787 | |
---|
| 788 | // attribute values that class frequency is not 0 |
---|
| 789 | String[] nonEmptyValues = new String[nonEmpty]; |
---|
| 790 | int nonEmptyIndex = 0; |
---|
| 791 | for (int j=0; j<numCat; j++) { |
---|
| 792 | if (classFreq[j]!=0) { |
---|
| 793 | nonEmptyValues[nonEmptyIndex] = att.value(j); |
---|
| 794 | nonEmptyIndex ++; |
---|
| 795 | } |
---|
| 796 | } |
---|
| 797 | |
---|
| 798 | // attribute values that class frequency is 0 |
---|
| 799 | int empty = numCat - nonEmpty; |
---|
| 800 | String[] emptyValues = new String[empty]; |
---|
| 801 | int emptyIndex = 0; |
---|
| 802 | for (int j=0; j<numCat; j++) { |
---|
| 803 | if (classFreq[j]==0) { |
---|
| 804 | emptyValues[emptyIndex] = att.value(j); |
---|
| 805 | emptyIndex ++; |
---|
| 806 | } |
---|
| 807 | } |
---|
| 808 | |
---|
| 809 | if (nonEmpty<=1) { |
---|
| 810 | giniGains[att.index()] = 0; |
---|
| 811 | return ""; |
---|
| 812 | } |
---|
| 813 | |
---|
| 814 | // for tow-class probloms |
---|
| 815 | if (data.numClasses()==2) { |
---|
| 816 | |
---|
| 817 | //// Firstly, for attribute values which class frequency is not zero |
---|
| 818 | |
---|
| 819 | // probability of class 0 for each attribute value |
---|
| 820 | double[] pClass0 = new double[nonEmpty]; |
---|
| 821 | // class distribution for each attribute value |
---|
| 822 | double[][] valDist = new double[nonEmpty][2]; |
---|
| 823 | |
---|
| 824 | for (int j=0; j<nonEmpty; j++) { |
---|
| 825 | for (int k=0; k<2; k++) { |
---|
| 826 | valDist[j][k] = 0; |
---|
| 827 | } |
---|
| 828 | } |
---|
| 829 | |
---|
| 830 | for (int i = 0; i < sortedIndices.length; i++) { |
---|
| 831 | Instance inst = data.instance(sortedIndices[i]); |
---|
| 832 | if (inst.isMissing(att)) { |
---|
| 833 | break; |
---|
| 834 | } |
---|
| 835 | |
---|
| 836 | for (int j=0; j<nonEmpty; j++) { |
---|
| 837 | if (att.value((int)inst.value(att)).compareTo(nonEmptyValues[j])==0) { |
---|
| 838 | valDist[j][(int)inst.classValue()] += inst.weight(); |
---|
| 839 | break; |
---|
| 840 | } |
---|
| 841 | } |
---|
| 842 | } |
---|
| 843 | |
---|
| 844 | for (int j=0; j<nonEmpty; j++) { |
---|
| 845 | double distSum = Utils.sum(valDist[j]); |
---|
| 846 | if (distSum==0) pClass0[j]=0; |
---|
| 847 | else pClass0[j] = valDist[j][0]/distSum; |
---|
| 848 | } |
---|
| 849 | |
---|
| 850 | // sort category according to the probability of the first class |
---|
| 851 | String[] sortedValues = new String[nonEmpty]; |
---|
| 852 | for (int j=0; j<nonEmpty; j++) { |
---|
| 853 | sortedValues[j] = nonEmptyValues[Utils.minIndex(pClass0)]; |
---|
| 854 | pClass0[Utils.minIndex(pClass0)] = Double.MAX_VALUE; |
---|
| 855 | } |
---|
| 856 | |
---|
| 857 | // Find a subset of attribute values that maximize Gini decrease |
---|
| 858 | |
---|
| 859 | // for the attribute values that class frequency is not 0 |
---|
| 860 | String tempStr = ""; |
---|
| 861 | |
---|
| 862 | for (int j=0; j<nonEmpty-1; j++) { |
---|
| 863 | currDist = new double[2][numClasses]; |
---|
| 864 | if (tempStr=="") tempStr="(" + sortedValues[j] + ")"; |
---|
| 865 | else tempStr += "|"+ "(" + sortedValues[j] + ")"; |
---|
| 866 | for (int i=0; i<sortedIndices.length;i++) { |
---|
| 867 | Instance inst = data.instance(sortedIndices[i]); |
---|
| 868 | if (inst.isMissing(att)) { |
---|
| 869 | break; |
---|
| 870 | } |
---|
| 871 | |
---|
| 872 | if (tempStr.indexOf |
---|
| 873 | ("(" + att.value((int)inst.value(att)) + ")")!=-1) { |
---|
| 874 | currDist[0][(int)inst.classValue()] += weights[i]; |
---|
| 875 | } else currDist[1][(int)inst.classValue()] += weights[i]; |
---|
| 876 | } |
---|
| 877 | |
---|
| 878 | double[][] tempDist = new double[2][numClasses]; |
---|
| 879 | for (int kk=0; kk<2; kk++) { |
---|
| 880 | tempDist[kk] = currDist[kk]; |
---|
| 881 | } |
---|
| 882 | |
---|
| 883 | double[] tempProps = new double[2]; |
---|
| 884 | for (int kk=0; kk<2; kk++) { |
---|
| 885 | tempProps[kk] = Utils.sum(tempDist[kk]); |
---|
| 886 | } |
---|
| 887 | |
---|
| 888 | if (Utils.sum(tempProps)!=0) Utils.normalize(tempProps); |
---|
| 889 | |
---|
| 890 | // split missing values |
---|
| 891 | int mstart = missingStart; |
---|
| 892 | while (mstart < sortedIndices.length) { |
---|
| 893 | Instance insta = data.instance(sortedIndices[mstart]); |
---|
| 894 | for (int jj = 0; jj < 2; jj++) { |
---|
| 895 | tempDist[jj][(int)insta.classValue()] += tempProps[jj] * weights[mstart]; |
---|
| 896 | } |
---|
| 897 | mstart++; |
---|
| 898 | } |
---|
| 899 | |
---|
| 900 | double currGiniGain = computeGiniGain(parentDist,tempDist); |
---|
| 901 | |
---|
| 902 | if (currGiniGain>bestGiniGain) { |
---|
| 903 | bestGiniGain = currGiniGain; |
---|
| 904 | bestSplitString = tempStr; |
---|
| 905 | for (int jj = 0; jj < 2; jj++) { |
---|
| 906 | //dist[jj] = new double[currDist[jj].length]; |
---|
| 907 | System.arraycopy(tempDist[jj], 0, dist[jj], 0, |
---|
| 908 | dist[jj].length); |
---|
| 909 | } |
---|
| 910 | } |
---|
| 911 | } |
---|
| 912 | } |
---|
| 913 | |
---|
| 914 | // multi-class problems - exhaustive search |
---|
| 915 | else if (!useHeuristic || nonEmpty<=4) { |
---|
| 916 | |
---|
| 917 | // Firstly, for attribute values which class frequency is not zero |
---|
| 918 | for (int i=0; i<(int)Math.pow(2,nonEmpty-1); i++) { |
---|
| 919 | String tempStr=""; |
---|
| 920 | currDist = new double[2][numClasses]; |
---|
| 921 | int mod; |
---|
| 922 | int bit10 = i; |
---|
| 923 | for (int j=nonEmpty-1; j>=0; j--) { |
---|
| 924 | mod = bit10%2; // convert from 10bit to 2bit |
---|
| 925 | if (mod==1) { |
---|
| 926 | if (tempStr=="") tempStr = "("+nonEmptyValues[j]+")"; |
---|
| 927 | else tempStr += "|" + "("+nonEmptyValues[j]+")"; |
---|
| 928 | } |
---|
| 929 | bit10 = bit10/2; |
---|
| 930 | } |
---|
| 931 | for (int j=0; j<sortedIndices.length;j++) { |
---|
| 932 | Instance inst = data.instance(sortedIndices[j]); |
---|
| 933 | if (inst.isMissing(att)) { |
---|
| 934 | break; |
---|
| 935 | } |
---|
| 936 | |
---|
| 937 | if (tempStr.indexOf("("+att.value((int)inst.value(att))+")")!=-1) { |
---|
| 938 | currDist[0][(int)inst.classValue()] += weights[j]; |
---|
| 939 | } else currDist[1][(int)inst.classValue()] += weights[j]; |
---|
| 940 | } |
---|
| 941 | |
---|
| 942 | double[][] tempDist = new double[2][numClasses]; |
---|
| 943 | for (int k=0; k<2; k++) { |
---|
| 944 | tempDist[k] = currDist[k]; |
---|
| 945 | } |
---|
| 946 | |
---|
| 947 | double[] tempProps = new double[2]; |
---|
| 948 | for (int k=0; k<2; k++) { |
---|
| 949 | tempProps[k] = Utils.sum(tempDist[k]); |
---|
| 950 | } |
---|
| 951 | |
---|
| 952 | if (Utils.sum(tempProps)!=0) Utils.normalize(tempProps); |
---|
| 953 | |
---|
| 954 | // split missing values |
---|
| 955 | int index = missingStart; |
---|
| 956 | while (index < sortedIndices.length) { |
---|
| 957 | Instance insta = data.instance(sortedIndices[index]); |
---|
| 958 | for (int j = 0; j < 2; j++) { |
---|
| 959 | tempDist[j][(int)insta.classValue()] += tempProps[j] * weights[index]; |
---|
| 960 | } |
---|
| 961 | index++; |
---|
| 962 | } |
---|
| 963 | |
---|
| 964 | double currGiniGain = computeGiniGain(parentDist,tempDist); |
---|
| 965 | |
---|
| 966 | if (currGiniGain>bestGiniGain) { |
---|
| 967 | bestGiniGain = currGiniGain; |
---|
| 968 | bestSplitString = tempStr; |
---|
| 969 | for (int j = 0; j < 2; j++) { |
---|
| 970 | //dist[jj] = new double[currDist[jj].length]; |
---|
| 971 | System.arraycopy(tempDist[j], 0, dist[j], 0, |
---|
| 972 | dist[j].length); |
---|
| 973 | } |
---|
| 974 | } |
---|
| 975 | } |
---|
| 976 | } |
---|
| 977 | |
---|
| 978 | // huristic search to solve multi-classes problems |
---|
| 979 | else { |
---|
| 980 | // Firstly, for attribute values which class frequency is not zero |
---|
| 981 | int n = nonEmpty; |
---|
| 982 | int k = data.numClasses(); // number of classes of the data |
---|
| 983 | double[][] P = new double[n][k]; // class probability matrix |
---|
| 984 | int[] numInstancesValue = new int[n]; // number of instances for an attribute value |
---|
| 985 | double[] meanClass = new double[k]; // vector of mean class probability |
---|
| 986 | int numInstances = data.numInstances(); // total number of instances |
---|
| 987 | |
---|
| 988 | // initialize the vector of mean class probability |
---|
| 989 | for (int j=0; j<meanClass.length; j++) meanClass[j]=0; |
---|
| 990 | |
---|
| 991 | for (int j=0; j<numInstances; j++) { |
---|
| 992 | Instance inst = (Instance)data.instance(j); |
---|
| 993 | int valueIndex = 0; // attribute value index in nonEmptyValues |
---|
| 994 | for (int i=0; i<nonEmpty; i++) { |
---|
| 995 | if (att.value((int)inst.value(att)).compareToIgnoreCase(nonEmptyValues[i])==0){ |
---|
| 996 | valueIndex = i; |
---|
| 997 | break; |
---|
| 998 | } |
---|
| 999 | } |
---|
| 1000 | P[valueIndex][(int)inst.classValue()]++; |
---|
| 1001 | numInstancesValue[valueIndex]++; |
---|
| 1002 | meanClass[(int)inst.classValue()]++; |
---|
| 1003 | } |
---|
| 1004 | |
---|
| 1005 | // calculate the class probability matrix |
---|
| 1006 | for (int i=0; i<P.length; i++) { |
---|
| 1007 | for (int j=0; j<P[0].length; j++) { |
---|
| 1008 | if (numInstancesValue[i]==0) P[i][j]=0; |
---|
| 1009 | else P[i][j]/=numInstancesValue[i]; |
---|
| 1010 | } |
---|
| 1011 | } |
---|
| 1012 | |
---|
| 1013 | //calculate the vector of mean class probability |
---|
| 1014 | for (int i=0; i<meanClass.length; i++) { |
---|
| 1015 | meanClass[i]/=numInstances; |
---|
| 1016 | } |
---|
| 1017 | |
---|
| 1018 | // calculate the covariance matrix |
---|
| 1019 | double[][] covariance = new double[k][k]; |
---|
| 1020 | for (int i1=0; i1<k; i1++) { |
---|
| 1021 | for (int i2=0; i2<k; i2++) { |
---|
| 1022 | double element = 0; |
---|
| 1023 | for (int j=0; j<n; j++) { |
---|
| 1024 | element += (P[j][i2]-meanClass[i2])*(P[j][i1]-meanClass[i1]) |
---|
| 1025 | *numInstancesValue[j]; |
---|
| 1026 | } |
---|
| 1027 | covariance[i1][i2] = element; |
---|
| 1028 | } |
---|
| 1029 | } |
---|
| 1030 | |
---|
| 1031 | Matrix matrix = new Matrix(covariance); |
---|
| 1032 | weka.core.matrix.EigenvalueDecomposition eigen = |
---|
| 1033 | new weka.core.matrix.EigenvalueDecomposition(matrix); |
---|
| 1034 | double[] eigenValues = eigen.getRealEigenvalues(); |
---|
| 1035 | |
---|
| 1036 | // find index of the largest eigenvalue |
---|
| 1037 | int index=0; |
---|
| 1038 | double largest = eigenValues[0]; |
---|
| 1039 | for (int i=1; i<eigenValues.length; i++) { |
---|
| 1040 | if (eigenValues[i]>largest) { |
---|
| 1041 | index=i; |
---|
| 1042 | largest = eigenValues[i]; |
---|
| 1043 | } |
---|
| 1044 | } |
---|
| 1045 | |
---|
| 1046 | // calculate the first principle component |
---|
| 1047 | double[] FPC = new double[k]; |
---|
| 1048 | Matrix eigenVector = eigen.getV(); |
---|
| 1049 | double[][] vectorArray = eigenVector.getArray(); |
---|
| 1050 | for (int i=0; i<FPC.length; i++) { |
---|
| 1051 | FPC[i] = vectorArray[i][index]; |
---|
| 1052 | } |
---|
| 1053 | |
---|
| 1054 | // calculate the first principle component scores |
---|
| 1055 | //System.out.println("the first principle component scores: "); |
---|
| 1056 | double[] Sa = new double[n]; |
---|
| 1057 | for (int i=0; i<Sa.length; i++) { |
---|
| 1058 | Sa[i]=0; |
---|
| 1059 | for (int j=0; j<k; j++) { |
---|
| 1060 | Sa[i] += FPC[j]*P[i][j]; |
---|
| 1061 | } |
---|
| 1062 | } |
---|
| 1063 | |
---|
| 1064 | // sort category according to Sa(s) |
---|
| 1065 | double[] pCopy = new double[n]; |
---|
| 1066 | System.arraycopy(Sa,0,pCopy,0,n); |
---|
| 1067 | String[] sortedValues = new String[n]; |
---|
| 1068 | Arrays.sort(Sa); |
---|
| 1069 | |
---|
| 1070 | for (int j=0; j<n; j++) { |
---|
| 1071 | sortedValues[j] = nonEmptyValues[Utils.minIndex(pCopy)]; |
---|
| 1072 | pCopy[Utils.minIndex(pCopy)] = Double.MAX_VALUE; |
---|
| 1073 | } |
---|
| 1074 | |
---|
| 1075 | // for the attribute values that class frequency is not 0 |
---|
| 1076 | String tempStr = ""; |
---|
| 1077 | |
---|
| 1078 | for (int j=0; j<nonEmpty-1; j++) { |
---|
| 1079 | currDist = new double[2][numClasses]; |
---|
| 1080 | if (tempStr=="") tempStr="(" + sortedValues[j] + ")"; |
---|
| 1081 | else tempStr += "|"+ "(" + sortedValues[j] + ")"; |
---|
| 1082 | for (int i=0; i<sortedIndices.length;i++) { |
---|
| 1083 | Instance inst = data.instance(sortedIndices[i]); |
---|
| 1084 | if (inst.isMissing(att)) { |
---|
| 1085 | break; |
---|
| 1086 | } |
---|
| 1087 | |
---|
| 1088 | if (tempStr.indexOf |
---|
| 1089 | ("(" + att.value((int)inst.value(att)) + ")")!=-1) { |
---|
| 1090 | currDist[0][(int)inst.classValue()] += weights[i]; |
---|
| 1091 | } else currDist[1][(int)inst.classValue()] += weights[i]; |
---|
| 1092 | } |
---|
| 1093 | |
---|
| 1094 | double[][] tempDist = new double[2][numClasses]; |
---|
| 1095 | for (int kk=0; kk<2; kk++) { |
---|
| 1096 | tempDist[kk] = currDist[kk]; |
---|
| 1097 | } |
---|
| 1098 | |
---|
| 1099 | double[] tempProps = new double[2]; |
---|
| 1100 | for (int kk=0; kk<2; kk++) { |
---|
| 1101 | tempProps[kk] = Utils.sum(tempDist[kk]); |
---|
| 1102 | } |
---|
| 1103 | |
---|
| 1104 | if (Utils.sum(tempProps)!=0) Utils.normalize(tempProps); |
---|
| 1105 | |
---|
| 1106 | // split missing values |
---|
| 1107 | int mstart = missingStart; |
---|
| 1108 | while (mstart < sortedIndices.length) { |
---|
| 1109 | Instance insta = data.instance(sortedIndices[mstart]); |
---|
| 1110 | for (int jj = 0; jj < 2; jj++) { |
---|
| 1111 | tempDist[jj][(int)insta.classValue()] += tempProps[jj] * weights[mstart]; |
---|
| 1112 | } |
---|
| 1113 | mstart++; |
---|
| 1114 | } |
---|
| 1115 | |
---|
| 1116 | double currGiniGain = computeGiniGain(parentDist,tempDist); |
---|
| 1117 | |
---|
| 1118 | if (currGiniGain>bestGiniGain) { |
---|
| 1119 | bestGiniGain = currGiniGain; |
---|
| 1120 | bestSplitString = tempStr; |
---|
| 1121 | for (int jj = 0; jj < 2; jj++) { |
---|
| 1122 | //dist[jj] = new double[currDist[jj].length]; |
---|
| 1123 | System.arraycopy(tempDist[jj], 0, dist[jj], 0, |
---|
| 1124 | dist[jj].length); |
---|
| 1125 | } |
---|
| 1126 | } |
---|
| 1127 | } |
---|
| 1128 | } |
---|
| 1129 | |
---|
| 1130 | // Compute weights |
---|
| 1131 | int attIndex = att.index(); |
---|
| 1132 | props[attIndex] = new double[2]; |
---|
| 1133 | for (int k = 0; k < 2; k++) { |
---|
| 1134 | props[attIndex][k] = Utils.sum(dist[k]); |
---|
| 1135 | } |
---|
| 1136 | |
---|
| 1137 | if (!(Utils.sum(props[attIndex]) > 0)) { |
---|
| 1138 | for (int k = 0; k < props[attIndex].length; k++) { |
---|
| 1139 | props[attIndex][k] = 1.0 / (double)props[attIndex].length; |
---|
| 1140 | } |
---|
| 1141 | } else { |
---|
| 1142 | Utils.normalize(props[attIndex]); |
---|
| 1143 | } |
---|
| 1144 | |
---|
| 1145 | |
---|
| 1146 | // Compute subset weights |
---|
| 1147 | subsetWeights[attIndex] = new double[2]; |
---|
| 1148 | for (int j = 0; j < 2; j++) { |
---|
| 1149 | subsetWeights[attIndex][j] += Utils.sum(dist[j]); |
---|
| 1150 | } |
---|
| 1151 | |
---|
| 1152 | // Then, for the attribute values that class frequency is 0, split it into the |
---|
| 1153 | // most frequent branch |
---|
| 1154 | for (int j=0; j<empty; j++) { |
---|
| 1155 | if (props[attIndex][0]>=props[attIndex][1]) { |
---|
| 1156 | if (bestSplitString=="") bestSplitString = "(" + emptyValues[j] + ")"; |
---|
| 1157 | else bestSplitString += "|" + "(" + emptyValues[j] + ")"; |
---|
| 1158 | } |
---|
| 1159 | } |
---|
| 1160 | |
---|
| 1161 | // clean Gini gain for the attribute |
---|
| 1162 | //giniGains[attIndex] = Math.rint(bestGiniGain*10000000)/10000000.0; |
---|
| 1163 | giniGains[attIndex] = bestGiniGain; |
---|
| 1164 | |
---|
| 1165 | dists[attIndex] = dist; |
---|
| 1166 | return bestSplitString; |
---|
| 1167 | } |
---|
| 1168 | |
---|
| 1169 | |
---|
| 1170 | /** |
---|
| 1171 | * Split data into two subsets and store sorted indices and weights for two |
---|
| 1172 | * successor nodes. |
---|
| 1173 | * |
---|
| 1174 | * @param subsetIndices sorted indecis of instances for each attribute |
---|
| 1175 | * for two successor node |
---|
| 1176 | * @param subsetWeights weights of instances for each attribute for |
---|
| 1177 | * two successor node |
---|
| 1178 | * @param att attribute the split based on |
---|
| 1179 | * @param splitPoint split point the split based on if att is numeric |
---|
| 1180 | * @param splitStr split subset the split based on if att is nominal |
---|
| 1181 | * @param sortedIndices sorted indices of the instances to be split |
---|
| 1182 | * @param weights weights of the instances to bes split |
---|
| 1183 | * @param data training data |
---|
| 1184 | * @throws Exception if something goes wrong |
---|
| 1185 | */ |
---|
| 1186 | protected void splitData(int[][][] subsetIndices, double[][][] subsetWeights, |
---|
| 1187 | Attribute att, double splitPoint, String splitStr, int[][] sortedIndices, |
---|
| 1188 | double[][] weights, Instances data) throws Exception { |
---|
| 1189 | |
---|
| 1190 | int j; |
---|
| 1191 | // For each attribute |
---|
| 1192 | for (int i = 0; i < data.numAttributes(); i++) { |
---|
| 1193 | if (i==data.classIndex()) continue; |
---|
| 1194 | int[] num = new int[2]; |
---|
| 1195 | for (int k = 0; k < 2; k++) { |
---|
| 1196 | subsetIndices[k][i] = new int[sortedIndices[i].length]; |
---|
| 1197 | subsetWeights[k][i] = new double[weights[i].length]; |
---|
| 1198 | } |
---|
| 1199 | |
---|
| 1200 | for (j = 0; j < sortedIndices[i].length; j++) { |
---|
| 1201 | Instance inst = data.instance(sortedIndices[i][j]); |
---|
| 1202 | if (inst.isMissing(att)) { |
---|
| 1203 | // Split instance up |
---|
| 1204 | for (int k = 0; k < 2; k++) { |
---|
| 1205 | if (m_Props[k] > 0) { |
---|
| 1206 | subsetIndices[k][i][num[k]] = sortedIndices[i][j]; |
---|
| 1207 | subsetWeights[k][i][num[k]] = m_Props[k] * weights[i][j]; |
---|
| 1208 | num[k]++; |
---|
| 1209 | } |
---|
| 1210 | } |
---|
| 1211 | } else { |
---|
| 1212 | int subset; |
---|
| 1213 | if (att.isNumeric()) { |
---|
| 1214 | subset = (inst.value(att) < splitPoint) ? 0 : 1; |
---|
| 1215 | } else { // nominal attribute |
---|
| 1216 | if (splitStr.indexOf |
---|
| 1217 | ("(" + att.value((int)inst.value(att.index()))+")")!=-1) { |
---|
| 1218 | subset = 0; |
---|
| 1219 | } else subset = 1; |
---|
| 1220 | } |
---|
| 1221 | subsetIndices[subset][i][num[subset]] = sortedIndices[i][j]; |
---|
| 1222 | subsetWeights[subset][i][num[subset]] = weights[i][j]; |
---|
| 1223 | num[subset]++; |
---|
| 1224 | } |
---|
| 1225 | } |
---|
| 1226 | |
---|
| 1227 | // Trim arrays |
---|
| 1228 | for (int k = 0; k < 2; k++) { |
---|
| 1229 | int[] copy = new int[num[k]]; |
---|
| 1230 | System.arraycopy(subsetIndices[k][i], 0, copy, 0, num[k]); |
---|
| 1231 | subsetIndices[k][i] = copy; |
---|
| 1232 | double[] copyWeights = new double[num[k]]; |
---|
| 1233 | System.arraycopy(subsetWeights[k][i], 0 ,copyWeights, 0, num[k]); |
---|
| 1234 | subsetWeights[k][i] = copyWeights; |
---|
| 1235 | } |
---|
| 1236 | } |
---|
| 1237 | } |
---|
| 1238 | |
---|
| 1239 | /** |
---|
| 1240 | * Updates the numIncorrectModel field for all nodes when subtree (to be |
---|
| 1241 | * pruned) is rooted. This is needed for calculating the alpha-values. |
---|
| 1242 | * |
---|
| 1243 | * @throws Exception if something goes wrong |
---|
| 1244 | */ |
---|
| 1245 | public void modelErrors() throws Exception{ |
---|
| 1246 | Evaluation eval = new Evaluation(m_train); |
---|
| 1247 | |
---|
| 1248 | if (!m_isLeaf) { |
---|
| 1249 | m_isLeaf = true; //temporarily make leaf |
---|
| 1250 | |
---|
| 1251 | // calculate distribution for evaluation |
---|
| 1252 | eval.evaluateModel(this, m_train); |
---|
| 1253 | m_numIncorrectModel = eval.incorrect(); |
---|
| 1254 | |
---|
| 1255 | m_isLeaf = false; |
---|
| 1256 | |
---|
| 1257 | for (int i = 0; i < m_Successors.length; i++) |
---|
| 1258 | m_Successors[i].modelErrors(); |
---|
| 1259 | |
---|
| 1260 | } else { |
---|
| 1261 | eval.evaluateModel(this, m_train); |
---|
| 1262 | m_numIncorrectModel = eval.incorrect(); |
---|
| 1263 | } |
---|
| 1264 | } |
---|
| 1265 | |
---|
| 1266 | /** |
---|
| 1267 | * Updates the numIncorrectTree field for all nodes. This is needed for |
---|
| 1268 | * calculating the alpha-values. |
---|
| 1269 | * |
---|
| 1270 | * @throws Exception if something goes wrong |
---|
| 1271 | */ |
---|
| 1272 | public void treeErrors() throws Exception { |
---|
| 1273 | if (m_isLeaf) { |
---|
| 1274 | m_numIncorrectTree = m_numIncorrectModel; |
---|
| 1275 | } else { |
---|
| 1276 | m_numIncorrectTree = 0; |
---|
| 1277 | for (int i = 0; i < m_Successors.length; i++) { |
---|
| 1278 | m_Successors[i].treeErrors(); |
---|
| 1279 | m_numIncorrectTree += m_Successors[i].m_numIncorrectTree; |
---|
| 1280 | } |
---|
| 1281 | } |
---|
| 1282 | } |
---|
| 1283 | |
---|
| 1284 | /** |
---|
| 1285 | * Updates the alpha field for all nodes. |
---|
| 1286 | * |
---|
| 1287 | * @throws Exception if something goes wrong |
---|
| 1288 | */ |
---|
| 1289 | public void calculateAlphas() throws Exception { |
---|
| 1290 | |
---|
| 1291 | if (!m_isLeaf) { |
---|
| 1292 | double errorDiff = m_numIncorrectModel - m_numIncorrectTree; |
---|
| 1293 | if (errorDiff <=0) { |
---|
| 1294 | //split increases training error (should not normally happen). |
---|
| 1295 | //prune it instantly. |
---|
| 1296 | makeLeaf(m_train); |
---|
| 1297 | m_Alpha = Double.MAX_VALUE; |
---|
| 1298 | } else { |
---|
| 1299 | //compute alpha |
---|
| 1300 | errorDiff /= m_totalTrainInstances; |
---|
| 1301 | m_Alpha = errorDiff / (double)(numLeaves() - 1); |
---|
| 1302 | long alphaLong = Math.round(m_Alpha*Math.pow(10,10)); |
---|
| 1303 | m_Alpha = (double)alphaLong/Math.pow(10,10); |
---|
| 1304 | for (int i = 0; i < m_Successors.length; i++) { |
---|
| 1305 | m_Successors[i].calculateAlphas(); |
---|
| 1306 | } |
---|
| 1307 | } |
---|
| 1308 | } else { |
---|
| 1309 | //alpha = infinite for leaves (do not want to prune) |
---|
| 1310 | m_Alpha = Double.MAX_VALUE; |
---|
| 1311 | } |
---|
| 1312 | } |
---|
| 1313 | |
---|
| 1314 | /** |
---|
| 1315 | * Find the node with minimal alpha value. If two nodes have the same alpha, |
---|
| 1316 | * choose the one with more leave nodes. |
---|
| 1317 | * |
---|
| 1318 | * @param nodeList list of inner nodes |
---|
| 1319 | * @return the node to be pruned |
---|
| 1320 | */ |
---|
| 1321 | protected SimpleCart nodeToPrune(Vector nodeList) { |
---|
| 1322 | if (nodeList.size()==0) return null; |
---|
| 1323 | if (nodeList.size()==1) return (SimpleCart)nodeList.elementAt(0); |
---|
| 1324 | SimpleCart returnNode = (SimpleCart)nodeList.elementAt(0); |
---|
| 1325 | double baseAlpha = returnNode.m_Alpha; |
---|
| 1326 | for (int i=1; i<nodeList.size(); i++) { |
---|
| 1327 | SimpleCart node = (SimpleCart)nodeList.elementAt(i); |
---|
| 1328 | if (node.m_Alpha < baseAlpha) { |
---|
| 1329 | baseAlpha = node.m_Alpha; |
---|
| 1330 | returnNode = node; |
---|
| 1331 | } else if (node.m_Alpha == baseAlpha) { // break tie |
---|
| 1332 | if (node.numLeaves()>returnNode.numLeaves()) { |
---|
| 1333 | returnNode = node; |
---|
| 1334 | } |
---|
| 1335 | } |
---|
| 1336 | } |
---|
| 1337 | return returnNode; |
---|
| 1338 | } |
---|
| 1339 | |
---|
| 1340 | /** |
---|
| 1341 | * Compute sorted indices, weights and class probabilities for a given |
---|
| 1342 | * dataset. Return total weights of the data at the node. |
---|
| 1343 | * |
---|
| 1344 | * @param data training data |
---|
| 1345 | * @param sortedIndices sorted indices of instances at the node |
---|
| 1346 | * @param weights weights of instances at the node |
---|
| 1347 | * @param classProbs class probabilities at the node |
---|
| 1348 | * @return total weights of instances at the node |
---|
| 1349 | * @throws Exception if something goes wrong |
---|
| 1350 | */ |
---|
| 1351 | protected double computeSortedInfo(Instances data, int[][] sortedIndices, double[][] weights, |
---|
| 1352 | double[] classProbs) throws Exception { |
---|
| 1353 | |
---|
| 1354 | // Create array of sorted indices and weights |
---|
| 1355 | double[] vals = new double[data.numInstances()]; |
---|
| 1356 | for (int j = 0; j < data.numAttributes(); j++) { |
---|
| 1357 | if (j==data.classIndex()) continue; |
---|
| 1358 | weights[j] = new double[data.numInstances()]; |
---|
| 1359 | |
---|
| 1360 | if (data.attribute(j).isNominal()) { |
---|
| 1361 | |
---|
| 1362 | // Handling nominal attributes. Putting indices of |
---|
| 1363 | // instances with missing values at the end. |
---|
| 1364 | sortedIndices[j] = new int[data.numInstances()]; |
---|
| 1365 | int count = 0; |
---|
| 1366 | for (int i = 0; i < data.numInstances(); i++) { |
---|
| 1367 | Instance inst = data.instance(i); |
---|
| 1368 | if (!inst.isMissing(j)) { |
---|
| 1369 | sortedIndices[j][count] = i; |
---|
| 1370 | weights[j][count] = inst.weight(); |
---|
| 1371 | count++; |
---|
| 1372 | } |
---|
| 1373 | } |
---|
| 1374 | for (int i = 0; i < data.numInstances(); i++) { |
---|
| 1375 | Instance inst = data.instance(i); |
---|
| 1376 | if (inst.isMissing(j)) { |
---|
| 1377 | sortedIndices[j][count] = i; |
---|
| 1378 | weights[j][count] = inst.weight(); |
---|
| 1379 | count++; |
---|
| 1380 | } |
---|
| 1381 | } |
---|
| 1382 | } else { |
---|
| 1383 | |
---|
| 1384 | // Sorted indices are computed for numeric attributes |
---|
| 1385 | // missing values instances are put to end |
---|
| 1386 | for (int i = 0; i < data.numInstances(); i++) { |
---|
| 1387 | Instance inst = data.instance(i); |
---|
| 1388 | vals[i] = inst.value(j); |
---|
| 1389 | } |
---|
| 1390 | sortedIndices[j] = Utils.sort(vals); |
---|
| 1391 | for (int i = 0; i < data.numInstances(); i++) { |
---|
| 1392 | weights[j][i] = data.instance(sortedIndices[j][i]).weight(); |
---|
| 1393 | } |
---|
| 1394 | } |
---|
| 1395 | } |
---|
| 1396 | |
---|
| 1397 | // Compute initial class counts |
---|
| 1398 | double totalWeight = 0; |
---|
| 1399 | for (int i = 0; i < data.numInstances(); i++) { |
---|
| 1400 | Instance inst = data.instance(i); |
---|
| 1401 | classProbs[(int)inst.classValue()] += inst.weight(); |
---|
| 1402 | totalWeight += inst.weight(); |
---|
| 1403 | } |
---|
| 1404 | |
---|
| 1405 | return totalWeight; |
---|
| 1406 | } |
---|
| 1407 | |
---|
| 1408 | /** |
---|
| 1409 | * Compute and return gini gain for given distributions of a node and its |
---|
| 1410 | * successor nodes. |
---|
| 1411 | * |
---|
| 1412 | * @param parentDist class distributions of parent node |
---|
| 1413 | * @param childDist class distributions of successor nodes |
---|
| 1414 | * @return Gini gain computed |
---|
| 1415 | */ |
---|
| 1416 | protected double computeGiniGain(double[] parentDist, double[][] childDist) { |
---|
| 1417 | double totalWeight = Utils.sum(parentDist); |
---|
| 1418 | if (totalWeight==0) return 0; |
---|
| 1419 | |
---|
| 1420 | double leftWeight = Utils.sum(childDist[0]); |
---|
| 1421 | double rightWeight = Utils.sum(childDist[1]); |
---|
| 1422 | |
---|
| 1423 | double parentGini = computeGini(parentDist, totalWeight); |
---|
| 1424 | double leftGini = computeGini(childDist[0],leftWeight); |
---|
| 1425 | double rightGini = computeGini(childDist[1], rightWeight); |
---|
| 1426 | |
---|
| 1427 | return parentGini - leftWeight/totalWeight*leftGini - |
---|
| 1428 | rightWeight/totalWeight*rightGini; |
---|
| 1429 | } |
---|
| 1430 | |
---|
| 1431 | /** |
---|
| 1432 | * Compute and return gini index for a given distribution of a node. |
---|
| 1433 | * |
---|
| 1434 | * @param dist class distributions |
---|
| 1435 | * @param total class distributions |
---|
| 1436 | * @return Gini index of the class distributions |
---|
| 1437 | */ |
---|
| 1438 | protected double computeGini(double[] dist, double total) { |
---|
| 1439 | if (total==0) return 0; |
---|
| 1440 | double val = 0; |
---|
| 1441 | for (int i=0; i<dist.length; i++) { |
---|
| 1442 | val += (dist[i]/total)*(dist[i]/total); |
---|
| 1443 | } |
---|
| 1444 | return 1- val; |
---|
| 1445 | } |
---|
| 1446 | |
---|
| 1447 | /** |
---|
| 1448 | * Computes class probabilities for instance using the decision tree. |
---|
| 1449 | * |
---|
| 1450 | * @param instance the instance for which class probabilities is to be computed |
---|
| 1451 | * @return the class probabilities for the given instance |
---|
| 1452 | * @throws Exception if something goes wrong |
---|
| 1453 | */ |
---|
| 1454 | public double[] distributionForInstance(Instance instance) |
---|
| 1455 | throws Exception { |
---|
| 1456 | if (!m_isLeaf) { |
---|
| 1457 | // value of split attribute is missing |
---|
| 1458 | if (instance.isMissing(m_Attribute)) { |
---|
| 1459 | double[] returnedDist = new double[m_ClassProbs.length]; |
---|
| 1460 | |
---|
| 1461 | for (int i = 0; i < m_Successors.length; i++) { |
---|
| 1462 | double[] help = |
---|
| 1463 | m_Successors[i].distributionForInstance(instance); |
---|
| 1464 | if (help != null) { |
---|
| 1465 | for (int j = 0; j < help.length; j++) { |
---|
| 1466 | returnedDist[j] += m_Props[i] * help[j]; |
---|
| 1467 | } |
---|
| 1468 | } |
---|
| 1469 | } |
---|
| 1470 | return returnedDist; |
---|
| 1471 | } |
---|
| 1472 | |
---|
| 1473 | // split attribute is nonimal |
---|
| 1474 | else if (m_Attribute.isNominal()) { |
---|
| 1475 | if (m_SplitString.indexOf("(" + |
---|
| 1476 | m_Attribute.value((int)instance.value(m_Attribute)) + ")")!=-1) |
---|
| 1477 | return m_Successors[0].distributionForInstance(instance); |
---|
| 1478 | else return m_Successors[1].distributionForInstance(instance); |
---|
| 1479 | } |
---|
| 1480 | |
---|
| 1481 | // split attribute is numeric |
---|
| 1482 | else { |
---|
| 1483 | if (instance.value(m_Attribute) < m_SplitValue) |
---|
| 1484 | return m_Successors[0].distributionForInstance(instance); |
---|
| 1485 | else |
---|
| 1486 | return m_Successors[1].distributionForInstance(instance); |
---|
| 1487 | } |
---|
| 1488 | } |
---|
| 1489 | |
---|
| 1490 | // leaf node |
---|
| 1491 | else return m_ClassProbs; |
---|
| 1492 | } |
---|
| 1493 | |
---|
| 1494 | /** |
---|
| 1495 | * Make the node leaf node. |
---|
| 1496 | * |
---|
| 1497 | * @param data trainging data |
---|
| 1498 | */ |
---|
| 1499 | protected void makeLeaf(Instances data) { |
---|
| 1500 | m_Attribute = null; |
---|
| 1501 | m_isLeaf = true; |
---|
| 1502 | m_ClassValue=Utils.maxIndex(m_ClassProbs); |
---|
| 1503 | m_ClassAttribute = data.classAttribute(); |
---|
| 1504 | } |
---|
| 1505 | |
---|
| 1506 | /** |
---|
| 1507 | * Prints the decision tree using the protected toString method from below. |
---|
| 1508 | * |
---|
| 1509 | * @return a textual description of the classifier |
---|
| 1510 | */ |
---|
| 1511 | public String toString() { |
---|
| 1512 | if ((m_ClassProbs == null) && (m_Successors == null)) { |
---|
| 1513 | return "CART Tree: No model built yet."; |
---|
| 1514 | } |
---|
| 1515 | |
---|
| 1516 | return "CART Decision Tree\n" + toString(0)+"\n\n" |
---|
| 1517 | +"Number of Leaf Nodes: "+numLeaves()+"\n\n" + |
---|
| 1518 | "Size of the Tree: "+numNodes(); |
---|
| 1519 | } |
---|
| 1520 | |
---|
| 1521 | /** |
---|
| 1522 | * Outputs a tree at a certain level. |
---|
| 1523 | * |
---|
| 1524 | * @param level the level at which the tree is to be printed |
---|
| 1525 | * @return a tree at a certain level |
---|
| 1526 | */ |
---|
| 1527 | protected String toString(int level) { |
---|
| 1528 | |
---|
| 1529 | StringBuffer text = new StringBuffer(); |
---|
| 1530 | // if leaf nodes |
---|
| 1531 | if (m_Attribute == null) { |
---|
| 1532 | if (Utils.isMissingValue(m_ClassValue)) { |
---|
| 1533 | text.append(": null"); |
---|
| 1534 | } else { |
---|
| 1535 | double correctNum = (int)(m_Distribution[Utils.maxIndex(m_Distribution)]*100)/ |
---|
| 1536 | 100.0; |
---|
| 1537 | double wrongNum = (int)((Utils.sum(m_Distribution) - |
---|
| 1538 | m_Distribution[Utils.maxIndex(m_Distribution)])*100)/100.0; |
---|
| 1539 | String str = "(" + correctNum + "/" + wrongNum + ")"; |
---|
| 1540 | text.append(": " + m_ClassAttribute.value((int) m_ClassValue)+ str); |
---|
| 1541 | } |
---|
| 1542 | } else { |
---|
| 1543 | for (int j = 0; j < 2; j++) { |
---|
| 1544 | text.append("\n"); |
---|
| 1545 | for (int i = 0; i < level; i++) { |
---|
| 1546 | text.append("| "); |
---|
| 1547 | } |
---|
| 1548 | if (j==0) { |
---|
| 1549 | if (m_Attribute.isNumeric()) |
---|
| 1550 | text.append(m_Attribute.name() + " < " + m_SplitValue); |
---|
| 1551 | else |
---|
| 1552 | text.append(m_Attribute.name() + "=" + m_SplitString); |
---|
| 1553 | } else { |
---|
| 1554 | if (m_Attribute.isNumeric()) |
---|
| 1555 | text.append(m_Attribute.name() + " >= " + m_SplitValue); |
---|
| 1556 | else |
---|
| 1557 | text.append(m_Attribute.name() + "!=" + m_SplitString); |
---|
| 1558 | } |
---|
| 1559 | text.append(m_Successors[j].toString(level + 1)); |
---|
| 1560 | } |
---|
| 1561 | } |
---|
| 1562 | return text.toString(); |
---|
| 1563 | } |
---|
| 1564 | |
---|
| 1565 | /** |
---|
| 1566 | * Compute size of the tree. |
---|
| 1567 | * |
---|
| 1568 | * @return size of the tree |
---|
| 1569 | */ |
---|
| 1570 | public int numNodes() { |
---|
| 1571 | if (m_isLeaf) { |
---|
| 1572 | return 1; |
---|
| 1573 | } else { |
---|
| 1574 | int size =1; |
---|
| 1575 | for (int i=0;i<m_Successors.length;i++) { |
---|
| 1576 | size+=m_Successors[i].numNodes(); |
---|
| 1577 | } |
---|
| 1578 | return size; |
---|
| 1579 | } |
---|
| 1580 | } |
---|
| 1581 | |
---|
| 1582 | /** |
---|
| 1583 | * Method to count the number of inner nodes in the tree. |
---|
| 1584 | * |
---|
| 1585 | * @return the number of inner nodes |
---|
| 1586 | */ |
---|
| 1587 | public int numInnerNodes(){ |
---|
| 1588 | if (m_Attribute==null) return 0; |
---|
| 1589 | int numNodes = 1; |
---|
| 1590 | for (int i = 0; i < m_Successors.length; i++) |
---|
| 1591 | numNodes += m_Successors[i].numInnerNodes(); |
---|
| 1592 | return numNodes; |
---|
| 1593 | } |
---|
| 1594 | |
---|
| 1595 | /** |
---|
| 1596 | * Return a list of all inner nodes in the tree. |
---|
| 1597 | * |
---|
| 1598 | * @return the list of all inner nodes |
---|
| 1599 | */ |
---|
| 1600 | protected Vector getInnerNodes(){ |
---|
| 1601 | Vector nodeList = new Vector(); |
---|
| 1602 | fillInnerNodes(nodeList); |
---|
| 1603 | return nodeList; |
---|
| 1604 | } |
---|
| 1605 | |
---|
| 1606 | /** |
---|
| 1607 | * Fills a list with all inner nodes in the tree. |
---|
| 1608 | * |
---|
| 1609 | * @param nodeList the list to be filled |
---|
| 1610 | */ |
---|
| 1611 | protected void fillInnerNodes(Vector nodeList) { |
---|
| 1612 | if (!m_isLeaf) { |
---|
| 1613 | nodeList.add(this); |
---|
| 1614 | for (int i = 0; i < m_Successors.length; i++) |
---|
| 1615 | m_Successors[i].fillInnerNodes(nodeList); |
---|
| 1616 | } |
---|
| 1617 | } |
---|
| 1618 | |
---|
| 1619 | /** |
---|
| 1620 | * Compute number of leaf nodes. |
---|
| 1621 | * |
---|
| 1622 | * @return number of leaf nodes |
---|
| 1623 | */ |
---|
| 1624 | public int numLeaves() { |
---|
| 1625 | if (m_isLeaf) return 1; |
---|
| 1626 | else { |
---|
| 1627 | int size=0; |
---|
| 1628 | for (int i=0;i<m_Successors.length;i++) { |
---|
| 1629 | size+=m_Successors[i].numLeaves(); |
---|
| 1630 | } |
---|
| 1631 | return size; |
---|
| 1632 | } |
---|
| 1633 | } |
---|
| 1634 | |
---|
| 1635 | /** |
---|
| 1636 | * Returns an enumeration describing the available options. |
---|
| 1637 | * |
---|
| 1638 | * @return an enumeration of all the available options. |
---|
| 1639 | */ |
---|
| 1640 | public Enumeration listOptions() { |
---|
| 1641 | Vector result; |
---|
| 1642 | Enumeration en; |
---|
| 1643 | |
---|
| 1644 | result = new Vector(); |
---|
| 1645 | |
---|
| 1646 | en = super.listOptions(); |
---|
| 1647 | while (en.hasMoreElements()) |
---|
| 1648 | result.addElement(en.nextElement()); |
---|
| 1649 | |
---|
| 1650 | result.addElement(new Option( |
---|
| 1651 | "\tThe minimal number of instances at the terminal nodes.\n" |
---|
| 1652 | + "\t(default 2)", |
---|
| 1653 | "M", 1, "-M <min no>")); |
---|
| 1654 | |
---|
| 1655 | result.addElement(new Option( |
---|
| 1656 | "\tThe number of folds used in the minimal cost-complexity pruning.\n" |
---|
| 1657 | + "\t(default 5)", |
---|
| 1658 | "N", 1, "-N <num folds>")); |
---|
| 1659 | |
---|
| 1660 | result.addElement(new Option( |
---|
| 1661 | "\tDon't use the minimal cost-complexity pruning.\n" |
---|
| 1662 | + "\t(default yes).", |
---|
| 1663 | "U", 0, "-U")); |
---|
| 1664 | |
---|
| 1665 | result.addElement(new Option( |
---|
| 1666 | "\tDon't use the heuristic method for binary split.\n" |
---|
| 1667 | + "\t(default true).", |
---|
| 1668 | "H", 0, "-H")); |
---|
| 1669 | |
---|
| 1670 | result.addElement(new Option( |
---|
| 1671 | "\tUse 1 SE rule to make pruning decision.\n" |
---|
| 1672 | + "\t(default no).", |
---|
| 1673 | "A", 0, "-A")); |
---|
| 1674 | |
---|
| 1675 | result.addElement(new Option( |
---|
| 1676 | "\tPercentage of training data size (0-1].\n" |
---|
| 1677 | + "\t(default 1).", |
---|
| 1678 | "C", 1, "-C")); |
---|
| 1679 | |
---|
| 1680 | return result.elements(); |
---|
| 1681 | } |
---|
| 1682 | |
---|
| 1683 | /** |
---|
| 1684 | * Parses a given list of options. <p/> |
---|
| 1685 | * |
---|
| 1686 | <!-- options-start --> |
---|
| 1687 | * Valid options are: <p/> |
---|
| 1688 | * |
---|
| 1689 | * <pre> -S <num> |
---|
| 1690 | * Random number seed. |
---|
| 1691 | * (default 1)</pre> |
---|
| 1692 | * |
---|
| 1693 | * <pre> -D |
---|
| 1694 | * If set, classifier is run in debug mode and |
---|
| 1695 | * may output additional info to the console</pre> |
---|
| 1696 | * |
---|
| 1697 | * <pre> -M <min no> |
---|
| 1698 | * The minimal number of instances at the terminal nodes. |
---|
| 1699 | * (default 2)</pre> |
---|
| 1700 | * |
---|
| 1701 | * <pre> -N <num folds> |
---|
| 1702 | * The number of folds used in the minimal cost-complexity pruning. |
---|
| 1703 | * (default 5)</pre> |
---|
| 1704 | * |
---|
| 1705 | * <pre> -U |
---|
| 1706 | * Don't use the minimal cost-complexity pruning. |
---|
| 1707 | * (default yes).</pre> |
---|
| 1708 | * |
---|
| 1709 | * <pre> -H |
---|
| 1710 | * Don't use the heuristic method for binary split. |
---|
| 1711 | * (default true).</pre> |
---|
| 1712 | * |
---|
| 1713 | * <pre> -A |
---|
| 1714 | * Use 1 SE rule to make pruning decision. |
---|
| 1715 | * (default no).</pre> |
---|
| 1716 | * |
---|
| 1717 | * <pre> -C |
---|
| 1718 | * Percentage of training data size (0-1]. |
---|
| 1719 | * (default 1).</pre> |
---|
| 1720 | * |
---|
| 1721 | <!-- options-end --> |
---|
| 1722 | * |
---|
| 1723 | * @param options the list of options as an array of strings |
---|
| 1724 | * @throws Exception if an options is not supported |
---|
| 1725 | */ |
---|
| 1726 | public void setOptions(String[] options) throws Exception { |
---|
| 1727 | String tmpStr; |
---|
| 1728 | |
---|
| 1729 | super.setOptions(options); |
---|
| 1730 | |
---|
| 1731 | tmpStr = Utils.getOption('M', options); |
---|
| 1732 | if (tmpStr.length() != 0) |
---|
| 1733 | setMinNumObj(Double.parseDouble(tmpStr)); |
---|
| 1734 | else |
---|
| 1735 | setMinNumObj(2); |
---|
| 1736 | |
---|
| 1737 | tmpStr = Utils.getOption('N', options); |
---|
| 1738 | if (tmpStr.length()!=0) |
---|
| 1739 | setNumFoldsPruning(Integer.parseInt(tmpStr)); |
---|
| 1740 | else |
---|
| 1741 | setNumFoldsPruning(5); |
---|
| 1742 | |
---|
| 1743 | setUsePrune(!Utils.getFlag('U',options)); |
---|
| 1744 | setHeuristic(!Utils.getFlag('H',options)); |
---|
| 1745 | setUseOneSE(Utils.getFlag('A',options)); |
---|
| 1746 | |
---|
| 1747 | tmpStr = Utils.getOption('C', options); |
---|
| 1748 | if (tmpStr.length()!=0) |
---|
| 1749 | setSizePer(Double.parseDouble(tmpStr)); |
---|
| 1750 | else |
---|
| 1751 | setSizePer(1); |
---|
| 1752 | |
---|
| 1753 | Utils.checkForRemainingOptions(options); |
---|
| 1754 | } |
---|
| 1755 | |
---|
| 1756 | /** |
---|
| 1757 | * Gets the current settings of the classifier. |
---|
| 1758 | * |
---|
| 1759 | * @return the current setting of the classifier |
---|
| 1760 | */ |
---|
| 1761 | public String[] getOptions() { |
---|
| 1762 | int i; |
---|
| 1763 | Vector result; |
---|
| 1764 | String[] options; |
---|
| 1765 | |
---|
| 1766 | result = new Vector(); |
---|
| 1767 | |
---|
| 1768 | options = super.getOptions(); |
---|
| 1769 | for (i = 0; i < options.length; i++) |
---|
| 1770 | result.add(options[i]); |
---|
| 1771 | |
---|
| 1772 | result.add("-M"); |
---|
| 1773 | result.add("" + getMinNumObj()); |
---|
| 1774 | |
---|
| 1775 | result.add("-N"); |
---|
| 1776 | result.add("" + getNumFoldsPruning()); |
---|
| 1777 | |
---|
| 1778 | if (!getUsePrune()) |
---|
| 1779 | result.add("-U"); |
---|
| 1780 | |
---|
| 1781 | if (!getHeuristic()) |
---|
| 1782 | result.add("-H"); |
---|
| 1783 | |
---|
| 1784 | if (getUseOneSE()) |
---|
| 1785 | result.add("-A"); |
---|
| 1786 | |
---|
| 1787 | result.add("-C"); |
---|
| 1788 | result.add("" + getSizePer()); |
---|
| 1789 | |
---|
| 1790 | return (String[]) result.toArray(new String[result.size()]); |
---|
| 1791 | } |
---|
| 1792 | |
---|
| 1793 | /** |
---|
| 1794 | * Return an enumeration of the measure names. |
---|
| 1795 | * |
---|
| 1796 | * @return an enumeration of the measure names |
---|
| 1797 | */ |
---|
| 1798 | public Enumeration enumerateMeasures() { |
---|
| 1799 | Vector result = new Vector(); |
---|
| 1800 | |
---|
| 1801 | result.addElement("measureTreeSize"); |
---|
| 1802 | |
---|
| 1803 | return result.elements(); |
---|
| 1804 | } |
---|
| 1805 | |
---|
| 1806 | /** |
---|
| 1807 | * Return number of tree size. |
---|
| 1808 | * |
---|
| 1809 | * @return number of tree size |
---|
| 1810 | */ |
---|
| 1811 | public double measureTreeSize() { |
---|
| 1812 | return numNodes(); |
---|
| 1813 | } |
---|
| 1814 | |
---|
| 1815 | /** |
---|
| 1816 | * Returns the value of the named measure. |
---|
| 1817 | * |
---|
| 1818 | * @param additionalMeasureName the name of the measure to query for its value |
---|
| 1819 | * @return the value of the named measure |
---|
| 1820 | * @throws IllegalArgumentException if the named measure is not supported |
---|
| 1821 | */ |
---|
| 1822 | public double getMeasure(String additionalMeasureName) { |
---|
| 1823 | if (additionalMeasureName.compareToIgnoreCase("measureTreeSize") == 0) { |
---|
| 1824 | return measureTreeSize(); |
---|
| 1825 | } else { |
---|
| 1826 | throw new IllegalArgumentException(additionalMeasureName |
---|
| 1827 | + " not supported (Cart pruning)"); |
---|
| 1828 | } |
---|
| 1829 | } |
---|
| 1830 | |
---|
| 1831 | /** |
---|
| 1832 | * Returns the tip text for this property |
---|
| 1833 | * |
---|
| 1834 | * @return tip text for this property suitable for |
---|
| 1835 | * displaying in the explorer/experimenter gui |
---|
| 1836 | */ |
---|
| 1837 | public String minNumObjTipText() { |
---|
| 1838 | return "The minimal number of observations at the terminal nodes (default 2)."; |
---|
| 1839 | } |
---|
| 1840 | |
---|
| 1841 | /** |
---|
| 1842 | * Set minimal number of instances at the terminal nodes. |
---|
| 1843 | * |
---|
| 1844 | * @param value minimal number of instances at the terminal nodes |
---|
| 1845 | */ |
---|
| 1846 | public void setMinNumObj(double value) { |
---|
| 1847 | m_minNumObj = value; |
---|
| 1848 | } |
---|
| 1849 | |
---|
| 1850 | /** |
---|
| 1851 | * Get minimal number of instances at the terminal nodes. |
---|
| 1852 | * |
---|
| 1853 | * @return minimal number of instances at the terminal nodes |
---|
| 1854 | */ |
---|
| 1855 | public double getMinNumObj() { |
---|
| 1856 | return m_minNumObj; |
---|
| 1857 | } |
---|
| 1858 | |
---|
| 1859 | /** |
---|
| 1860 | * Returns the tip text for this property |
---|
| 1861 | * |
---|
| 1862 | * @return tip text for this property suitable for |
---|
| 1863 | * displaying in the explorer/experimenter gui |
---|
| 1864 | */ |
---|
| 1865 | public String numFoldsPruningTipText() { |
---|
| 1866 | return "The number of folds in the internal cross-validation (default 5)."; |
---|
| 1867 | } |
---|
| 1868 | |
---|
| 1869 | /** |
---|
| 1870 | * Set number of folds in internal cross-validation. |
---|
| 1871 | * |
---|
| 1872 | * @param value number of folds in internal cross-validation. |
---|
| 1873 | */ |
---|
| 1874 | public void setNumFoldsPruning(int value) { |
---|
| 1875 | m_numFoldsPruning = value; |
---|
| 1876 | } |
---|
| 1877 | |
---|
| 1878 | /** |
---|
| 1879 | * Set number of folds in internal cross-validation. |
---|
| 1880 | * |
---|
| 1881 | * @return number of folds in internal cross-validation. |
---|
| 1882 | */ |
---|
| 1883 | public int getNumFoldsPruning() { |
---|
| 1884 | return m_numFoldsPruning; |
---|
| 1885 | } |
---|
| 1886 | |
---|
| 1887 | /** |
---|
| 1888 | * Return the tip text for this property |
---|
| 1889 | * |
---|
| 1890 | * @return tip text for this property suitable for displaying in |
---|
| 1891 | * the explorer/experimenter gui. |
---|
| 1892 | */ |
---|
| 1893 | public String usePruneTipText() { |
---|
| 1894 | return "Use minimal cost-complexity pruning (default yes)."; |
---|
| 1895 | } |
---|
| 1896 | |
---|
| 1897 | /** |
---|
| 1898 | * Set if use minimal cost-complexity pruning. |
---|
| 1899 | * |
---|
| 1900 | * @param value if use minimal cost-complexity pruning |
---|
| 1901 | */ |
---|
| 1902 | public void setUsePrune(boolean value) { |
---|
| 1903 | m_Prune = value; |
---|
| 1904 | } |
---|
| 1905 | |
---|
| 1906 | /** |
---|
| 1907 | * Get if use minimal cost-complexity pruning. |
---|
| 1908 | * |
---|
| 1909 | * @return if use minimal cost-complexity pruning |
---|
| 1910 | */ |
---|
| 1911 | public boolean getUsePrune() { |
---|
| 1912 | return m_Prune; |
---|
| 1913 | } |
---|
| 1914 | |
---|
| 1915 | /** |
---|
| 1916 | * Returns the tip text for this property |
---|
| 1917 | * |
---|
| 1918 | * @return tip text for this property suitable for |
---|
| 1919 | * displaying in the explorer/experimenter gui. |
---|
| 1920 | */ |
---|
| 1921 | public String heuristicTipText() { |
---|
| 1922 | return |
---|
| 1923 | "If heuristic search is used for binary split for nominal attributes " |
---|
| 1924 | + "in multi-class problems (default yes)."; |
---|
| 1925 | } |
---|
| 1926 | |
---|
| 1927 | /** |
---|
| 1928 | * Set if use heuristic search for nominal attributes in multi-class problems. |
---|
| 1929 | * |
---|
| 1930 | * @param value if use heuristic search for nominal attributes in |
---|
| 1931 | * multi-class problems |
---|
| 1932 | */ |
---|
| 1933 | public void setHeuristic(boolean value) { |
---|
| 1934 | m_Heuristic = value; |
---|
| 1935 | } |
---|
| 1936 | |
---|
| 1937 | /** |
---|
| 1938 | * Get if use heuristic search for nominal attributes in multi-class problems. |
---|
| 1939 | * |
---|
| 1940 | * @return if use heuristic search for nominal attributes in |
---|
| 1941 | * multi-class problems |
---|
| 1942 | */ |
---|
| 1943 | public boolean getHeuristic() {return m_Heuristic;} |
---|
| 1944 | |
---|
| 1945 | /** |
---|
| 1946 | * Returns the tip text for this property |
---|
| 1947 | * |
---|
| 1948 | * @return tip text for this property suitable for |
---|
| 1949 | * displaying in the explorer/experimenter gui. |
---|
| 1950 | */ |
---|
| 1951 | public String useOneSETipText() { |
---|
| 1952 | return "Use the 1SE rule to make pruning decisoin."; |
---|
| 1953 | } |
---|
| 1954 | |
---|
| 1955 | /** |
---|
| 1956 | * Set if use the 1SE rule to choose final model. |
---|
| 1957 | * |
---|
| 1958 | * @param value if use the 1SE rule to choose final model |
---|
| 1959 | */ |
---|
| 1960 | public void setUseOneSE(boolean value) { |
---|
| 1961 | m_UseOneSE = value; |
---|
| 1962 | } |
---|
| 1963 | |
---|
| 1964 | /** |
---|
| 1965 | * Get if use the 1SE rule to choose final model. |
---|
| 1966 | * |
---|
| 1967 | * @return if use the 1SE rule to choose final model |
---|
| 1968 | */ |
---|
| 1969 | public boolean getUseOneSE() { |
---|
| 1970 | return m_UseOneSE; |
---|
| 1971 | } |
---|
| 1972 | |
---|
| 1973 | /** |
---|
| 1974 | * Returns the tip text for this property |
---|
| 1975 | * |
---|
| 1976 | * @return tip text for this property suitable for |
---|
| 1977 | * displaying in the explorer/experimenter gui. |
---|
| 1978 | */ |
---|
| 1979 | public String sizePerTipText() { |
---|
| 1980 | return "The percentage of the training set size (0-1, 0 not included)."; |
---|
| 1981 | } |
---|
| 1982 | |
---|
| 1983 | /** |
---|
| 1984 | * Set training set size. |
---|
| 1985 | * |
---|
| 1986 | * @param value training set size |
---|
| 1987 | */ |
---|
| 1988 | public void setSizePer(double value) { |
---|
| 1989 | if ((value <= 0) || (value > 1)) |
---|
| 1990 | System.err.println( |
---|
| 1991 | "The percentage of the training set size must be in range 0 to 1 " |
---|
| 1992 | + "(0 not included) - ignored!"); |
---|
| 1993 | else |
---|
| 1994 | m_SizePer = value; |
---|
| 1995 | } |
---|
| 1996 | |
---|
| 1997 | /** |
---|
| 1998 | * Get training set size. |
---|
| 1999 | * |
---|
| 2000 | * @return training set size |
---|
| 2001 | */ |
---|
| 2002 | public double getSizePer() { |
---|
| 2003 | return m_SizePer; |
---|
| 2004 | } |
---|
| 2005 | |
---|
| 2006 | /** |
---|
| 2007 | * Returns the revision string. |
---|
| 2008 | * |
---|
| 2009 | * @return the revision |
---|
| 2010 | */ |
---|
| 2011 | public String getRevision() { |
---|
| 2012 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
| 2013 | } |
---|
| 2014 | |
---|
| 2015 | /** |
---|
| 2016 | * Main method. |
---|
| 2017 | * @param args the options for the classifier |
---|
| 2018 | */ |
---|
| 2019 | public static void main(String[] args) { |
---|
| 2020 | runClassifier(new SimpleCart(), args); |
---|
| 2021 | } |
---|
| 2022 | } |
---|