/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * RandomTree.java * Copyright (C) 2001 University of Waikato, Hamilton, New Zealand * */ package weka.classifiers.trees; import weka.classifiers.Classifier; import weka.classifiers.AbstractClassifier; import weka.core.Attribute; import weka.core.Capabilities; import weka.core.ContingencyTables; import weka.core.Drawable; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.OptionHandler; import weka.core.Randomizable; import weka.core.RevisionUtils; import weka.core.Utils; import weka.core.WeightedInstancesHandler; import weka.core.Capabilities.Capability; import java.util.Enumeration; import java.util.Random; import java.util.Vector; /** * * Class for constructing a tree that considers K randomly chosen attributes at each node. Performs no pruning. Also has an option to allow estimation of class probabilities based on a hold-out set (backfitting). *
* * * * Valid options are: * *-K <number of attributes> * Number of attributes to randomly investigate * (<0 = int(log_2(#attributes)+1)).* *
-M <minimum number of instances> * Set minimum number of instances per leaf.* *
-S <num> * Seed for random number generator. * (default 1)* *
-depth <num> * The maximum depth of the tree, 0 for unlimited. * (default 0)* *
-N <num> * Number of folds for backfitting (default 0, no backfitting).* *
-U * Allow unclassified instances.* *
-D * If set, classifier is run in debug mode and * may output additional info to the console* * * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) * @version $Revision: 5928 $ */ public class RandomTree extends AbstractClassifier implements OptionHandler, WeightedInstancesHandler, Randomizable, Drawable { /** for serialization */ static final long serialVersionUID = 8934314652175299374L; /** The subtrees appended to this tree. */ protected RandomTree[] m_Successors; /** The attribute to split on. */ protected int m_Attribute = -1; /** The split point. */ protected double m_SplitPoint = Double.NaN; /** The header information. */ protected Instances m_Info = null; /** The proportions of training instances going down each branch. */ protected double[] m_Prop = null; /** Class probabilities from the training data. */ protected double[] m_ClassDistribution = null; /** Minimum number of instances for leaf. */ protected double m_MinNum = 1.0; /** The number of attributes considered for a split. */ protected int m_KValue = 0; /** The random seed to use. */ protected int m_randomSeed = 1; /** The maximum depth of the tree (0 = unlimited) */ protected int m_MaxDepth = 0; /** Determines how much data is used for backfitting */ protected int m_NumFolds = 0; /** Whether unclassified instances are allowed */ protected boolean m_AllowUnclassifiedInstances = false; /** a ZeroR model in case no model can be built from the data */ protected Classifier m_ZeroR; /** * Returns a string describing classifier * * @return a description suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "Class for constructing a tree that considers K randomly " + " chosen attributes at each node. Performs no pruning. Also has" + " an option to allow estimation of class probabilities based on" + " a hold-out set (backfitting)."; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String minNumTipText() { return "The minimum total weight of the instances in a leaf."; } /** * Get the value of MinNum. * * @return Value of MinNum. */ public double getMinNum() { return m_MinNum; } /** * Set the value of MinNum. * * @param newMinNum * Value to assign to MinNum. */ public void setMinNum(double newMinNum) { m_MinNum = newMinNum; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String KValueTipText() { return "Sets the number of randomly chosen attributes. If 0, log_2(number_of_attributes) + 1 is used."; } /** * Get the value of K. * * @return Value of K. */ public int getKValue() { return m_KValue; } /** * Set the value of K. * * @param k * Value to assign to K. */ public void setKValue(int k) { m_KValue = k; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String seedTipText() { return "The random number seed used for selecting attributes."; } /** * Set the seed for random number generation. * * @param seed * the seed */ public void setSeed(int seed) { m_randomSeed = seed; } /** * Gets the seed for the random number generations * * @return the seed for the random number generation */ public int getSeed() { return m_randomSeed; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String maxDepthTipText() { return "The maximum depth of the tree, 0 for unlimited."; } /** * Get the maximum depth of trh tree, 0 for unlimited. * * @return the maximum depth. */ public int getMaxDepth() { return m_MaxDepth; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numFoldsTipText() { return "Determines the amount of data used for backfitting. One fold is used for " + "backfitting, the rest for growing the tree. (Default: 0, no backfitting)"; } /** * Get the value of NumFolds. * * @return Value of NumFolds. */ public int getNumFolds() { return m_NumFolds; } /** * Set the value of NumFolds. * * @param newNumFolds Value to assign to NumFolds. */ public void setNumFolds(int newNumFolds) { m_NumFolds = newNumFolds; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String allowUnclassifiedInstancesTipText() { return "Whether to allow unclassified instances."; } /** * Get the value of NumFolds. * * @return Value of NumFolds. */ public boolean getAllowUnclassifiedInstances() { return m_AllowUnclassifiedInstances; } /** * Set the value of AllowUnclassifiedInstances. * * @param newAllowUnclassifiedInstances Value to assign to AllowUnclassifiedInstances. */ public void setAllowUnclassifiedInstances(boolean newAllowUnclassifiedInstances) { m_AllowUnclassifiedInstances = newAllowUnclassifiedInstances; } /** * Set the maximum depth of the tree, 0 for unlimited. * * @param value * the maximum depth. */ public void setMaxDepth(int value) { m_MaxDepth = value; } /** * Lists the command-line options for this classifier. * * @return an enumeration over all possible options */ public Enumeration listOptions() { Vector newVector = new Vector(); newVector.addElement(new Option( "\tNumber of attributes to randomly investigate\n" + "\t(<0 = int(log_2(#attributes)+1)).", "K", 1, "-K
-K <number of attributes> * Number of attributes to randomly investigate * (<0 = int(log_2(#attributes)+1)).* *
-M <minimum number of instances> * Set minimum number of instances per leaf.* *
-S <num> * Seed for random number generator. * (default 1)* *
-depth <num> * The maximum depth of the tree, 0 for unlimited. * (default 0)* *
-N <num> * Number of folds for backfitting (default 0, no backfitting).* *
-U * Allow unclassified instances.* *
-D * If set, classifier is run in debug mode and * may output additional info to the console* * * * @param options * the list of options as an array of strings * @throws Exception * if an option is not supported */ public void setOptions(String[] options) throws Exception { String tmpStr; tmpStr = Utils.getOption('K', options); if (tmpStr.length() != 0) { m_KValue = Integer.parseInt(tmpStr); } else { m_KValue = 0; } tmpStr = Utils.getOption('M', options); if (tmpStr.length() != 0) { m_MinNum = Double.parseDouble(tmpStr); } else { m_MinNum = 1; } tmpStr = Utils.getOption('S', options); if (tmpStr.length() != 0) { setSeed(Integer.parseInt(tmpStr)); } else { setSeed(1); } tmpStr = Utils.getOption("depth", options); if (tmpStr.length() != 0) { setMaxDepth(Integer.parseInt(tmpStr)); } else { setMaxDepth(0); } String numFoldsString = Utils.getOption('N', options); if (numFoldsString.length() != 0) { m_NumFolds = Integer.parseInt(numFoldsString); } else { m_NumFolds = 0; } setAllowUnclassifiedInstances(Utils.getFlag('U', options)); super.setOptions(options); Utils.checkForRemainingOptions(options); } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); return result; } /** * Builds classifier. * * @param data * the data to train with * @throws Exception * if something goes wrong or the data doesn't fit */ public void buildClassifier(Instances data) throws Exception { // Make sure K value is in range if (m_KValue > data.numAttributes() - 1) m_KValue = data.numAttributes() - 1; if (m_KValue < 1) m_KValue = (int) Utils.log2(data.numAttributes()) + 1; // can classifier handle the data? getCapabilities().testWithFail(data); // remove instances with missing class data = new Instances(data); data.deleteWithMissingClass(); // only class? -> build ZeroR model if (data.numAttributes() == 1) { System.err .println("Cannot build model (only class attribute present in data!), " + "using ZeroR model instead!"); m_ZeroR = new weka.classifiers.rules.ZeroR(); m_ZeroR.buildClassifier(data); return; } else { m_ZeroR = null; } // Figure out appropriate datasets Instances train = null; Instances backfit = null; Random rand = data.getRandomNumberGenerator(m_randomSeed); if (m_NumFolds <= 0) { train = data; } else { data.randomize(rand); data.stratify(m_NumFolds); train = data.trainCV(m_NumFolds, 1, rand); backfit = data.testCV(m_NumFolds, 1); } // Create the attribute indices window int[] attIndicesWindow = new int[data.numAttributes() - 1]; int j = 0; for (int i = 0; i < attIndicesWindow.length; i++) { if (j == data.classIndex()) j++; // do not include the class attIndicesWindow[i] = j++; } // Compute initial class counts double[] classProbs = new double[train.numClasses()]; for (int i = 0; i < train.numInstances(); i++) { Instance inst = train.instance(i); classProbs[(int) inst.classValue()] += inst.weight(); } // Build tree buildTree(train, classProbs, new Instances(data, 0), m_MinNum, m_Debug, attIndicesWindow, rand, 0, getAllowUnclassifiedInstances()); // Backfit if required if (backfit != null) { backfitData(backfit); } } /** * Backfits the given data into the tree. */ public void backfitData(Instances data) throws Exception { // Compute initial class counts double[] classProbs = new double[data.numClasses()]; for (int i = 0; i < data.numInstances(); i++) { Instance inst = data.instance(i); classProbs[(int) inst.classValue()] += inst.weight(); } // Fit data into tree backfitData(data, classProbs); } /** * Computes class distribution of an instance using the decision tree. * * @param instance * the instance to compute the distribution for * @return the computed class distribution * @throws Exception * if computation fails */ public double[] distributionForInstance(Instance instance) throws Exception { // default model? if (m_ZeroR != null) { return m_ZeroR.distributionForInstance(instance); } double[] returnedDist = null; if (m_Attribute > -1) { // Node is not a leaf if (instance.isMissing(m_Attribute)) { // Value is missing returnedDist = new double[m_Info.numClasses()]; // Split instance up for (int i = 0; i < m_Successors.length; i++) { double[] help = m_Successors[i] .distributionForInstance(instance); if (help != null) { for (int j = 0; j < help.length; j++) { returnedDist[j] += m_Prop[i] * help[j]; } } } } else if (m_Info.attribute(m_Attribute).isNominal()) { // For nominal attributes returnedDist = m_Successors[(int) instance.value(m_Attribute)] .distributionForInstance(instance); } else { // For numeric attributes if (instance.value(m_Attribute) < m_SplitPoint) { returnedDist = m_Successors[0] .distributionForInstance(instance); } else { returnedDist = m_Successors[1] .distributionForInstance(instance); } } } // Node is a leaf or successor is empty? if ((m_Attribute == -1) || (returnedDist == null)) { // Is node empty? if (m_ClassDistribution == null) { if (getAllowUnclassifiedInstances()) { return new double[m_Info.numClasses()]; } else { return null; } } // Else return normalized distribution double[] normalizedDistribution = (double[]) m_ClassDistribution.clone(); Utils.normalize(normalizedDistribution); return normalizedDistribution; } else { return returnedDist; } } /** * Outputs the decision tree as a graph * * @return the tree as a graph */ public String toGraph() { try { StringBuffer resultBuff = new StringBuffer(); toGraph(resultBuff, 0); String result = "digraph Tree {\n" + "edge [style=bold]\n" + resultBuff.toString() + "\n}\n"; return result; } catch (Exception e) { return null; } } /** * Outputs one node for graph. * * @param text * the buffer to append the output to * @param num * unique node id * @return the next node id * @throws Exception * if generation fails */ public int toGraph(StringBuffer text, int num) throws Exception { int maxIndex = Utils.maxIndex(m_ClassDistribution); String classValue = m_Info.classAttribute().value(maxIndex); num++; if (m_Attribute == -1) { text.append("N" + Integer.toHexString(hashCode()) + " [label=\"" + num + ": " + classValue + "\"" + "shape=box]\n"); } else { text.append("N" + Integer.toHexString(hashCode()) + " [label=\"" + num + ": " + classValue + "\"]\n"); for (int i = 0; i < m_Successors.length; i++) { text.append("N" + Integer.toHexString(hashCode()) + "->" + "N" + Integer.toHexString(m_Successors[i].hashCode()) + " [label=\"" + m_Info.attribute(m_Attribute).name()); if (m_Info.attribute(m_Attribute).isNumeric()) { if (i == 0) { text.append(" < " + Utils.doubleToString(m_SplitPoint, 2)); } else { text.append(" >= " + Utils.doubleToString(m_SplitPoint, 2)); } } else { text.append(" = " + m_Info.attribute(m_Attribute).value(i)); } text.append("\"]\n"); num = m_Successors[i].toGraph(text, num); } } return num; } /** * Outputs the decision tree. * * @return a string representation of the classifier */ public String toString() { // only ZeroR model? if (m_ZeroR != null) { StringBuffer buf = new StringBuffer(); buf .append(this.getClass().getName().replaceAll(".*\\.", "") + "\n"); buf.append(this.getClass().getName().replaceAll(".*\\.", "") .replaceAll(".", "=") + "\n\n"); buf .append("Warning: No model could be built, hence ZeroR model is used:\n\n"); buf.append(m_ZeroR.toString()); return buf.toString(); } if (m_Successors == null) { return "RandomTree: no model has been built yet."; } else { return "\nRandomTree\n==========\n" + toString(0) + "\n" + "\nSize of the tree : " + numNodes() + (getMaxDepth() > 0 ? ("\nMax depth of tree: " + getMaxDepth()) : ("")); } } /** * Outputs a leaf. * * @return the leaf as string * @throws Exception * if generation fails */ protected String leafString() throws Exception { double sum = 0, maxCount = 0; int maxIndex = 0; if (m_ClassDistribution != null) { sum = Utils.sum(m_ClassDistribution); maxIndex = Utils.maxIndex(m_ClassDistribution); maxCount = m_ClassDistribution[maxIndex]; } return " : " + m_Info.classAttribute().value(maxIndex) + " (" + Utils.doubleToString(sum, 2) + "/" + Utils.doubleToString(sum - maxCount, 2) + ")"; } /** * Recursively outputs the tree. * * @param level * the current level of the tree * @return the generated subtree */ protected String toString(int level) { try { StringBuffer text = new StringBuffer(); if (m_Attribute == -1) { // Output leaf info return leafString(); } else if (m_Info.attribute(m_Attribute).isNominal()) { // For nominal attributes for (int i = 0; i < m_Successors.length; i++) { text.append("\n"); for (int j = 0; j < level; j++) { text.append("| "); } text.append(m_Info.attribute(m_Attribute).name() + " = " + m_Info.attribute(m_Attribute).value(i)); text.append(m_Successors[i].toString(level + 1)); } } else { // For numeric attributes text.append("\n"); for (int j = 0; j < level; j++) { text.append("| "); } text.append(m_Info.attribute(m_Attribute).name() + " < " + Utils.doubleToString(m_SplitPoint, 2)); text.append(m_Successors[0].toString(level + 1)); text.append("\n"); for (int j = 0; j < level; j++) { text.append("| "); } text.append(m_Info.attribute(m_Attribute).name() + " >= " + Utils.doubleToString(m_SplitPoint, 2)); text.append(m_Successors[1].toString(level + 1)); } return text.toString(); } catch (Exception e) { e.printStackTrace(); return "RandomTree: tree can't be printed"; } } /** * Recursively backfits data into the tree. * * @param data * the data to work with * @param classProbs * the class distribution * @throws Exception * if generation fails */ protected void backfitData(Instances data, double[] classProbs) throws Exception { // Make leaf if there are no training instances if (data.numInstances() == 0) { m_Attribute = -1; m_ClassDistribution = null; m_Prop = null; return; } // Check if node doesn't contain enough instances or is pure // or maximum depth reached m_ClassDistribution = (double[]) classProbs.clone(); /* if (Utils.sum(m_ClassDistribution) < 2 * m_MinNum || Utils.eq(m_ClassDistribution[Utils.maxIndex(m_ClassDistribution)], Utils .sum(m_ClassDistribution))) { // Make leaf m_Attribute = -1; m_Prop = null; return; }*/ // Are we at an inner node if (m_Attribute > -1) { // Compute new weights for subsets based on backfit data m_Prop = new double[m_Successors.length]; for (int i = 0; i < data.numInstances(); i++) { Instance inst = data.instance(i); if (!inst.isMissing(m_Attribute)) { if (data.attribute(m_Attribute).isNominal()) { m_Prop[(int)inst.value(m_Attribute)] += inst.weight(); } else { m_Prop[(inst.value(m_Attribute) < m_SplitPoint) ? 0 : 1] += inst.weight(); } } } // If we only have missing values we can make this node into a leaf if (Utils.sum(m_Prop) <= 0) { m_Attribute = -1; m_Prop = null; return; } // Otherwise normalize the proportions Utils.normalize(m_Prop); // Split data Instances[] subsets = splitData(data); // Go through subsets for (int i = 0; i < subsets.length; i++) { // Compute distribution for current subset double[] dist = new double[data.numClasses()]; for (int j = 0; j < subsets[i].numInstances(); j++) { dist[(int)subsets[i].instance(j).classValue()] += subsets[i].instance(j).weight(); } // Backfit subset m_Successors[i].backfitData(subsets[i], dist); } // If unclassified instances are allowed, we don't need to store the class distribution if (getAllowUnclassifiedInstances()) { m_ClassDistribution = null; return; } // Otherwise, if all successors are non-empty, we don't need to store the class distribution boolean emptySuccessor = false; for (int i = 0; i < subsets.length; i++) { if (m_Successors[i].m_ClassDistribution == null) { emptySuccessor = true; return; } } m_ClassDistribution = null; // If we have a least two non-empty successors, we should keep this tree /* int nonEmptySuccessors = 0; for (int i = 0; i < subsets.length; i++) { if (m_Successors[i].m_ClassDistribution != null) { nonEmptySuccessors++; if (nonEmptySuccessors > 1) { return; } } } // Otherwise, this node is a leaf or should become a leaf m_Successors = null; m_Attribute = -1; m_Prop = null; return;*/ } } /** * Recursively generates a tree. * * @param data * the data to work with * @param classProbs * the class distribution * @param header * the header of the data * @param minNum * the minimum number of instances per leaf * @param debug * whether debugging is on * @param attIndicesWindow * the attribute window to choose attributes from * @param random * random number generator for choosing random attributes * @param depth * the current depth * @param determineStructure * whether to determine structure * @throws Exception * if generation fails */ protected void buildTree(Instances data, double[] classProbs, Instances header, double minNum, boolean debug, int[] attIndicesWindow, Random random, int depth, boolean allow) throws Exception { // Store structure of dataset, set minimum number of instances m_Info = header; m_Debug = debug; m_MinNum = minNum; m_AllowUnclassifiedInstances = allow; // Make leaf if there are no training instances if (data.numInstances() == 0) { m_Attribute = -1; m_ClassDistribution = null; m_Prop = null; return; } // Check if node doesn't contain enough instances or is pure // or maximum depth reached m_ClassDistribution = (double[]) classProbs.clone(); if (Utils.sum(m_ClassDistribution) < 2 * m_MinNum || Utils.eq(m_ClassDistribution[Utils.maxIndex(m_ClassDistribution)], Utils .sum(m_ClassDistribution)) || ((getMaxDepth() > 0) && (depth >= getMaxDepth()))) { // Make leaf m_Attribute = -1; m_Prop = null; return; } // Compute class distributions and value of splitting // criterion for each attribute double[] vals = new double[data.numAttributes()]; double[][][] dists = new double[data.numAttributes()][0][0]; double[][] props = new double[data.numAttributes()][0]; double[] splits = new double[data.numAttributes()]; // Investigate K random attributes int attIndex = 0; int windowSize = attIndicesWindow.length; int k = m_KValue; boolean gainFound = false; while ((windowSize > 0) && (k-- > 0 || !gainFound)) { int chosenIndex = random.nextInt(windowSize); attIndex = attIndicesWindow[chosenIndex]; // shift chosen attIndex out of window attIndicesWindow[chosenIndex] = attIndicesWindow[windowSize - 1]; attIndicesWindow[windowSize - 1] = attIndex; windowSize--; splits[attIndex] = distribution(props, dists, attIndex, data); vals[attIndex] = gain(dists[attIndex], priorVal(dists[attIndex])); if (Utils.gr(vals[attIndex], 0)) gainFound = true; } // Find best attribute m_Attribute = Utils.maxIndex(vals); double[][] distribution = dists[m_Attribute]; // Any useful split found? if (Utils.gr(vals[m_Attribute], 0)) { // Build subtrees m_SplitPoint = splits[m_Attribute]; m_Prop = props[m_Attribute]; Instances[] subsets = splitData(data); m_Successors = new RandomTree[distribution.length]; for (int i = 0; i < distribution.length; i++) { m_Successors[i] = new RandomTree(); m_Successors[i].setKValue(m_KValue); m_Successors[i].setMaxDepth(getMaxDepth()); m_Successors[i].buildTree(subsets[i], distribution[i], header, m_MinNum, m_Debug, attIndicesWindow, random, depth + 1, allow); } // If all successors are non-empty, we don't need to store the class distribution boolean emptySuccessor = false; for (int i = 0; i < subsets.length; i++) { if (m_Successors[i].m_ClassDistribution == null) { emptySuccessor = true; break; } } if (!emptySuccessor) { m_ClassDistribution = null; } } else { // Make leaf m_Attribute = -1; } } /** * Computes size of the tree. * * @return the number of nodes */ public int numNodes() { if (m_Attribute == -1) { return 1; } else { int size = 1; for (int i = 0; i < m_Successors.length; i++) { size += m_Successors[i].numNodes(); } return size; } } /** * Splits instances into subsets based on the given split. * * @param data * the data to work with * @return the subsets of instances * @throws Exception * if something goes wrong */ protected Instances[] splitData(Instances data) throws Exception { // Allocate array of Instances objects Instances[] subsets = new Instances[m_Prop.length]; for (int i = 0; i < m_Prop.length; i++) { subsets[i] = new Instances(data, data.numInstances()); } // Go through the data for (int i = 0; i < data.numInstances(); i++) { // Get instance Instance inst = data.instance(i); // Does the instance have a missing value? if (inst.isMissing(m_Attribute)) { // Split instance up for (int k = 0; k < m_Prop.length; k++) { if (m_Prop[k] > 0) { Instance copy = (Instance)inst.copy(); copy.setWeight(m_Prop[k] * inst.weight()); subsets[k].add(copy); } } // Proceed to next instance continue; } // Do we have a nominal attribute? if (data.attribute(m_Attribute).isNominal()) { subsets[(int)inst.value(m_Attribute)].add(inst); // Proceed to next instance continue; } // Do we have a numeric attribute? if (data.attribute(m_Attribute).isNumeric()) { subsets[(inst.value(m_Attribute) < m_SplitPoint) ? 0 : 1].add(inst); // Proceed to next instance continue; } // Else throw an exception throw new IllegalArgumentException("Unknown attribute type"); } // Save memory for (int i = 0; i < m_Prop.length; i++) { subsets[i].compactify(); } // Return the subsets return subsets; } /** * Computes class distribution for an attribute. * * @param props * @param dists * @param att * the attribute index * @param data * the data to work with * @throws Exception * if something goes wrong */ protected double distribution(double[][] props, double[][][] dists, int att, Instances data) throws Exception { double splitPoint = Double.NaN; Attribute attribute = data.attribute(att); double[][] dist = null; int indexOfFirstMissingValue = -1; if (attribute.isNominal()) { // For nominal attributes dist = new double[attribute.numValues()][data.numClasses()]; for (int i = 0; i < data.numInstances(); i++) { Instance inst = data.instance(i); if (inst.isMissing(att)) { // Skip missing values at this stage if (indexOfFirstMissingValue < 0) { indexOfFirstMissingValue = i; } continue; } dist[(int) inst.value(att)][(int) inst.classValue()] += inst.weight(); } } else { // For numeric attributes double[][] currDist = new double[2][data.numClasses()]; dist = new double[2][data.numClasses()]; // Sort data data.sort(att); // Move all instances into second subset for (int j = 0; j < data.numInstances(); j++) { Instance inst = data.instance(j); if (inst.isMissing(att)) { // Can stop as soon as we hit a missing value indexOfFirstMissingValue = j; break; } currDist[1][(int) inst.classValue()] += inst.weight(); } // Value before splitting double priorVal = priorVal(currDist); // Save initial distribution for (int j = 0; j < currDist.length; j++) { System.arraycopy(currDist[j], 0, dist[j], 0, dist[j].length); } // Try all possible split points double currSplit = data.instance(0).value(att); double currVal, bestVal = -Double.MAX_VALUE; for (int i = 0; i < data.numInstances(); i++) { Instance inst = data.instance(i); if (inst.isMissing(att)) { // Can stop as soon as we hit a missing value break; } // Can we place a sensible split point here? if (inst.value(att) > currSplit) { // Compute gain for split point currVal = gain(currDist, priorVal); // Is the current split point the best point so far? if (currVal > bestVal) { // Store value of current point bestVal = currVal; // Save split point splitPoint = (inst.value(att) + currSplit) / 2.0; // Save distribution for (int j = 0; j < currDist.length; j++) { System.arraycopy(currDist[j], 0, dist[j], 0, dist[j].length); } } } currSplit = inst.value(att); // Shift over the weight currDist[0][(int) inst.classValue()] += inst.weight(); currDist[1][(int) inst.classValue()] -= inst.weight(); } } // Compute weights for subsets props[att] = new double[dist.length]; for (int k = 0; k < props[att].length; k++) { props[att][k] = Utils.sum(dist[k]); } if (Utils.eq(Utils.sum(props[att]), 0)) { for (int k = 0; k < props[att].length; k++) { props[att][k] = 1.0 / (double) props[att].length; } } else { Utils.normalize(props[att]); } // Any instances with missing values ? if (indexOfFirstMissingValue > -1) { // Distribute weights for instances with missing values for (int i = indexOfFirstMissingValue; i < data.numInstances(); i++) { Instance inst = data.instance(i); if (attribute.isNominal()) { // Need to check if attribute value is missing if (inst.isMissing(att)) { for (int j = 0; j < dist.length; j++) { dist[j][(int) inst.classValue()] += props[att][j] * inst.weight(); } } } else { // Can be sure that value is missing, so no test required for (int j = 0; j < dist.length; j++) { dist[j][(int) inst.classValue()] += props[att][j] * inst.weight(); } } } } // Return distribution and split point dists[att] = dist; return splitPoint; } /** * Computes value of splitting criterion before split. * * @param dist * the distributions * @return the splitting criterion */ protected double priorVal(double[][] dist) { return ContingencyTables.entropyOverColumns(dist); } /** * Computes value of splitting criterion after split. * * @param dist * the distributions * @param priorVal * the splitting criterion * @return the gain after the split */ protected double gain(double[][] dist, double priorVal) { return priorVal - ContingencyTables.entropyConditionedOnRows(dist); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5928 $"); } /** * Main method for this class. * * @param argv * the commandline parameters */ public static void main(String[] argv) { runClassifier(new RandomTree(), argv); } /** * Returns graph describing the tree. * * @return the graph describing the tree * @throws Exception * if graph can't be computed */ public String graph() throws Exception { if (m_Successors == null) { throw new Exception("RandomTree: No model built yet."); } StringBuffer resultBuff = new StringBuffer(); toGraph(resultBuff, 0, null); String result = "digraph RandomTree {\n" + "edge [style=bold]\n" + resultBuff.toString() + "\n}\n"; return result; } /** * Returns the type of graph this classifier represents. * * @return Drawable.TREE */ public int graphType() { return Drawable.TREE; } /** * Outputs one node for graph. * * @param text * the buffer to append the output to * @param num * the current node id * @param parent * the parent of the nodes * @return the next node id * @throws Exception * if something goes wrong */ protected int toGraph(StringBuffer text, int num, RandomTree parent) throws Exception { num++; if (m_Attribute == -1) { text.append("N" + Integer.toHexString(RandomTree.this.hashCode()) + " [label=\"" + num + leafString() + "\"" + " shape=box]\n"); } else { text.append("N" + Integer.toHexString(RandomTree.this.hashCode()) + " [label=\"" + num + ": " + m_Info.attribute(m_Attribute).name() + "\"]\n"); for (int i = 0; i < m_Successors.length; i++) { text.append("N" + Integer.toHexString(RandomTree.this.hashCode()) + "->" + "N" + Integer.toHexString(m_Successors[i].hashCode()) + " [label=\""); if (m_Info.attribute(m_Attribute).isNumeric()) { if (i == 0) { text.append(" < " + Utils.doubleToString(m_SplitPoint, 2)); } else { text.append(" >= " + Utils.doubleToString(m_SplitPoint, 2)); } } else { text.append(" = " + m_Info.attribute(m_Attribute).value(i)); } text.append("\"]\n"); num = m_Successors[i].toGraph(text, num, this); } } return num; } }