1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * RandomForest.java |
---|
19 | * Copyright (C) 2001 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.trees; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.classifiers.meta.Bagging; |
---|
28 | import weka.core.AdditionalMeasureProducer; |
---|
29 | import weka.core.Capabilities; |
---|
30 | import weka.core.Instance; |
---|
31 | import weka.core.Instances; |
---|
32 | import weka.core.Option; |
---|
33 | import weka.core.OptionHandler; |
---|
34 | import weka.core.Randomizable; |
---|
35 | import weka.core.RevisionUtils; |
---|
36 | import weka.core.TechnicalInformation; |
---|
37 | import weka.core.TechnicalInformationHandler; |
---|
38 | import weka.core.Utils; |
---|
39 | import weka.core.WeightedInstancesHandler; |
---|
40 | import weka.core.TechnicalInformation.Field; |
---|
41 | import weka.core.TechnicalInformation.Type; |
---|
42 | |
---|
43 | import java.util.Enumeration; |
---|
44 | import java.util.Vector; |
---|
45 | |
---|
46 | /** |
---|
47 | <!-- globalinfo-start --> |
---|
48 | * Class for constructing a forest of random trees.<br/> |
---|
49 | * <br/> |
---|
50 | * For more information see: <br/> |
---|
51 | * <br/> |
---|
52 | * Leo Breiman (2001). Random Forests. Machine Learning. 45(1):5-32. |
---|
53 | * <p/> |
---|
54 | <!-- globalinfo-end --> |
---|
55 | * |
---|
56 | <!-- technical-bibtex-start --> |
---|
57 | * BibTeX: |
---|
58 | * <pre> |
---|
59 | * @article{Breiman2001, |
---|
60 | * author = {Leo Breiman}, |
---|
61 | * journal = {Machine Learning}, |
---|
62 | * number = {1}, |
---|
63 | * pages = {5-32}, |
---|
64 | * title = {Random Forests}, |
---|
65 | * volume = {45}, |
---|
66 | * year = {2001} |
---|
67 | * } |
---|
68 | * </pre> |
---|
69 | * <p/> |
---|
70 | <!-- technical-bibtex-end --> |
---|
71 | * |
---|
72 | <!-- options-start --> |
---|
73 | * Valid options are: <p/> |
---|
74 | * |
---|
75 | * <pre> -I <number of trees> |
---|
76 | * Number of trees to build.</pre> |
---|
77 | * |
---|
78 | * <pre> -K <number of features> |
---|
79 | * Number of features to consider (<1=int(logM+1)).</pre> |
---|
80 | * |
---|
81 | * <pre> -S |
---|
82 | * Seed for random number generator. |
---|
83 | * (default 1)</pre> |
---|
84 | * |
---|
85 | * <pre> -depth <num> |
---|
86 | * The maximum depth of the trees, 0 for unlimited. |
---|
87 | * (default 0)</pre> |
---|
88 | * |
---|
89 | * <pre> -D |
---|
90 | * If set, classifier is run in debug mode and |
---|
91 | * may output additional info to the console</pre> |
---|
92 | * |
---|
93 | <!-- options-end --> |
---|
94 | * |
---|
95 | * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) |
---|
96 | * @version $Revision: 5928 $ |
---|
97 | */ |
---|
98 | public class RandomForest |
---|
99 | extends AbstractClassifier |
---|
100 | implements OptionHandler, Randomizable, WeightedInstancesHandler, |
---|
101 | AdditionalMeasureProducer, TechnicalInformationHandler { |
---|
102 | |
---|
103 | /** for serialization */ |
---|
104 | static final long serialVersionUID = 4216839470751428698L; |
---|
105 | |
---|
106 | /** Number of trees in forest. */ |
---|
107 | protected int m_numTrees = 10; |
---|
108 | |
---|
109 | /** Number of features to consider in random feature selection. |
---|
110 | If less than 1 will use int(logM+1) ) */ |
---|
111 | protected int m_numFeatures = 0; |
---|
112 | |
---|
113 | /** The random seed. */ |
---|
114 | protected int m_randomSeed = 1; |
---|
115 | |
---|
116 | /** Final number of features that were considered in last build. */ |
---|
117 | protected int m_KValue = 0; |
---|
118 | |
---|
119 | /** The bagger. */ |
---|
120 | protected Bagging m_bagger = null; |
---|
121 | |
---|
122 | /** The maximum depth of the trees (0 = unlimited) */ |
---|
123 | protected int m_MaxDepth = 0; |
---|
124 | |
---|
125 | /** |
---|
126 | * Returns a string describing classifier |
---|
127 | * @return a description suitable for |
---|
128 | * displaying in the explorer/experimenter gui |
---|
129 | */ |
---|
130 | public String globalInfo() { |
---|
131 | |
---|
132 | return |
---|
133 | "Class for constructing a forest of random trees.\n\n" |
---|
134 | + "For more information see: \n\n" |
---|
135 | + getTechnicalInformation().toString(); |
---|
136 | } |
---|
137 | |
---|
138 | /** |
---|
139 | * Returns an instance of a TechnicalInformation object, containing |
---|
140 | * detailed information about the technical background of this class, |
---|
141 | * e.g., paper reference or book this class is based on. |
---|
142 | * |
---|
143 | * @return the technical information about this class |
---|
144 | */ |
---|
145 | public TechnicalInformation getTechnicalInformation() { |
---|
146 | TechnicalInformation result; |
---|
147 | |
---|
148 | result = new TechnicalInformation(Type.ARTICLE); |
---|
149 | result.setValue(Field.AUTHOR, "Leo Breiman"); |
---|
150 | result.setValue(Field.YEAR, "2001"); |
---|
151 | result.setValue(Field.TITLE, "Random Forests"); |
---|
152 | result.setValue(Field.JOURNAL, "Machine Learning"); |
---|
153 | result.setValue(Field.VOLUME, "45"); |
---|
154 | result.setValue(Field.NUMBER, "1"); |
---|
155 | result.setValue(Field.PAGES, "5-32"); |
---|
156 | |
---|
157 | return result; |
---|
158 | } |
---|
159 | |
---|
160 | /** |
---|
161 | * Returns the tip text for this property |
---|
162 | * @return tip text for this property suitable for |
---|
163 | * displaying in the explorer/experimenter gui |
---|
164 | */ |
---|
165 | public String numTreesTipText() { |
---|
166 | return "The number of trees to be generated."; |
---|
167 | } |
---|
168 | |
---|
169 | /** |
---|
170 | * Get the value of numTrees. |
---|
171 | * |
---|
172 | * @return Value of numTrees. |
---|
173 | */ |
---|
174 | public int getNumTrees() { |
---|
175 | |
---|
176 | return m_numTrees; |
---|
177 | } |
---|
178 | |
---|
179 | /** |
---|
180 | * Set the value of numTrees. |
---|
181 | * |
---|
182 | * @param newNumTrees Value to assign to numTrees. |
---|
183 | */ |
---|
184 | public void setNumTrees(int newNumTrees) { |
---|
185 | |
---|
186 | m_numTrees = newNumTrees; |
---|
187 | } |
---|
188 | |
---|
189 | /** |
---|
190 | * Returns the tip text for this property |
---|
191 | * @return tip text for this property suitable for |
---|
192 | * displaying in the explorer/experimenter gui |
---|
193 | */ |
---|
194 | public String numFeaturesTipText() { |
---|
195 | return "The number of attributes to be used in random selection (see RandomTree)."; |
---|
196 | } |
---|
197 | |
---|
198 | /** |
---|
199 | * Get the number of features used in random selection. |
---|
200 | * |
---|
201 | * @return Value of numFeatures. |
---|
202 | */ |
---|
203 | public int getNumFeatures() { |
---|
204 | |
---|
205 | return m_numFeatures; |
---|
206 | } |
---|
207 | |
---|
208 | /** |
---|
209 | * Set the number of features to use in random selection. |
---|
210 | * |
---|
211 | * @param newNumFeatures Value to assign to numFeatures. |
---|
212 | */ |
---|
213 | public void setNumFeatures(int newNumFeatures) { |
---|
214 | |
---|
215 | m_numFeatures = newNumFeatures; |
---|
216 | } |
---|
217 | |
---|
218 | /** |
---|
219 | * Returns the tip text for this property |
---|
220 | * @return tip text for this property suitable for |
---|
221 | * displaying in the explorer/experimenter gui |
---|
222 | */ |
---|
223 | public String seedTipText() { |
---|
224 | return "The random number seed to be used."; |
---|
225 | } |
---|
226 | |
---|
227 | /** |
---|
228 | * Set the seed for random number generation. |
---|
229 | * |
---|
230 | * @param seed the seed |
---|
231 | */ |
---|
232 | public void setSeed(int seed) { |
---|
233 | |
---|
234 | m_randomSeed = seed; |
---|
235 | } |
---|
236 | |
---|
237 | /** |
---|
238 | * Gets the seed for the random number generations |
---|
239 | * |
---|
240 | * @return the seed for the random number generation |
---|
241 | */ |
---|
242 | public int getSeed() { |
---|
243 | |
---|
244 | return m_randomSeed; |
---|
245 | } |
---|
246 | |
---|
247 | /** |
---|
248 | * Returns the tip text for this property |
---|
249 | * |
---|
250 | * @return tip text for this property suitable for |
---|
251 | * displaying in the explorer/experimenter gui |
---|
252 | */ |
---|
253 | public String maxDepthTipText() { |
---|
254 | return "The maximum depth of the trees, 0 for unlimited."; |
---|
255 | } |
---|
256 | |
---|
257 | /** |
---|
258 | * Get the maximum depth of trh tree, 0 for unlimited. |
---|
259 | * |
---|
260 | * @return the maximum depth. |
---|
261 | */ |
---|
262 | public int getMaxDepth() { |
---|
263 | return m_MaxDepth; |
---|
264 | } |
---|
265 | |
---|
266 | /** |
---|
267 | * Set the maximum depth of the tree, 0 for unlimited. |
---|
268 | * |
---|
269 | * @param value the maximum depth. |
---|
270 | */ |
---|
271 | public void setMaxDepth(int value) { |
---|
272 | m_MaxDepth = value; |
---|
273 | } |
---|
274 | |
---|
275 | /** |
---|
276 | * Gets the out of bag error that was calculated as the classifier was built. |
---|
277 | * |
---|
278 | * @return the out of bag error |
---|
279 | */ |
---|
280 | public double measureOutOfBagError() { |
---|
281 | |
---|
282 | if (m_bagger != null) { |
---|
283 | return m_bagger.measureOutOfBagError(); |
---|
284 | } else return Double.NaN; |
---|
285 | } |
---|
286 | |
---|
287 | /** |
---|
288 | * Returns an enumeration of the additional measure names. |
---|
289 | * |
---|
290 | * @return an enumeration of the measure names |
---|
291 | */ |
---|
292 | public Enumeration enumerateMeasures() { |
---|
293 | |
---|
294 | Vector newVector = new Vector(1); |
---|
295 | newVector.addElement("measureOutOfBagError"); |
---|
296 | return newVector.elements(); |
---|
297 | } |
---|
298 | |
---|
299 | /** |
---|
300 | * Returns the value of the named measure. |
---|
301 | * |
---|
302 | * @param additionalMeasureName the name of the measure to query for its value |
---|
303 | * @return the value of the named measure |
---|
304 | * @throws IllegalArgumentException if the named measure is not supported |
---|
305 | */ |
---|
306 | public double getMeasure(String additionalMeasureName) { |
---|
307 | |
---|
308 | if (additionalMeasureName.equalsIgnoreCase("measureOutOfBagError")) { |
---|
309 | return measureOutOfBagError(); |
---|
310 | } |
---|
311 | else {throw new IllegalArgumentException(additionalMeasureName |
---|
312 | + " not supported (RandomForest)"); |
---|
313 | } |
---|
314 | } |
---|
315 | |
---|
316 | /** |
---|
317 | * Returns an enumeration describing the available options. |
---|
318 | * |
---|
319 | * @return an enumeration of all the available options |
---|
320 | */ |
---|
321 | public Enumeration listOptions() { |
---|
322 | |
---|
323 | Vector newVector = new Vector(); |
---|
324 | |
---|
325 | newVector.addElement(new Option( |
---|
326 | "\tNumber of trees to build.", |
---|
327 | "I", 1, "-I <number of trees>")); |
---|
328 | |
---|
329 | newVector.addElement(new Option( |
---|
330 | "\tNumber of features to consider (<1=int(logM+1)).", |
---|
331 | "K", 1, "-K <number of features>")); |
---|
332 | |
---|
333 | newVector.addElement(new Option( |
---|
334 | "\tSeed for random number generator.\n" |
---|
335 | + "\t(default 1)", |
---|
336 | "S", 1, "-S")); |
---|
337 | |
---|
338 | newVector.addElement(new Option( |
---|
339 | "\tThe maximum depth of the trees, 0 for unlimited.\n" |
---|
340 | + "\t(default 0)", |
---|
341 | "depth", 1, "-depth <num>")); |
---|
342 | |
---|
343 | Enumeration enu = super.listOptions(); |
---|
344 | while (enu.hasMoreElements()) { |
---|
345 | newVector.addElement(enu.nextElement()); |
---|
346 | } |
---|
347 | |
---|
348 | return newVector.elements(); |
---|
349 | } |
---|
350 | |
---|
351 | /** |
---|
352 | * Gets the current settings of the forest. |
---|
353 | * |
---|
354 | * @return an array of strings suitable for passing to setOptions() |
---|
355 | */ |
---|
356 | public String[] getOptions() { |
---|
357 | Vector result; |
---|
358 | String[] options; |
---|
359 | int i; |
---|
360 | |
---|
361 | result = new Vector(); |
---|
362 | |
---|
363 | result.add("-I"); |
---|
364 | result.add("" + getNumTrees()); |
---|
365 | |
---|
366 | result.add("-K"); |
---|
367 | result.add("" + getNumFeatures()); |
---|
368 | |
---|
369 | result.add("-S"); |
---|
370 | result.add("" + getSeed()); |
---|
371 | |
---|
372 | if (getMaxDepth() > 0) { |
---|
373 | result.add("-depth"); |
---|
374 | result.add("" + getMaxDepth()); |
---|
375 | } |
---|
376 | |
---|
377 | options = super.getOptions(); |
---|
378 | for (i = 0; i < options.length; i++) |
---|
379 | result.add(options[i]); |
---|
380 | |
---|
381 | return (String[]) result.toArray(new String[result.size()]); |
---|
382 | } |
---|
383 | |
---|
384 | /** |
---|
385 | * Parses a given list of options. <p/> |
---|
386 | * |
---|
387 | <!-- options-start --> |
---|
388 | * Valid options are: <p/> |
---|
389 | * |
---|
390 | * <pre> -I <number of trees> |
---|
391 | * Number of trees to build.</pre> |
---|
392 | * |
---|
393 | * <pre> -K <number of features> |
---|
394 | * Number of features to consider (<1=int(logM+1)).</pre> |
---|
395 | * |
---|
396 | * <pre> -S |
---|
397 | * Seed for random number generator. |
---|
398 | * (default 1)</pre> |
---|
399 | * |
---|
400 | * <pre> -depth <num> |
---|
401 | * The maximum depth of the trees, 0 for unlimited. |
---|
402 | * (default 0)</pre> |
---|
403 | * |
---|
404 | * <pre> -D |
---|
405 | * If set, classifier is run in debug mode and |
---|
406 | * may output additional info to the console</pre> |
---|
407 | * |
---|
408 | <!-- options-end --> |
---|
409 | * |
---|
410 | * @param options the list of options as an array of strings |
---|
411 | * @throws Exception if an option is not supported |
---|
412 | */ |
---|
413 | public void setOptions(String[] options) throws Exception{ |
---|
414 | String tmpStr; |
---|
415 | |
---|
416 | tmpStr = Utils.getOption('I', options); |
---|
417 | if (tmpStr.length() != 0) { |
---|
418 | m_numTrees = Integer.parseInt(tmpStr); |
---|
419 | } else { |
---|
420 | m_numTrees = 10; |
---|
421 | } |
---|
422 | |
---|
423 | tmpStr = Utils.getOption('K', options); |
---|
424 | if (tmpStr.length() != 0) { |
---|
425 | m_numFeatures = Integer.parseInt(tmpStr); |
---|
426 | } else { |
---|
427 | m_numFeatures = 0; |
---|
428 | } |
---|
429 | |
---|
430 | tmpStr = Utils.getOption('S', options); |
---|
431 | if (tmpStr.length() != 0) { |
---|
432 | setSeed(Integer.parseInt(tmpStr)); |
---|
433 | } else { |
---|
434 | setSeed(1); |
---|
435 | } |
---|
436 | |
---|
437 | tmpStr = Utils.getOption("depth", options); |
---|
438 | if (tmpStr.length() != 0) { |
---|
439 | setMaxDepth(Integer.parseInt(tmpStr)); |
---|
440 | } else { |
---|
441 | setMaxDepth(0); |
---|
442 | } |
---|
443 | |
---|
444 | super.setOptions(options); |
---|
445 | |
---|
446 | Utils.checkForRemainingOptions(options); |
---|
447 | } |
---|
448 | |
---|
449 | /** |
---|
450 | * Returns default capabilities of the classifier. |
---|
451 | * |
---|
452 | * @return the capabilities of this classifier |
---|
453 | */ |
---|
454 | public Capabilities getCapabilities() { |
---|
455 | return new RandomTree().getCapabilities(); |
---|
456 | } |
---|
457 | |
---|
458 | /** |
---|
459 | * Builds a classifier for a set of instances. |
---|
460 | * |
---|
461 | * @param data the instances to train the classifier with |
---|
462 | * @throws Exception if something goes wrong |
---|
463 | */ |
---|
464 | public void buildClassifier(Instances data) throws Exception { |
---|
465 | |
---|
466 | // can classifier handle the data? |
---|
467 | getCapabilities().testWithFail(data); |
---|
468 | |
---|
469 | // remove instances with missing class |
---|
470 | data = new Instances(data); |
---|
471 | data.deleteWithMissingClass(); |
---|
472 | |
---|
473 | m_bagger = new Bagging(); |
---|
474 | RandomTree rTree = new RandomTree(); |
---|
475 | |
---|
476 | // set up the random tree options |
---|
477 | m_KValue = m_numFeatures; |
---|
478 | if (m_KValue < 1) m_KValue = (int) Utils.log2(data.numAttributes())+1; |
---|
479 | rTree.setKValue(m_KValue); |
---|
480 | rTree.setMaxDepth(getMaxDepth()); |
---|
481 | |
---|
482 | // set up the bagger and build the forest |
---|
483 | m_bagger.setClassifier(rTree); |
---|
484 | m_bagger.setSeed(m_randomSeed); |
---|
485 | m_bagger.setNumIterations(m_numTrees); |
---|
486 | m_bagger.setCalcOutOfBag(true); |
---|
487 | m_bagger.buildClassifier(data); |
---|
488 | } |
---|
489 | |
---|
490 | /** |
---|
491 | * Returns the class probability distribution for an instance. |
---|
492 | * |
---|
493 | * @param instance the instance to be classified |
---|
494 | * @return the distribution the forest generates for the instance |
---|
495 | * @throws Exception if computation fails |
---|
496 | */ |
---|
497 | public double[] distributionForInstance(Instance instance) throws Exception { |
---|
498 | |
---|
499 | return m_bagger.distributionForInstance(instance); |
---|
500 | } |
---|
501 | |
---|
502 | /** |
---|
503 | * Outputs a description of this classifier. |
---|
504 | * |
---|
505 | * @return a string containing a description of the classifier |
---|
506 | */ |
---|
507 | public String toString() { |
---|
508 | |
---|
509 | if (m_bagger == null) |
---|
510 | return "Random forest not built yet"; |
---|
511 | else |
---|
512 | return "Random forest of " + m_numTrees |
---|
513 | + " trees, each constructed while considering " |
---|
514 | + m_KValue + " random feature" + (m_KValue==1 ? "" : "s") + ".\n" |
---|
515 | + "Out of bag error: " |
---|
516 | + Utils.doubleToString(m_bagger.measureOutOfBagError(), 4) + "\n" |
---|
517 | + (getMaxDepth() > 0 ? ("Max. depth of trees: " + getMaxDepth() + "\n") : ("")) |
---|
518 | + "\n"; |
---|
519 | } |
---|
520 | |
---|
521 | /** |
---|
522 | * Returns the revision string. |
---|
523 | * |
---|
524 | * @return the revision |
---|
525 | */ |
---|
526 | public String getRevision() { |
---|
527 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
528 | } |
---|
529 | |
---|
530 | /** |
---|
531 | * Main method for this class. |
---|
532 | * |
---|
533 | * @param argv the options |
---|
534 | */ |
---|
535 | public static void main(String[] argv) { |
---|
536 | runClassifier(new RandomForest(), argv); |
---|
537 | } |
---|
538 | } |
---|