| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * RandomForest.java |
|---|
| 19 | * Copyright (C) 2001 University of Waikato, Hamilton, New Zealand |
|---|
| 20 | * |
|---|
| 21 | */ |
|---|
| 22 | |
|---|
| 23 | package weka.classifiers.trees; |
|---|
| 24 | |
|---|
| 25 | import weka.classifiers.Classifier; |
|---|
| 26 | import weka.classifiers.AbstractClassifier; |
|---|
| 27 | import weka.classifiers.meta.Bagging; |
|---|
| 28 | import weka.core.AdditionalMeasureProducer; |
|---|
| 29 | import weka.core.Capabilities; |
|---|
| 30 | import weka.core.Instance; |
|---|
| 31 | import weka.core.Instances; |
|---|
| 32 | import weka.core.Option; |
|---|
| 33 | import weka.core.OptionHandler; |
|---|
| 34 | import weka.core.Randomizable; |
|---|
| 35 | import weka.core.RevisionUtils; |
|---|
| 36 | import weka.core.TechnicalInformation; |
|---|
| 37 | import weka.core.TechnicalInformationHandler; |
|---|
| 38 | import weka.core.Utils; |
|---|
| 39 | import weka.core.WeightedInstancesHandler; |
|---|
| 40 | import weka.core.TechnicalInformation.Field; |
|---|
| 41 | import weka.core.TechnicalInformation.Type; |
|---|
| 42 | |
|---|
| 43 | import java.util.Enumeration; |
|---|
| 44 | import java.util.Vector; |
|---|
| 45 | |
|---|
| 46 | /** |
|---|
| 47 | <!-- globalinfo-start --> |
|---|
| 48 | * Class for constructing a forest of random trees.<br/> |
|---|
| 49 | * <br/> |
|---|
| 50 | * For more information see: <br/> |
|---|
| 51 | * <br/> |
|---|
| 52 | * Leo Breiman (2001). Random Forests. Machine Learning. 45(1):5-32. |
|---|
| 53 | * <p/> |
|---|
| 54 | <!-- globalinfo-end --> |
|---|
| 55 | * |
|---|
| 56 | <!-- technical-bibtex-start --> |
|---|
| 57 | * BibTeX: |
|---|
| 58 | * <pre> |
|---|
| 59 | * @article{Breiman2001, |
|---|
| 60 | * author = {Leo Breiman}, |
|---|
| 61 | * journal = {Machine Learning}, |
|---|
| 62 | * number = {1}, |
|---|
| 63 | * pages = {5-32}, |
|---|
| 64 | * title = {Random Forests}, |
|---|
| 65 | * volume = {45}, |
|---|
| 66 | * year = {2001} |
|---|
| 67 | * } |
|---|
| 68 | * </pre> |
|---|
| 69 | * <p/> |
|---|
| 70 | <!-- technical-bibtex-end --> |
|---|
| 71 | * |
|---|
| 72 | <!-- options-start --> |
|---|
| 73 | * Valid options are: <p/> |
|---|
| 74 | * |
|---|
| 75 | * <pre> -I <number of trees> |
|---|
| 76 | * Number of trees to build.</pre> |
|---|
| 77 | * |
|---|
| 78 | * <pre> -K <number of features> |
|---|
| 79 | * Number of features to consider (<1=int(logM+1)).</pre> |
|---|
| 80 | * |
|---|
| 81 | * <pre> -S |
|---|
| 82 | * Seed for random number generator. |
|---|
| 83 | * (default 1)</pre> |
|---|
| 84 | * |
|---|
| 85 | * <pre> -depth <num> |
|---|
| 86 | * The maximum depth of the trees, 0 for unlimited. |
|---|
| 87 | * (default 0)</pre> |
|---|
| 88 | * |
|---|
| 89 | * <pre> -D |
|---|
| 90 | * If set, classifier is run in debug mode and |
|---|
| 91 | * may output additional info to the console</pre> |
|---|
| 92 | * |
|---|
| 93 | <!-- options-end --> |
|---|
| 94 | * |
|---|
| 95 | * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) |
|---|
| 96 | * @version $Revision: 5928 $ |
|---|
| 97 | */ |
|---|
| 98 | public class RandomForest |
|---|
| 99 | extends AbstractClassifier |
|---|
| 100 | implements OptionHandler, Randomizable, WeightedInstancesHandler, |
|---|
| 101 | AdditionalMeasureProducer, TechnicalInformationHandler { |
|---|
| 102 | |
|---|
| 103 | /** for serialization */ |
|---|
| 104 | static final long serialVersionUID = 4216839470751428698L; |
|---|
| 105 | |
|---|
| 106 | /** Number of trees in forest. */ |
|---|
| 107 | protected int m_numTrees = 10; |
|---|
| 108 | |
|---|
| 109 | /** Number of features to consider in random feature selection. |
|---|
| 110 | If less than 1 will use int(logM+1) ) */ |
|---|
| 111 | protected int m_numFeatures = 0; |
|---|
| 112 | |
|---|
| 113 | /** The random seed. */ |
|---|
| 114 | protected int m_randomSeed = 1; |
|---|
| 115 | |
|---|
| 116 | /** Final number of features that were considered in last build. */ |
|---|
| 117 | protected int m_KValue = 0; |
|---|
| 118 | |
|---|
| 119 | /** The bagger. */ |
|---|
| 120 | protected Bagging m_bagger = null; |
|---|
| 121 | |
|---|
| 122 | /** The maximum depth of the trees (0 = unlimited) */ |
|---|
| 123 | protected int m_MaxDepth = 0; |
|---|
| 124 | |
|---|
| 125 | /** |
|---|
| 126 | * Returns a string describing classifier |
|---|
| 127 | * @return a description suitable for |
|---|
| 128 | * displaying in the explorer/experimenter gui |
|---|
| 129 | */ |
|---|
| 130 | public String globalInfo() { |
|---|
| 131 | |
|---|
| 132 | return |
|---|
| 133 | "Class for constructing a forest of random trees.\n\n" |
|---|
| 134 | + "For more information see: \n\n" |
|---|
| 135 | + getTechnicalInformation().toString(); |
|---|
| 136 | } |
|---|
| 137 | |
|---|
| 138 | /** |
|---|
| 139 | * Returns an instance of a TechnicalInformation object, containing |
|---|
| 140 | * detailed information about the technical background of this class, |
|---|
| 141 | * e.g., paper reference or book this class is based on. |
|---|
| 142 | * |
|---|
| 143 | * @return the technical information about this class |
|---|
| 144 | */ |
|---|
| 145 | public TechnicalInformation getTechnicalInformation() { |
|---|
| 146 | TechnicalInformation result; |
|---|
| 147 | |
|---|
| 148 | result = new TechnicalInformation(Type.ARTICLE); |
|---|
| 149 | result.setValue(Field.AUTHOR, "Leo Breiman"); |
|---|
| 150 | result.setValue(Field.YEAR, "2001"); |
|---|
| 151 | result.setValue(Field.TITLE, "Random Forests"); |
|---|
| 152 | result.setValue(Field.JOURNAL, "Machine Learning"); |
|---|
| 153 | result.setValue(Field.VOLUME, "45"); |
|---|
| 154 | result.setValue(Field.NUMBER, "1"); |
|---|
| 155 | result.setValue(Field.PAGES, "5-32"); |
|---|
| 156 | |
|---|
| 157 | return result; |
|---|
| 158 | } |
|---|
| 159 | |
|---|
| 160 | /** |
|---|
| 161 | * Returns the tip text for this property |
|---|
| 162 | * @return tip text for this property suitable for |
|---|
| 163 | * displaying in the explorer/experimenter gui |
|---|
| 164 | */ |
|---|
| 165 | public String numTreesTipText() { |
|---|
| 166 | return "The number of trees to be generated."; |
|---|
| 167 | } |
|---|
| 168 | |
|---|
| 169 | /** |
|---|
| 170 | * Get the value of numTrees. |
|---|
| 171 | * |
|---|
| 172 | * @return Value of numTrees. |
|---|
| 173 | */ |
|---|
| 174 | public int getNumTrees() { |
|---|
| 175 | |
|---|
| 176 | return m_numTrees; |
|---|
| 177 | } |
|---|
| 178 | |
|---|
| 179 | /** |
|---|
| 180 | * Set the value of numTrees. |
|---|
| 181 | * |
|---|
| 182 | * @param newNumTrees Value to assign to numTrees. |
|---|
| 183 | */ |
|---|
| 184 | public void setNumTrees(int newNumTrees) { |
|---|
| 185 | |
|---|
| 186 | m_numTrees = newNumTrees; |
|---|
| 187 | } |
|---|
| 188 | |
|---|
| 189 | /** |
|---|
| 190 | * Returns the tip text for this property |
|---|
| 191 | * @return tip text for this property suitable for |
|---|
| 192 | * displaying in the explorer/experimenter gui |
|---|
| 193 | */ |
|---|
| 194 | public String numFeaturesTipText() { |
|---|
| 195 | return "The number of attributes to be used in random selection (see RandomTree)."; |
|---|
| 196 | } |
|---|
| 197 | |
|---|
| 198 | /** |
|---|
| 199 | * Get the number of features used in random selection. |
|---|
| 200 | * |
|---|
| 201 | * @return Value of numFeatures. |
|---|
| 202 | */ |
|---|
| 203 | public int getNumFeatures() { |
|---|
| 204 | |
|---|
| 205 | return m_numFeatures; |
|---|
| 206 | } |
|---|
| 207 | |
|---|
| 208 | /** |
|---|
| 209 | * Set the number of features to use in random selection. |
|---|
| 210 | * |
|---|
| 211 | * @param newNumFeatures Value to assign to numFeatures. |
|---|
| 212 | */ |
|---|
| 213 | public void setNumFeatures(int newNumFeatures) { |
|---|
| 214 | |
|---|
| 215 | m_numFeatures = newNumFeatures; |
|---|
| 216 | } |
|---|
| 217 | |
|---|
| 218 | /** |
|---|
| 219 | * Returns the tip text for this property |
|---|
| 220 | * @return tip text for this property suitable for |
|---|
| 221 | * displaying in the explorer/experimenter gui |
|---|
| 222 | */ |
|---|
| 223 | public String seedTipText() { |
|---|
| 224 | return "The random number seed to be used."; |
|---|
| 225 | } |
|---|
| 226 | |
|---|
| 227 | /** |
|---|
| 228 | * Set the seed for random number generation. |
|---|
| 229 | * |
|---|
| 230 | * @param seed the seed |
|---|
| 231 | */ |
|---|
| 232 | public void setSeed(int seed) { |
|---|
| 233 | |
|---|
| 234 | m_randomSeed = seed; |
|---|
| 235 | } |
|---|
| 236 | |
|---|
| 237 | /** |
|---|
| 238 | * Gets the seed for the random number generations |
|---|
| 239 | * |
|---|
| 240 | * @return the seed for the random number generation |
|---|
| 241 | */ |
|---|
| 242 | public int getSeed() { |
|---|
| 243 | |
|---|
| 244 | return m_randomSeed; |
|---|
| 245 | } |
|---|
| 246 | |
|---|
| 247 | /** |
|---|
| 248 | * Returns the tip text for this property |
|---|
| 249 | * |
|---|
| 250 | * @return tip text for this property suitable for |
|---|
| 251 | * displaying in the explorer/experimenter gui |
|---|
| 252 | */ |
|---|
| 253 | public String maxDepthTipText() { |
|---|
| 254 | return "The maximum depth of the trees, 0 for unlimited."; |
|---|
| 255 | } |
|---|
| 256 | |
|---|
| 257 | /** |
|---|
| 258 | * Get the maximum depth of trh tree, 0 for unlimited. |
|---|
| 259 | * |
|---|
| 260 | * @return the maximum depth. |
|---|
| 261 | */ |
|---|
| 262 | public int getMaxDepth() { |
|---|
| 263 | return m_MaxDepth; |
|---|
| 264 | } |
|---|
| 265 | |
|---|
| 266 | /** |
|---|
| 267 | * Set the maximum depth of the tree, 0 for unlimited. |
|---|
| 268 | * |
|---|
| 269 | * @param value the maximum depth. |
|---|
| 270 | */ |
|---|
| 271 | public void setMaxDepth(int value) { |
|---|
| 272 | m_MaxDepth = value; |
|---|
| 273 | } |
|---|
| 274 | |
|---|
| 275 | /** |
|---|
| 276 | * Gets the out of bag error that was calculated as the classifier was built. |
|---|
| 277 | * |
|---|
| 278 | * @return the out of bag error |
|---|
| 279 | */ |
|---|
| 280 | public double measureOutOfBagError() { |
|---|
| 281 | |
|---|
| 282 | if (m_bagger != null) { |
|---|
| 283 | return m_bagger.measureOutOfBagError(); |
|---|
| 284 | } else return Double.NaN; |
|---|
| 285 | } |
|---|
| 286 | |
|---|
| 287 | /** |
|---|
| 288 | * Returns an enumeration of the additional measure names. |
|---|
| 289 | * |
|---|
| 290 | * @return an enumeration of the measure names |
|---|
| 291 | */ |
|---|
| 292 | public Enumeration enumerateMeasures() { |
|---|
| 293 | |
|---|
| 294 | Vector newVector = new Vector(1); |
|---|
| 295 | newVector.addElement("measureOutOfBagError"); |
|---|
| 296 | return newVector.elements(); |
|---|
| 297 | } |
|---|
| 298 | |
|---|
| 299 | /** |
|---|
| 300 | * Returns the value of the named measure. |
|---|
| 301 | * |
|---|
| 302 | * @param additionalMeasureName the name of the measure to query for its value |
|---|
| 303 | * @return the value of the named measure |
|---|
| 304 | * @throws IllegalArgumentException if the named measure is not supported |
|---|
| 305 | */ |
|---|
| 306 | public double getMeasure(String additionalMeasureName) { |
|---|
| 307 | |
|---|
| 308 | if (additionalMeasureName.equalsIgnoreCase("measureOutOfBagError")) { |
|---|
| 309 | return measureOutOfBagError(); |
|---|
| 310 | } |
|---|
| 311 | else {throw new IllegalArgumentException(additionalMeasureName |
|---|
| 312 | + " not supported (RandomForest)"); |
|---|
| 313 | } |
|---|
| 314 | } |
|---|
| 315 | |
|---|
| 316 | /** |
|---|
| 317 | * Returns an enumeration describing the available options. |
|---|
| 318 | * |
|---|
| 319 | * @return an enumeration of all the available options |
|---|
| 320 | */ |
|---|
| 321 | public Enumeration listOptions() { |
|---|
| 322 | |
|---|
| 323 | Vector newVector = new Vector(); |
|---|
| 324 | |
|---|
| 325 | newVector.addElement(new Option( |
|---|
| 326 | "\tNumber of trees to build.", |
|---|
| 327 | "I", 1, "-I <number of trees>")); |
|---|
| 328 | |
|---|
| 329 | newVector.addElement(new Option( |
|---|
| 330 | "\tNumber of features to consider (<1=int(logM+1)).", |
|---|
| 331 | "K", 1, "-K <number of features>")); |
|---|
| 332 | |
|---|
| 333 | newVector.addElement(new Option( |
|---|
| 334 | "\tSeed for random number generator.\n" |
|---|
| 335 | + "\t(default 1)", |
|---|
| 336 | "S", 1, "-S")); |
|---|
| 337 | |
|---|
| 338 | newVector.addElement(new Option( |
|---|
| 339 | "\tThe maximum depth of the trees, 0 for unlimited.\n" |
|---|
| 340 | + "\t(default 0)", |
|---|
| 341 | "depth", 1, "-depth <num>")); |
|---|
| 342 | |
|---|
| 343 | Enumeration enu = super.listOptions(); |
|---|
| 344 | while (enu.hasMoreElements()) { |
|---|
| 345 | newVector.addElement(enu.nextElement()); |
|---|
| 346 | } |
|---|
| 347 | |
|---|
| 348 | return newVector.elements(); |
|---|
| 349 | } |
|---|
| 350 | |
|---|
| 351 | /** |
|---|
| 352 | * Gets the current settings of the forest. |
|---|
| 353 | * |
|---|
| 354 | * @return an array of strings suitable for passing to setOptions() |
|---|
| 355 | */ |
|---|
| 356 | public String[] getOptions() { |
|---|
| 357 | Vector result; |
|---|
| 358 | String[] options; |
|---|
| 359 | int i; |
|---|
| 360 | |
|---|
| 361 | result = new Vector(); |
|---|
| 362 | |
|---|
| 363 | result.add("-I"); |
|---|
| 364 | result.add("" + getNumTrees()); |
|---|
| 365 | |
|---|
| 366 | result.add("-K"); |
|---|
| 367 | result.add("" + getNumFeatures()); |
|---|
| 368 | |
|---|
| 369 | result.add("-S"); |
|---|
| 370 | result.add("" + getSeed()); |
|---|
| 371 | |
|---|
| 372 | if (getMaxDepth() > 0) { |
|---|
| 373 | result.add("-depth"); |
|---|
| 374 | result.add("" + getMaxDepth()); |
|---|
| 375 | } |
|---|
| 376 | |
|---|
| 377 | options = super.getOptions(); |
|---|
| 378 | for (i = 0; i < options.length; i++) |
|---|
| 379 | result.add(options[i]); |
|---|
| 380 | |
|---|
| 381 | return (String[]) result.toArray(new String[result.size()]); |
|---|
| 382 | } |
|---|
| 383 | |
|---|
| 384 | /** |
|---|
| 385 | * Parses a given list of options. <p/> |
|---|
| 386 | * |
|---|
| 387 | <!-- options-start --> |
|---|
| 388 | * Valid options are: <p/> |
|---|
| 389 | * |
|---|
| 390 | * <pre> -I <number of trees> |
|---|
| 391 | * Number of trees to build.</pre> |
|---|
| 392 | * |
|---|
| 393 | * <pre> -K <number of features> |
|---|
| 394 | * Number of features to consider (<1=int(logM+1)).</pre> |
|---|
| 395 | * |
|---|
| 396 | * <pre> -S |
|---|
| 397 | * Seed for random number generator. |
|---|
| 398 | * (default 1)</pre> |
|---|
| 399 | * |
|---|
| 400 | * <pre> -depth <num> |
|---|
| 401 | * The maximum depth of the trees, 0 for unlimited. |
|---|
| 402 | * (default 0)</pre> |
|---|
| 403 | * |
|---|
| 404 | * <pre> -D |
|---|
| 405 | * If set, classifier is run in debug mode and |
|---|
| 406 | * may output additional info to the console</pre> |
|---|
| 407 | * |
|---|
| 408 | <!-- options-end --> |
|---|
| 409 | * |
|---|
| 410 | * @param options the list of options as an array of strings |
|---|
| 411 | * @throws Exception if an option is not supported |
|---|
| 412 | */ |
|---|
| 413 | public void setOptions(String[] options) throws Exception{ |
|---|
| 414 | String tmpStr; |
|---|
| 415 | |
|---|
| 416 | tmpStr = Utils.getOption('I', options); |
|---|
| 417 | if (tmpStr.length() != 0) { |
|---|
| 418 | m_numTrees = Integer.parseInt(tmpStr); |
|---|
| 419 | } else { |
|---|
| 420 | m_numTrees = 10; |
|---|
| 421 | } |
|---|
| 422 | |
|---|
| 423 | tmpStr = Utils.getOption('K', options); |
|---|
| 424 | if (tmpStr.length() != 0) { |
|---|
| 425 | m_numFeatures = Integer.parseInt(tmpStr); |
|---|
| 426 | } else { |
|---|
| 427 | m_numFeatures = 0; |
|---|
| 428 | } |
|---|
| 429 | |
|---|
| 430 | tmpStr = Utils.getOption('S', options); |
|---|
| 431 | if (tmpStr.length() != 0) { |
|---|
| 432 | setSeed(Integer.parseInt(tmpStr)); |
|---|
| 433 | } else { |
|---|
| 434 | setSeed(1); |
|---|
| 435 | } |
|---|
| 436 | |
|---|
| 437 | tmpStr = Utils.getOption("depth", options); |
|---|
| 438 | if (tmpStr.length() != 0) { |
|---|
| 439 | setMaxDepth(Integer.parseInt(tmpStr)); |
|---|
| 440 | } else { |
|---|
| 441 | setMaxDepth(0); |
|---|
| 442 | } |
|---|
| 443 | |
|---|
| 444 | super.setOptions(options); |
|---|
| 445 | |
|---|
| 446 | Utils.checkForRemainingOptions(options); |
|---|
| 447 | } |
|---|
| 448 | |
|---|
| 449 | /** |
|---|
| 450 | * Returns default capabilities of the classifier. |
|---|
| 451 | * |
|---|
| 452 | * @return the capabilities of this classifier |
|---|
| 453 | */ |
|---|
| 454 | public Capabilities getCapabilities() { |
|---|
| 455 | return new RandomTree().getCapabilities(); |
|---|
| 456 | } |
|---|
| 457 | |
|---|
| 458 | /** |
|---|
| 459 | * Builds a classifier for a set of instances. |
|---|
| 460 | * |
|---|
| 461 | * @param data the instances to train the classifier with |
|---|
| 462 | * @throws Exception if something goes wrong |
|---|
| 463 | */ |
|---|
| 464 | public void buildClassifier(Instances data) throws Exception { |
|---|
| 465 | |
|---|
| 466 | // can classifier handle the data? |
|---|
| 467 | getCapabilities().testWithFail(data); |
|---|
| 468 | |
|---|
| 469 | // remove instances with missing class |
|---|
| 470 | data = new Instances(data); |
|---|
| 471 | data.deleteWithMissingClass(); |
|---|
| 472 | |
|---|
| 473 | m_bagger = new Bagging(); |
|---|
| 474 | RandomTree rTree = new RandomTree(); |
|---|
| 475 | |
|---|
| 476 | // set up the random tree options |
|---|
| 477 | m_KValue = m_numFeatures; |
|---|
| 478 | if (m_KValue < 1) m_KValue = (int) Utils.log2(data.numAttributes())+1; |
|---|
| 479 | rTree.setKValue(m_KValue); |
|---|
| 480 | rTree.setMaxDepth(getMaxDepth()); |
|---|
| 481 | |
|---|
| 482 | // set up the bagger and build the forest |
|---|
| 483 | m_bagger.setClassifier(rTree); |
|---|
| 484 | m_bagger.setSeed(m_randomSeed); |
|---|
| 485 | m_bagger.setNumIterations(m_numTrees); |
|---|
| 486 | m_bagger.setCalcOutOfBag(true); |
|---|
| 487 | m_bagger.buildClassifier(data); |
|---|
| 488 | } |
|---|
| 489 | |
|---|
| 490 | /** |
|---|
| 491 | * Returns the class probability distribution for an instance. |
|---|
| 492 | * |
|---|
| 493 | * @param instance the instance to be classified |
|---|
| 494 | * @return the distribution the forest generates for the instance |
|---|
| 495 | * @throws Exception if computation fails |
|---|
| 496 | */ |
|---|
| 497 | public double[] distributionForInstance(Instance instance) throws Exception { |
|---|
| 498 | |
|---|
| 499 | return m_bagger.distributionForInstance(instance); |
|---|
| 500 | } |
|---|
| 501 | |
|---|
| 502 | /** |
|---|
| 503 | * Outputs a description of this classifier. |
|---|
| 504 | * |
|---|
| 505 | * @return a string containing a description of the classifier |
|---|
| 506 | */ |
|---|
| 507 | public String toString() { |
|---|
| 508 | |
|---|
| 509 | if (m_bagger == null) |
|---|
| 510 | return "Random forest not built yet"; |
|---|
| 511 | else |
|---|
| 512 | return "Random forest of " + m_numTrees |
|---|
| 513 | + " trees, each constructed while considering " |
|---|
| 514 | + m_KValue + " random feature" + (m_KValue==1 ? "" : "s") + ".\n" |
|---|
| 515 | + "Out of bag error: " |
|---|
| 516 | + Utils.doubleToString(m_bagger.measureOutOfBagError(), 4) + "\n" |
|---|
| 517 | + (getMaxDepth() > 0 ? ("Max. depth of trees: " + getMaxDepth() + "\n") : ("")) |
|---|
| 518 | + "\n"; |
|---|
| 519 | } |
|---|
| 520 | |
|---|
| 521 | /** |
|---|
| 522 | * Returns the revision string. |
|---|
| 523 | * |
|---|
| 524 | * @return the revision |
|---|
| 525 | */ |
|---|
| 526 | public String getRevision() { |
|---|
| 527 | return RevisionUtils.extract("$Revision: 5928 $"); |
|---|
| 528 | } |
|---|
| 529 | |
|---|
| 530 | /** |
|---|
| 531 | * Main method for this class. |
|---|
| 532 | * |
|---|
| 533 | * @param argv the options |
|---|
| 534 | */ |
|---|
| 535 | public static void main(String[] argv) { |
|---|
| 536 | runClassifier(new RandomForest(), argv); |
|---|
| 537 | } |
|---|
| 538 | } |
|---|