[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * REPTree.java |
---|
| 19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers.trees; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Classifier; |
---|
| 26 | import weka.classifiers.AbstractClassifier; |
---|
| 27 | import weka.classifiers.Sourcable; |
---|
| 28 | import weka.classifiers.rules.ZeroR; |
---|
| 29 | import weka.core.AdditionalMeasureProducer; |
---|
| 30 | import weka.core.Attribute; |
---|
| 31 | import weka.core.Capabilities; |
---|
| 32 | import weka.core.ContingencyTables; |
---|
| 33 | import weka.core.Drawable; |
---|
| 34 | import weka.core.Instance; |
---|
| 35 | import weka.core.Instances; |
---|
| 36 | import weka.core.Option; |
---|
| 37 | import weka.core.OptionHandler; |
---|
| 38 | import weka.core.RevisionHandler; |
---|
| 39 | import weka.core.RevisionUtils; |
---|
| 40 | import weka.core.Utils; |
---|
| 41 | import weka.core.WeightedInstancesHandler; |
---|
| 42 | import weka.core.Capabilities.Capability; |
---|
| 43 | |
---|
| 44 | import java.io.Serializable; |
---|
| 45 | import java.util.Enumeration; |
---|
| 46 | import java.util.Random; |
---|
| 47 | import java.util.Vector; |
---|
| 48 | |
---|
| 49 | /** |
---|
| 50 | <!-- globalinfo-start --> |
---|
| 51 | * Fast decision tree learner. Builds a decision/regression tree using information gain/variance and prunes it using reduced-error pruning (with backfitting). Only sorts values for numeric attributes once. Missing values are dealt with by splitting the corresponding instances into pieces (i.e. as in C4.5). |
---|
| 52 | * <p/> |
---|
| 53 | <!-- globalinfo-end --> |
---|
| 54 | * |
---|
| 55 | <!-- options-start --> |
---|
| 56 | * Valid options are: <p/> |
---|
| 57 | * |
---|
| 58 | * <pre> -M <minimum number of instances> |
---|
| 59 | * Set minimum number of instances per leaf (default 2).</pre> |
---|
| 60 | * |
---|
| 61 | * <pre> -V <minimum variance for split> |
---|
| 62 | * Set minimum numeric class variance proportion |
---|
| 63 | * of train variance for split (default 1e-3).</pre> |
---|
| 64 | * |
---|
| 65 | * <pre> -N <number of folds> |
---|
| 66 | * Number of folds for reduced error pruning (default 3).</pre> |
---|
| 67 | * |
---|
| 68 | * <pre> -S <seed> |
---|
| 69 | * Seed for random data shuffling (default 1).</pre> |
---|
| 70 | * |
---|
| 71 | * <pre> -P |
---|
| 72 | * No pruning.</pre> |
---|
| 73 | * |
---|
| 74 | * <pre> -L |
---|
| 75 | * Maximum tree depth (default -1, no maximum)</pre> |
---|
| 76 | * |
---|
| 77 | <!-- options-end --> |
---|
| 78 | * |
---|
| 79 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
| 80 | * @version $Revision: 5928 $ |
---|
| 81 | */ |
---|
| 82 | public class REPTree |
---|
| 83 | extends AbstractClassifier |
---|
| 84 | implements OptionHandler, WeightedInstancesHandler, Drawable, |
---|
| 85 | AdditionalMeasureProducer, Sourcable { |
---|
| 86 | |
---|
| 87 | /** for serialization */ |
---|
| 88 | static final long serialVersionUID = -8562443428621539458L; |
---|
| 89 | |
---|
| 90 | /** ZeroR model that is used if no attributes are present. */ |
---|
| 91 | protected ZeroR m_zeroR; |
---|
| 92 | |
---|
| 93 | /** |
---|
| 94 | * Returns a string describing classifier |
---|
| 95 | * @return a description suitable for |
---|
| 96 | * displaying in the explorer/experimenter gui |
---|
| 97 | */ |
---|
| 98 | public String globalInfo() { |
---|
| 99 | |
---|
| 100 | return "Fast decision tree learner. Builds a decision/regression tree using " |
---|
| 101 | + "information gain/variance and prunes it using reduced-error pruning " |
---|
| 102 | + "(with backfitting). Only sorts values for numeric attributes " |
---|
| 103 | + "once. Missing values are dealt with by splitting the corresponding " |
---|
| 104 | + "instances into pieces (i.e. as in C4.5)."; |
---|
| 105 | } |
---|
| 106 | |
---|
| 107 | /** An inner class for building and storing the tree structure */ |
---|
| 108 | protected class Tree |
---|
| 109 | implements Serializable, RevisionHandler { |
---|
| 110 | |
---|
| 111 | /** for serialization */ |
---|
| 112 | static final long serialVersionUID = -1635481717888437935L; |
---|
| 113 | |
---|
| 114 | /** The header information (for printing the tree). */ |
---|
| 115 | protected Instances m_Info = null; |
---|
| 116 | |
---|
| 117 | /** The subtrees of this tree. */ |
---|
| 118 | protected Tree[] m_Successors; |
---|
| 119 | |
---|
| 120 | /** The attribute to split on. */ |
---|
| 121 | protected int m_Attribute = -1; |
---|
| 122 | |
---|
| 123 | /** The split point. */ |
---|
| 124 | protected double m_SplitPoint = Double.NaN; |
---|
| 125 | |
---|
| 126 | /** The proportions of training instances going down each branch. */ |
---|
| 127 | protected double[] m_Prop = null; |
---|
| 128 | |
---|
| 129 | /** Class probabilities from the training data in the nominal case. |
---|
| 130 | Holds the mean in the numeric case. */ |
---|
| 131 | protected double[] m_ClassProbs = null; |
---|
| 132 | |
---|
| 133 | /** The (unnormalized) class distribution in the nominal |
---|
| 134 | case. Holds the sum of squared errors and the weight |
---|
| 135 | in the numeric case. */ |
---|
| 136 | protected double[] m_Distribution = null; |
---|
| 137 | |
---|
| 138 | /** Class distribution of hold-out set at node in the nominal case. |
---|
| 139 | Straight sum of weights in the numeric case (i.e. array has |
---|
| 140 | only one element. */ |
---|
| 141 | protected double[] m_HoldOutDist = null; |
---|
| 142 | |
---|
| 143 | /** The hold-out error of the node. The number of miss-classified |
---|
| 144 | instances in the nominal case, the sum of squared errors in the |
---|
| 145 | numeric case. */ |
---|
| 146 | protected double m_HoldOutError = 0; |
---|
| 147 | |
---|
| 148 | /** |
---|
| 149 | * Computes class distribution of an instance using the tree. |
---|
| 150 | * |
---|
| 151 | * @param instance the instance to compute the distribution for |
---|
| 152 | * @return the distribution |
---|
| 153 | * @throws Exception if computation fails |
---|
| 154 | */ |
---|
| 155 | protected double[] distributionForInstance(Instance instance) |
---|
| 156 | throws Exception { |
---|
| 157 | |
---|
| 158 | double[] returnedDist = null; |
---|
| 159 | |
---|
| 160 | if (m_Attribute > -1) { |
---|
| 161 | |
---|
| 162 | // Node is not a leaf |
---|
| 163 | if (instance.isMissing(m_Attribute)) { |
---|
| 164 | |
---|
| 165 | // Value is missing |
---|
| 166 | returnedDist = new double[m_Info.numClasses()]; |
---|
| 167 | |
---|
| 168 | // Split instance up |
---|
| 169 | for (int i = 0; i < m_Successors.length; i++) { |
---|
| 170 | double[] help = |
---|
| 171 | m_Successors[i].distributionForInstance(instance); |
---|
| 172 | if (help != null) { |
---|
| 173 | for (int j = 0; j < help.length; j++) { |
---|
| 174 | returnedDist[j] += m_Prop[i] * help[j]; |
---|
| 175 | } |
---|
| 176 | } |
---|
| 177 | } |
---|
| 178 | } else if (m_Info.attribute(m_Attribute).isNominal()) { |
---|
| 179 | |
---|
| 180 | // For nominal attributes |
---|
| 181 | returnedDist = m_Successors[(int)instance.value(m_Attribute)]. |
---|
| 182 | distributionForInstance(instance); |
---|
| 183 | } else { |
---|
| 184 | |
---|
| 185 | // For numeric attributes |
---|
| 186 | if (instance.value(m_Attribute) < m_SplitPoint) { |
---|
| 187 | returnedDist = |
---|
| 188 | m_Successors[0].distributionForInstance(instance); |
---|
| 189 | } else { |
---|
| 190 | returnedDist = |
---|
| 191 | m_Successors[1].distributionForInstance(instance); |
---|
| 192 | } |
---|
| 193 | } |
---|
| 194 | } |
---|
| 195 | if ((m_Attribute == -1) || (returnedDist == null)) { |
---|
| 196 | |
---|
| 197 | // Node is a leaf or successor is empty |
---|
| 198 | return m_ClassProbs; |
---|
| 199 | } else { |
---|
| 200 | return returnedDist; |
---|
| 201 | } |
---|
| 202 | } |
---|
| 203 | |
---|
| 204 | /** |
---|
| 205 | * Returns a string containing java source code equivalent to the test |
---|
| 206 | * made at this node. The instance being tested is called "i". This |
---|
| 207 | * routine assumes to be called in the order of branching, enabling us to |
---|
| 208 | * set the >= condition test (the last one) of a numeric splitpoint |
---|
| 209 | * to just "true" (because being there in the flow implies that the |
---|
| 210 | * previous less-than test failed). |
---|
| 211 | * |
---|
| 212 | * @param index index of the value tested |
---|
| 213 | * @return a value of type 'String' |
---|
| 214 | */ |
---|
| 215 | public final String sourceExpression(int index) { |
---|
| 216 | |
---|
| 217 | StringBuffer expr = null; |
---|
| 218 | if (index < 0) { |
---|
| 219 | return "i[" + m_Attribute + "] == null"; |
---|
| 220 | } |
---|
| 221 | if (m_Info.attribute(m_Attribute).isNominal()) { |
---|
| 222 | expr = new StringBuffer("i["); |
---|
| 223 | expr.append(m_Attribute).append("]"); |
---|
| 224 | expr.append(".equals(\"").append(m_Info.attribute(m_Attribute) |
---|
| 225 | .value(index)).append("\")"); |
---|
| 226 | } else { |
---|
| 227 | expr = new StringBuffer(""); |
---|
| 228 | if (index == 0) { |
---|
| 229 | expr.append("((Double)i[") |
---|
| 230 | .append(m_Attribute).append("]).doubleValue() < ") |
---|
| 231 | .append(m_SplitPoint); |
---|
| 232 | } else { |
---|
| 233 | expr.append("true"); |
---|
| 234 | } |
---|
| 235 | } |
---|
| 236 | return expr.toString(); |
---|
| 237 | } |
---|
| 238 | |
---|
| 239 | /** |
---|
| 240 | * Returns source code for the tree as if-then statements. The |
---|
| 241 | * class is assigned to variable "p", and assumes the tested |
---|
| 242 | * instance is named "i". The results are returned as two stringbuffers: |
---|
| 243 | * a section of code for assignment of the class, and a section of |
---|
| 244 | * code containing support code (eg: other support methods). |
---|
| 245 | * <p/> |
---|
| 246 | * TODO: If the outputted source code encounters a missing value |
---|
| 247 | * for the evaluated attribute, it stops branching and uses the |
---|
| 248 | * class distribution of the current node to decide the return value. |
---|
| 249 | * This is unlike the behaviour of distributionForInstance(). |
---|
| 250 | * |
---|
| 251 | * @param className the classname that this static classifier has |
---|
| 252 | * @param parent parent node of the current node |
---|
| 253 | * @return an array containing two stringbuffers, the first string containing |
---|
| 254 | * assignment code, and the second containing source for support code. |
---|
| 255 | * @throws Exception if something goes wrong |
---|
| 256 | */ |
---|
| 257 | public StringBuffer [] toSource(String className, Tree parent) |
---|
| 258 | throws Exception { |
---|
| 259 | |
---|
| 260 | StringBuffer [] result = new StringBuffer[2]; |
---|
| 261 | double[] currentProbs; |
---|
| 262 | |
---|
| 263 | if(m_ClassProbs == null) |
---|
| 264 | currentProbs = parent.m_ClassProbs; |
---|
| 265 | else |
---|
| 266 | currentProbs = m_ClassProbs; |
---|
| 267 | |
---|
| 268 | long printID = nextID(); |
---|
| 269 | |
---|
| 270 | // Is this a leaf? |
---|
| 271 | if (m_Attribute == -1) { |
---|
| 272 | result[0] = new StringBuffer(" p = "); |
---|
| 273 | if(m_Info.classAttribute().isNumeric()) |
---|
| 274 | result[0].append(currentProbs[0]); |
---|
| 275 | else { |
---|
| 276 | result[0].append(Utils.maxIndex(currentProbs)); |
---|
| 277 | } |
---|
| 278 | result[0].append(";\n"); |
---|
| 279 | result[1] = new StringBuffer(""); |
---|
| 280 | } else { |
---|
| 281 | StringBuffer text = new StringBuffer(""); |
---|
| 282 | StringBuffer atEnd = new StringBuffer(""); |
---|
| 283 | |
---|
| 284 | text.append(" static double N") |
---|
| 285 | .append(Integer.toHexString(this.hashCode()) + printID) |
---|
| 286 | .append("(Object []i) {\n") |
---|
| 287 | .append(" double p = Double.NaN;\n"); |
---|
| 288 | |
---|
| 289 | text.append(" /* " + m_Info.attribute(m_Attribute).name() + " */\n"); |
---|
| 290 | // Missing attribute? |
---|
| 291 | text.append(" if (" + this.sourceExpression(-1) + ") {\n") |
---|
| 292 | .append(" p = "); |
---|
| 293 | if(m_Info.classAttribute().isNumeric()) |
---|
| 294 | text.append(currentProbs[0] + ";\n"); |
---|
| 295 | else |
---|
| 296 | text.append(Utils.maxIndex(currentProbs) + ";\n"); |
---|
| 297 | text.append(" } "); |
---|
| 298 | |
---|
| 299 | // Branching of the tree |
---|
| 300 | for (int i=0;i<m_Successors.length; i++) { |
---|
| 301 | text.append("else if (" + this.sourceExpression(i) + ") {\n"); |
---|
| 302 | // Is the successor a leaf? |
---|
| 303 | if(m_Successors[i].m_Attribute == -1) { |
---|
| 304 | double[] successorProbs = m_Successors[i].m_ClassProbs; |
---|
| 305 | if(successorProbs == null) |
---|
| 306 | successorProbs = m_ClassProbs; |
---|
| 307 | text.append(" p = "); |
---|
| 308 | if(m_Info.classAttribute().isNumeric()) { |
---|
| 309 | text.append(successorProbs[0] + ";\n"); |
---|
| 310 | } else { |
---|
| 311 | text.append(Utils.maxIndex(successorProbs) + ";\n"); |
---|
| 312 | } |
---|
| 313 | } else { |
---|
| 314 | StringBuffer [] sub = m_Successors[i].toSource(className, this); |
---|
| 315 | text.append("" + sub[0]); |
---|
| 316 | atEnd.append("" + sub[1]); |
---|
| 317 | } |
---|
| 318 | text.append(" } "); |
---|
| 319 | if (i == m_Successors.length - 1) { |
---|
| 320 | text.append("\n"); |
---|
| 321 | } |
---|
| 322 | } |
---|
| 323 | |
---|
| 324 | text.append(" return p;\n }\n"); |
---|
| 325 | |
---|
| 326 | result[0] = new StringBuffer(" p = " + className + ".N"); |
---|
| 327 | result[0].append(Integer.toHexString(this.hashCode()) + printID) |
---|
| 328 | .append("(i);\n"); |
---|
| 329 | result[1] = text.append("" + atEnd); |
---|
| 330 | } |
---|
| 331 | return result; |
---|
| 332 | } |
---|
| 333 | |
---|
| 334 | |
---|
| 335 | /** |
---|
| 336 | * Outputs one node for graph. |
---|
| 337 | * |
---|
| 338 | * @param text the buffer to append the output to |
---|
| 339 | * @param num the current node id |
---|
| 340 | * @param parent the parent of the nodes |
---|
| 341 | * @return the next node id |
---|
| 342 | * @throws Exception if something goes wrong |
---|
| 343 | */ |
---|
| 344 | protected int toGraph(StringBuffer text, int num, |
---|
| 345 | Tree parent) throws Exception { |
---|
| 346 | |
---|
| 347 | num++; |
---|
| 348 | if (m_Attribute == -1) { |
---|
| 349 | text.append("N" + Integer.toHexString(Tree.this.hashCode()) + |
---|
| 350 | " [label=\"" + num + leafString(parent) +"\"" + |
---|
| 351 | "shape=box]\n"); |
---|
| 352 | } else { |
---|
| 353 | text.append("N" + Integer.toHexString(Tree.this.hashCode()) + |
---|
| 354 | " [label=\"" + num + ": " + |
---|
| 355 | m_Info.attribute(m_Attribute).name() + |
---|
| 356 | "\"]\n"); |
---|
| 357 | for (int i = 0; i < m_Successors.length; i++) { |
---|
| 358 | text.append("N" + Integer.toHexString(Tree.this.hashCode()) |
---|
| 359 | + "->" + |
---|
| 360 | "N" + |
---|
| 361 | Integer.toHexString(m_Successors[i].hashCode()) + |
---|
| 362 | " [label=\""); |
---|
| 363 | if (m_Info.attribute(m_Attribute).isNumeric()) { |
---|
| 364 | if (i == 0) { |
---|
| 365 | text.append(" < " + |
---|
| 366 | Utils.doubleToString(m_SplitPoint, 2)); |
---|
| 367 | } else { |
---|
| 368 | text.append(" >= " + |
---|
| 369 | Utils.doubleToString(m_SplitPoint, 2)); |
---|
| 370 | } |
---|
| 371 | } else { |
---|
| 372 | text.append(" = " + m_Info.attribute(m_Attribute).value(i)); |
---|
| 373 | } |
---|
| 374 | text.append("\"]\n"); |
---|
| 375 | num = m_Successors[i].toGraph(text, num, this); |
---|
| 376 | } |
---|
| 377 | } |
---|
| 378 | |
---|
| 379 | return num; |
---|
| 380 | } |
---|
| 381 | |
---|
| 382 | /** |
---|
| 383 | * Outputs description of a leaf node. |
---|
| 384 | * |
---|
| 385 | * @param parent the parent of the node |
---|
| 386 | * @return the description of the node |
---|
| 387 | * @throws Exception if generation fails |
---|
| 388 | */ |
---|
| 389 | protected String leafString(Tree parent) throws Exception { |
---|
| 390 | |
---|
| 391 | if (m_Info.classAttribute().isNumeric()) { |
---|
| 392 | double classMean; |
---|
| 393 | if (m_ClassProbs == null) { |
---|
| 394 | classMean = parent.m_ClassProbs[0]; |
---|
| 395 | } else { |
---|
| 396 | classMean = m_ClassProbs[0]; |
---|
| 397 | } |
---|
| 398 | StringBuffer buffer = new StringBuffer(); |
---|
| 399 | buffer.append(" : " + Utils.doubleToString(classMean, 2)); |
---|
| 400 | double avgError = 0; |
---|
| 401 | if (m_Distribution[1] > 0) { |
---|
| 402 | avgError = m_Distribution[0] / m_Distribution[1]; |
---|
| 403 | } |
---|
| 404 | buffer.append(" (" + |
---|
| 405 | Utils.doubleToString(m_Distribution[1], 2) + "/" + |
---|
| 406 | Utils.doubleToString(avgError, 2) |
---|
| 407 | + ")"); |
---|
| 408 | avgError = 0; |
---|
| 409 | if (m_HoldOutDist[0] > 0) { |
---|
| 410 | avgError = m_HoldOutError / m_HoldOutDist[0]; |
---|
| 411 | } |
---|
| 412 | buffer.append(" [" + |
---|
| 413 | Utils.doubleToString(m_HoldOutDist[0], 2) + "/" + |
---|
| 414 | Utils.doubleToString(avgError, 2) |
---|
| 415 | + "]"); |
---|
| 416 | return buffer.toString(); |
---|
| 417 | } else { |
---|
| 418 | int maxIndex; |
---|
| 419 | if (m_ClassProbs == null) { |
---|
| 420 | maxIndex = Utils.maxIndex(parent.m_ClassProbs); |
---|
| 421 | } else { |
---|
| 422 | maxIndex = Utils.maxIndex(m_ClassProbs); |
---|
| 423 | } |
---|
| 424 | return " : " + m_Info.classAttribute().value(maxIndex) + |
---|
| 425 | " (" + Utils.doubleToString(Utils.sum(m_Distribution), 2) + |
---|
| 426 | "/" + |
---|
| 427 | Utils.doubleToString((Utils.sum(m_Distribution) - |
---|
| 428 | m_Distribution[maxIndex]), 2) + ")" + |
---|
| 429 | " [" + Utils.doubleToString(Utils.sum(m_HoldOutDist), 2) + "/" + |
---|
| 430 | Utils.doubleToString((Utils.sum(m_HoldOutDist) - |
---|
| 431 | m_HoldOutDist[maxIndex]), 2) + "]"; |
---|
| 432 | } |
---|
| 433 | } |
---|
| 434 | |
---|
| 435 | /** |
---|
| 436 | * Recursively outputs the tree. |
---|
| 437 | * |
---|
| 438 | * @param level the current level |
---|
| 439 | * @param parent the current parent |
---|
| 440 | * @return the generated substree |
---|
| 441 | */ |
---|
| 442 | protected String toString(int level, Tree parent) { |
---|
| 443 | |
---|
| 444 | try { |
---|
| 445 | StringBuffer text = new StringBuffer(); |
---|
| 446 | |
---|
| 447 | if (m_Attribute == -1) { |
---|
| 448 | |
---|
| 449 | // Output leaf info |
---|
| 450 | return leafString(parent); |
---|
| 451 | } else if (m_Info.attribute(m_Attribute).isNominal()) { |
---|
| 452 | |
---|
| 453 | // For nominal attributes |
---|
| 454 | for (int i = 0; i < m_Successors.length; i++) { |
---|
| 455 | text.append("\n"); |
---|
| 456 | for (int j = 0; j < level; j++) { |
---|
| 457 | text.append("| "); |
---|
| 458 | } |
---|
| 459 | text.append(m_Info.attribute(m_Attribute).name() + " = " + |
---|
| 460 | m_Info.attribute(m_Attribute).value(i)); |
---|
| 461 | text.append(m_Successors[i].toString(level + 1, this)); |
---|
| 462 | } |
---|
| 463 | } else { |
---|
| 464 | |
---|
| 465 | // For numeric attributes |
---|
| 466 | text.append("\n"); |
---|
| 467 | for (int j = 0; j < level; j++) { |
---|
| 468 | text.append("| "); |
---|
| 469 | } |
---|
| 470 | text.append(m_Info.attribute(m_Attribute).name() + " < " + |
---|
| 471 | Utils.doubleToString(m_SplitPoint, 2)); |
---|
| 472 | text.append(m_Successors[0].toString(level + 1, this)); |
---|
| 473 | text.append("\n"); |
---|
| 474 | for (int j = 0; j < level; j++) { |
---|
| 475 | text.append("| "); |
---|
| 476 | } |
---|
| 477 | text.append(m_Info.attribute(m_Attribute).name() + " >= " + |
---|
| 478 | Utils.doubleToString(m_SplitPoint, 2)); |
---|
| 479 | text.append(m_Successors[1].toString(level + 1, this)); |
---|
| 480 | } |
---|
| 481 | |
---|
| 482 | return text.toString(); |
---|
| 483 | } catch (Exception e) { |
---|
| 484 | e.printStackTrace(); |
---|
| 485 | return "Decision tree: tree can't be printed"; |
---|
| 486 | } |
---|
| 487 | } |
---|
| 488 | |
---|
| 489 | /** |
---|
| 490 | * Recursively generates a tree. |
---|
| 491 | * |
---|
| 492 | * @param sortedIndices the sorted indices of the instances |
---|
| 493 | * @param weights the weights of the instances |
---|
| 494 | * @param data the data to work with |
---|
| 495 | * @param totalWeight |
---|
| 496 | * @param classProbs the class probabilities |
---|
| 497 | * @param header the header of the data |
---|
| 498 | * @param minNum the minimum number of instances in a leaf |
---|
| 499 | * @param minVariance |
---|
| 500 | * @param depth the current depth of the tree |
---|
| 501 | * @param maxDepth the maximum allowed depth of the tree |
---|
| 502 | * @throws Exception if generation fails |
---|
| 503 | */ |
---|
| 504 | protected void buildTree(int[][] sortedIndices, double[][] weights, |
---|
| 505 | Instances data, double totalWeight, |
---|
| 506 | double[] classProbs, Instances header, |
---|
| 507 | double minNum, double minVariance, |
---|
| 508 | int depth, int maxDepth) |
---|
| 509 | throws Exception { |
---|
| 510 | |
---|
| 511 | // Store structure of dataset, set minimum number of instances |
---|
| 512 | // and make space for potential info from pruning data |
---|
| 513 | m_Info = header; |
---|
| 514 | m_HoldOutDist = new double[data.numClasses()]; |
---|
| 515 | |
---|
| 516 | // Make leaf if there are no training instances |
---|
| 517 | int helpIndex = 0; |
---|
| 518 | if (data.classIndex() == 0) { |
---|
| 519 | helpIndex = 1; |
---|
| 520 | } |
---|
| 521 | if (sortedIndices[helpIndex].length == 0) { |
---|
| 522 | if (data.classAttribute().isNumeric()) { |
---|
| 523 | m_Distribution = new double[2]; |
---|
| 524 | } else { |
---|
| 525 | m_Distribution = new double[data.numClasses()]; |
---|
| 526 | } |
---|
| 527 | m_ClassProbs = null; |
---|
| 528 | return; |
---|
| 529 | } |
---|
| 530 | |
---|
| 531 | double priorVar = 0; |
---|
| 532 | if (data.classAttribute().isNumeric()) { |
---|
| 533 | |
---|
| 534 | // Compute prior variance |
---|
| 535 | double totalSum = 0, totalSumSquared = 0, totalSumOfWeights = 0; |
---|
| 536 | for (int i = 0; i < sortedIndices[helpIndex].length; i++) { |
---|
| 537 | Instance inst = data.instance(sortedIndices[helpIndex][i]); |
---|
| 538 | totalSum += inst.classValue() * weights[helpIndex][i]; |
---|
| 539 | totalSumSquared += |
---|
| 540 | inst.classValue() * inst.classValue() * weights[helpIndex][i]; |
---|
| 541 | totalSumOfWeights += weights[helpIndex][i]; |
---|
| 542 | } |
---|
| 543 | priorVar = singleVariance(totalSum, totalSumSquared, |
---|
| 544 | totalSumOfWeights); |
---|
| 545 | } |
---|
| 546 | |
---|
| 547 | // Check if node doesn't contain enough instances, is pure |
---|
| 548 | // or the maximum tree depth is reached |
---|
| 549 | m_ClassProbs = new double[classProbs.length]; |
---|
| 550 | System.arraycopy(classProbs, 0, m_ClassProbs, 0, classProbs.length); |
---|
| 551 | if ((totalWeight < (2 * minNum)) || |
---|
| 552 | |
---|
| 553 | // Nominal case |
---|
| 554 | (data.classAttribute().isNominal() && |
---|
| 555 | Utils.eq(m_ClassProbs[Utils.maxIndex(m_ClassProbs)], |
---|
| 556 | Utils.sum(m_ClassProbs))) || |
---|
| 557 | |
---|
| 558 | // Numeric case |
---|
| 559 | (data.classAttribute().isNumeric() && |
---|
| 560 | ((priorVar / totalWeight) < minVariance)) || |
---|
| 561 | |
---|
| 562 | // Check tree depth |
---|
| 563 | ((m_MaxDepth >= 0) && (depth >= maxDepth))) { |
---|
| 564 | |
---|
| 565 | // Make leaf |
---|
| 566 | m_Attribute = -1; |
---|
| 567 | if (data.classAttribute().isNominal()) { |
---|
| 568 | |
---|
| 569 | // Nominal case |
---|
| 570 | m_Distribution = new double[m_ClassProbs.length]; |
---|
| 571 | for (int i = 0; i < m_ClassProbs.length; i++) { |
---|
| 572 | m_Distribution[i] = m_ClassProbs[i]; |
---|
| 573 | } |
---|
| 574 | Utils.normalize(m_ClassProbs); |
---|
| 575 | } else { |
---|
| 576 | |
---|
| 577 | // Numeric case |
---|
| 578 | m_Distribution = new double[2]; |
---|
| 579 | m_Distribution[0] = priorVar; |
---|
| 580 | m_Distribution[1] = totalWeight; |
---|
| 581 | } |
---|
| 582 | return; |
---|
| 583 | } |
---|
| 584 | |
---|
| 585 | // Compute class distributions and value of splitting |
---|
| 586 | // criterion for each attribute |
---|
| 587 | double[] vals = new double[data.numAttributes()]; |
---|
| 588 | double[][][] dists = new double[data.numAttributes()][0][0]; |
---|
| 589 | double[][] props = new double[data.numAttributes()][0]; |
---|
| 590 | double[][] totalSubsetWeights = new double[data.numAttributes()][0]; |
---|
| 591 | double[] splits = new double[data.numAttributes()]; |
---|
| 592 | if (data.classAttribute().isNominal()) { |
---|
| 593 | |
---|
| 594 | // Nominal case |
---|
| 595 | for (int i = 0; i < data.numAttributes(); i++) { |
---|
| 596 | if (i != data.classIndex()) { |
---|
| 597 | splits[i] = distribution(props, dists, i, sortedIndices[i], |
---|
| 598 | weights[i], totalSubsetWeights, data); |
---|
| 599 | vals[i] = gain(dists[i], priorVal(dists[i])); |
---|
| 600 | } |
---|
| 601 | } |
---|
| 602 | } else { |
---|
| 603 | |
---|
| 604 | // Numeric case |
---|
| 605 | for (int i = 0; i < data.numAttributes(); i++) { |
---|
| 606 | if (i != data.classIndex()) { |
---|
| 607 | splits[i] = |
---|
| 608 | numericDistribution(props, dists, i, sortedIndices[i], |
---|
| 609 | weights[i], totalSubsetWeights, data, |
---|
| 610 | vals); |
---|
| 611 | } |
---|
| 612 | } |
---|
| 613 | } |
---|
| 614 | |
---|
| 615 | // Find best attribute |
---|
| 616 | m_Attribute = Utils.maxIndex(vals); |
---|
| 617 | int numAttVals = dists[m_Attribute].length; |
---|
| 618 | |
---|
| 619 | // Check if there are at least two subsets with |
---|
| 620 | // required minimum number of instances |
---|
| 621 | int count = 0; |
---|
| 622 | for (int i = 0; i < numAttVals; i++) { |
---|
| 623 | if (totalSubsetWeights[m_Attribute][i] >= minNum) { |
---|
| 624 | count++; |
---|
| 625 | } |
---|
| 626 | if (count > 1) { |
---|
| 627 | break; |
---|
| 628 | } |
---|
| 629 | } |
---|
| 630 | |
---|
| 631 | // Any useful split found? |
---|
| 632 | if ((vals[m_Attribute] > 0) && (count > 1)) { |
---|
| 633 | |
---|
| 634 | // Build subtrees |
---|
| 635 | m_SplitPoint = splits[m_Attribute]; |
---|
| 636 | m_Prop = props[m_Attribute]; |
---|
| 637 | int[][][] subsetIndices = |
---|
| 638 | new int[numAttVals][data.numAttributes()][0]; |
---|
| 639 | double[][][] subsetWeights = |
---|
| 640 | new double[numAttVals][data.numAttributes()][0]; |
---|
| 641 | splitData(subsetIndices, subsetWeights, m_Attribute, m_SplitPoint, |
---|
| 642 | sortedIndices, weights, data); |
---|
| 643 | m_Successors = new Tree[numAttVals]; |
---|
| 644 | for (int i = 0; i < numAttVals; i++) { |
---|
| 645 | m_Successors[i] = new Tree(); |
---|
| 646 | m_Successors[i]. |
---|
| 647 | buildTree(subsetIndices[i], subsetWeights[i], |
---|
| 648 | data, totalSubsetWeights[m_Attribute][i], |
---|
| 649 | dists[m_Attribute][i], header, minNum, |
---|
| 650 | minVariance, depth + 1, maxDepth); |
---|
| 651 | } |
---|
| 652 | } else { |
---|
| 653 | |
---|
| 654 | // Make leaf |
---|
| 655 | m_Attribute = -1; |
---|
| 656 | } |
---|
| 657 | |
---|
| 658 | // Normalize class counts |
---|
| 659 | if (data.classAttribute().isNominal()) { |
---|
| 660 | m_Distribution = new double[m_ClassProbs.length]; |
---|
| 661 | for (int i = 0; i < m_ClassProbs.length; i++) { |
---|
| 662 | m_Distribution[i] = m_ClassProbs[i]; |
---|
| 663 | } |
---|
| 664 | Utils.normalize(m_ClassProbs); |
---|
| 665 | } else { |
---|
| 666 | m_Distribution = new double[2]; |
---|
| 667 | m_Distribution[0] = priorVar; |
---|
| 668 | m_Distribution[1] = totalWeight; |
---|
| 669 | } |
---|
| 670 | } |
---|
| 671 | |
---|
| 672 | /** |
---|
| 673 | * Computes size of the tree. |
---|
| 674 | * |
---|
| 675 | * @return the number of nodes |
---|
| 676 | */ |
---|
| 677 | protected int numNodes() { |
---|
| 678 | |
---|
| 679 | if (m_Attribute == -1) { |
---|
| 680 | return 1; |
---|
| 681 | } else { |
---|
| 682 | int size = 1; |
---|
| 683 | for (int i = 0; i < m_Successors.length; i++) { |
---|
| 684 | size += m_Successors[i].numNodes(); |
---|
| 685 | } |
---|
| 686 | return size; |
---|
| 687 | } |
---|
| 688 | } |
---|
| 689 | |
---|
| 690 | /** |
---|
| 691 | * Splits instances into subsets. |
---|
| 692 | * |
---|
| 693 | * @param subsetIndices the sorted indices in the subset |
---|
| 694 | * @param subsetWeights the weights of the subset |
---|
| 695 | * @param att the attribute index |
---|
| 696 | * @param splitPoint the split point for numeric attributes |
---|
| 697 | * @param sortedIndices the sorted indices of the whole set |
---|
| 698 | * @param weights the weights of the whole set |
---|
| 699 | * @param data the data to work with |
---|
| 700 | * @throws Exception if something goes wrong |
---|
| 701 | */ |
---|
| 702 | protected void splitData(int[][][] subsetIndices, |
---|
| 703 | double[][][] subsetWeights, |
---|
| 704 | int att, double splitPoint, |
---|
| 705 | int[][] sortedIndices, double[][] weights, |
---|
| 706 | Instances data) throws Exception { |
---|
| 707 | |
---|
| 708 | int j; |
---|
| 709 | int[] num; |
---|
| 710 | |
---|
| 711 | // For each attribute |
---|
| 712 | for (int i = 0; i < data.numAttributes(); i++) { |
---|
| 713 | if (i != data.classIndex()) { |
---|
| 714 | if (data.attribute(att).isNominal()) { |
---|
| 715 | |
---|
| 716 | // For nominal attributes |
---|
| 717 | num = new int[data.attribute(att).numValues()]; |
---|
| 718 | for (int k = 0; k < num.length; k++) { |
---|
| 719 | subsetIndices[k][i] = new int[sortedIndices[i].length]; |
---|
| 720 | subsetWeights[k][i] = new double[sortedIndices[i].length]; |
---|
| 721 | } |
---|
| 722 | for (j = 0; j < sortedIndices[i].length; j++) { |
---|
| 723 | Instance inst = data.instance(sortedIndices[i][j]); |
---|
| 724 | if (inst.isMissing(att)) { |
---|
| 725 | |
---|
| 726 | // Split instance up |
---|
| 727 | for (int k = 0; k < num.length; k++) { |
---|
| 728 | if (m_Prop[k] > 0) { |
---|
| 729 | subsetIndices[k][i][num[k]] = sortedIndices[i][j]; |
---|
| 730 | subsetWeights[k][i][num[k]] = |
---|
| 731 | m_Prop[k] * weights[i][j]; |
---|
| 732 | num[k]++; |
---|
| 733 | } |
---|
| 734 | } |
---|
| 735 | } else { |
---|
| 736 | int subset = (int)inst.value(att); |
---|
| 737 | subsetIndices[subset][i][num[subset]] = |
---|
| 738 | sortedIndices[i][j]; |
---|
| 739 | subsetWeights[subset][i][num[subset]] = weights[i][j]; |
---|
| 740 | num[subset]++; |
---|
| 741 | } |
---|
| 742 | } |
---|
| 743 | } else { |
---|
| 744 | |
---|
| 745 | // For numeric attributes |
---|
| 746 | num = new int[2]; |
---|
| 747 | for (int k = 0; k < 2; k++) { |
---|
| 748 | subsetIndices[k][i] = new int[sortedIndices[i].length]; |
---|
| 749 | subsetWeights[k][i] = new double[weights[i].length]; |
---|
| 750 | } |
---|
| 751 | for (j = 0; j < sortedIndices[i].length; j++) { |
---|
| 752 | Instance inst = data.instance(sortedIndices[i][j]); |
---|
| 753 | if (inst.isMissing(att)) { |
---|
| 754 | |
---|
| 755 | // Split instance up |
---|
| 756 | for (int k = 0; k < num.length; k++) { |
---|
| 757 | if (m_Prop[k] > 0) { |
---|
| 758 | subsetIndices[k][i][num[k]] = sortedIndices[i][j]; |
---|
| 759 | subsetWeights[k][i][num[k]] = |
---|
| 760 | m_Prop[k] * weights[i][j]; |
---|
| 761 | num[k]++; |
---|
| 762 | } |
---|
| 763 | } |
---|
| 764 | } else { |
---|
| 765 | int subset = (inst.value(att) < splitPoint) ? 0 : 1; |
---|
| 766 | subsetIndices[subset][i][num[subset]] = |
---|
| 767 | sortedIndices[i][j]; |
---|
| 768 | subsetWeights[subset][i][num[subset]] = weights[i][j]; |
---|
| 769 | num[subset]++; |
---|
| 770 | } |
---|
| 771 | } |
---|
| 772 | } |
---|
| 773 | |
---|
| 774 | // Trim arrays |
---|
| 775 | for (int k = 0; k < num.length; k++) { |
---|
| 776 | int[] copy = new int[num[k]]; |
---|
| 777 | System.arraycopy(subsetIndices[k][i], 0, copy, 0, num[k]); |
---|
| 778 | subsetIndices[k][i] = copy; |
---|
| 779 | double[] copyWeights = new double[num[k]]; |
---|
| 780 | System.arraycopy(subsetWeights[k][i], 0, |
---|
| 781 | copyWeights, 0, num[k]); |
---|
| 782 | subsetWeights[k][i] = copyWeights; |
---|
| 783 | } |
---|
| 784 | } |
---|
| 785 | } |
---|
| 786 | } |
---|
| 787 | |
---|
| 788 | /** |
---|
| 789 | * Computes class distribution for an attribute. |
---|
| 790 | * |
---|
| 791 | * @param props |
---|
| 792 | * @param dists |
---|
| 793 | * @param att the attribute index |
---|
| 794 | * @param sortedIndices the sorted indices of the instances |
---|
| 795 | * @param weights the weights of the instances |
---|
| 796 | * @param subsetWeights the weights of the subset |
---|
| 797 | * @param data the data to work with |
---|
| 798 | * @return the split point |
---|
| 799 | * @throws Exception if computation fails |
---|
| 800 | */ |
---|
| 801 | protected double distribution(double[][] props, |
---|
| 802 | double[][][] dists, int att, |
---|
| 803 | int[] sortedIndices, |
---|
| 804 | double[] weights, |
---|
| 805 | double[][] subsetWeights, |
---|
| 806 | Instances data) |
---|
| 807 | throws Exception { |
---|
| 808 | |
---|
| 809 | double splitPoint = Double.NaN; |
---|
| 810 | Attribute attribute = data.attribute(att); |
---|
| 811 | double[][] dist = null; |
---|
| 812 | int i; |
---|
| 813 | |
---|
| 814 | if (attribute.isNominal()) { |
---|
| 815 | |
---|
| 816 | // For nominal attributes |
---|
| 817 | dist = new double[attribute.numValues()][data.numClasses()]; |
---|
| 818 | for (i = 0; i < sortedIndices.length; i++) { |
---|
| 819 | Instance inst = data.instance(sortedIndices[i]); |
---|
| 820 | if (inst.isMissing(att)) { |
---|
| 821 | break; |
---|
| 822 | } |
---|
| 823 | dist[(int)inst.value(att)][(int)inst.classValue()] += weights[i]; |
---|
| 824 | } |
---|
| 825 | } else { |
---|
| 826 | |
---|
| 827 | // For numeric attributes |
---|
| 828 | double[][] currDist = new double[2][data.numClasses()]; |
---|
| 829 | dist = new double[2][data.numClasses()]; |
---|
| 830 | |
---|
| 831 | // Move all instances into second subset |
---|
| 832 | for (int j = 0; j < sortedIndices.length; j++) { |
---|
| 833 | Instance inst = data.instance(sortedIndices[j]); |
---|
| 834 | if (inst.isMissing(att)) { |
---|
| 835 | break; |
---|
| 836 | } |
---|
| 837 | currDist[1][(int)inst.classValue()] += weights[j]; |
---|
| 838 | } |
---|
| 839 | double priorVal = priorVal(currDist); |
---|
| 840 | System.arraycopy(currDist[1], 0, dist[1], 0, dist[1].length); |
---|
| 841 | |
---|
| 842 | // Try all possible split points |
---|
| 843 | double currSplit = data.instance(sortedIndices[0]).value(att); |
---|
| 844 | double currVal, bestVal = -Double.MAX_VALUE; |
---|
| 845 | for (i = 0; i < sortedIndices.length; i++) { |
---|
| 846 | Instance inst = data.instance(sortedIndices[i]); |
---|
| 847 | if (inst.isMissing(att)) { |
---|
| 848 | break; |
---|
| 849 | } |
---|
| 850 | if (inst.value(att) > currSplit) { |
---|
| 851 | currVal = gain(currDist, priorVal); |
---|
| 852 | if (currVal > bestVal) { |
---|
| 853 | bestVal = currVal; |
---|
| 854 | splitPoint = (inst.value(att) + currSplit) / 2.0; |
---|
| 855 | for (int j = 0; j < currDist.length; j++) { |
---|
| 856 | System.arraycopy(currDist[j], 0, dist[j], 0, |
---|
| 857 | dist[j].length); |
---|
| 858 | } |
---|
| 859 | } |
---|
| 860 | } |
---|
| 861 | currSplit = inst.value(att); |
---|
| 862 | currDist[0][(int)inst.classValue()] += weights[i]; |
---|
| 863 | currDist[1][(int)inst.classValue()] -= weights[i]; |
---|
| 864 | } |
---|
| 865 | } |
---|
| 866 | |
---|
| 867 | // Compute weights |
---|
| 868 | props[att] = new double[dist.length]; |
---|
| 869 | for (int k = 0; k < props[att].length; k++) { |
---|
| 870 | props[att][k] = Utils.sum(dist[k]); |
---|
| 871 | } |
---|
| 872 | if (!(Utils.sum(props[att]) > 0)) { |
---|
| 873 | for (int k = 0; k < props[att].length; k++) { |
---|
| 874 | props[att][k] = 1.0 / (double)props[att].length; |
---|
| 875 | } |
---|
| 876 | } else { |
---|
| 877 | Utils.normalize(props[att]); |
---|
| 878 | } |
---|
| 879 | |
---|
| 880 | // Distribute counts |
---|
| 881 | while (i < sortedIndices.length) { |
---|
| 882 | Instance inst = data.instance(sortedIndices[i]); |
---|
| 883 | for (int j = 0; j < dist.length; j++) { |
---|
| 884 | dist[j][(int)inst.classValue()] += props[att][j] * weights[i]; |
---|
| 885 | } |
---|
| 886 | i++; |
---|
| 887 | } |
---|
| 888 | |
---|
| 889 | // Compute subset weights |
---|
| 890 | subsetWeights[att] = new double[dist.length]; |
---|
| 891 | for (int j = 0; j < dist.length; j++) { |
---|
| 892 | subsetWeights[att][j] += Utils.sum(dist[j]); |
---|
| 893 | } |
---|
| 894 | |
---|
| 895 | // Return distribution and split point |
---|
| 896 | dists[att] = dist; |
---|
| 897 | return splitPoint; |
---|
| 898 | } |
---|
| 899 | |
---|
| 900 | /** |
---|
| 901 | * Computes class distribution for an attribute. |
---|
| 902 | * |
---|
| 903 | * @param props |
---|
| 904 | * @param dists |
---|
| 905 | * @param att the attribute index |
---|
| 906 | * @param sortedIndices the sorted indices of the instances |
---|
| 907 | * @param weights the weights of the instances |
---|
| 908 | * @param subsetWeights the weights of the subset |
---|
| 909 | * @param data the data to work with |
---|
| 910 | * @param vals |
---|
| 911 | * @return the split point |
---|
| 912 | * @throws Exception if computation fails |
---|
| 913 | */ |
---|
| 914 | protected double numericDistribution(double[][] props, |
---|
| 915 | double[][][] dists, int att, |
---|
| 916 | int[] sortedIndices, |
---|
| 917 | double[] weights, |
---|
| 918 | double[][] subsetWeights, |
---|
| 919 | Instances data, |
---|
| 920 | double[] vals) |
---|
| 921 | throws Exception { |
---|
| 922 | |
---|
| 923 | double splitPoint = Double.NaN; |
---|
| 924 | Attribute attribute = data.attribute(att); |
---|
| 925 | double[][] dist = null; |
---|
| 926 | double[] sums = null; |
---|
| 927 | double[] sumSquared = null; |
---|
| 928 | double[] sumOfWeights = null; |
---|
| 929 | double totalSum = 0, totalSumSquared = 0, totalSumOfWeights = 0; |
---|
| 930 | |
---|
| 931 | int i; |
---|
| 932 | |
---|
| 933 | if (attribute.isNominal()) { |
---|
| 934 | |
---|
| 935 | // For nominal attributes |
---|
| 936 | sums = new double[attribute.numValues()]; |
---|
| 937 | sumSquared = new double[attribute.numValues()]; |
---|
| 938 | sumOfWeights = new double[attribute.numValues()]; |
---|
| 939 | int attVal; |
---|
| 940 | for (i = 0; i < sortedIndices.length; i++) { |
---|
| 941 | Instance inst = data.instance(sortedIndices[i]); |
---|
| 942 | if (inst.isMissing(att)) { |
---|
| 943 | break; |
---|
| 944 | } |
---|
| 945 | attVal = (int)inst.value(att); |
---|
| 946 | sums[attVal] += inst.classValue() * weights[i]; |
---|
| 947 | sumSquared[attVal] += |
---|
| 948 | inst.classValue() * inst.classValue() * weights[i]; |
---|
| 949 | sumOfWeights[attVal] += weights[i]; |
---|
| 950 | } |
---|
| 951 | totalSum = Utils.sum(sums); |
---|
| 952 | totalSumSquared = Utils.sum(sumSquared); |
---|
| 953 | totalSumOfWeights = Utils.sum(sumOfWeights); |
---|
| 954 | } else { |
---|
| 955 | |
---|
| 956 | // For numeric attributes |
---|
| 957 | sums = new double[2]; |
---|
| 958 | sumSquared = new double[2]; |
---|
| 959 | sumOfWeights = new double[2]; |
---|
| 960 | double[] currSums = new double[2]; |
---|
| 961 | double[] currSumSquared = new double[2]; |
---|
| 962 | double[] currSumOfWeights = new double[2]; |
---|
| 963 | |
---|
| 964 | // Move all instances into second subset |
---|
| 965 | for (int j = 0; j < sortedIndices.length; j++) { |
---|
| 966 | Instance inst = data.instance(sortedIndices[j]); |
---|
| 967 | if (inst.isMissing(att)) { |
---|
| 968 | break; |
---|
| 969 | } |
---|
| 970 | currSums[1] += inst.classValue() * weights[j]; |
---|
| 971 | currSumSquared[1] += |
---|
| 972 | inst.classValue() * inst.classValue() * weights[j]; |
---|
| 973 | currSumOfWeights[1] += weights[j]; |
---|
| 974 | |
---|
| 975 | } |
---|
| 976 | totalSum = currSums[1]; |
---|
| 977 | totalSumSquared = currSumSquared[1]; |
---|
| 978 | totalSumOfWeights = currSumOfWeights[1]; |
---|
| 979 | |
---|
| 980 | sums[1] = currSums[1]; |
---|
| 981 | sumSquared[1] = currSumSquared[1]; |
---|
| 982 | sumOfWeights[1] = currSumOfWeights[1]; |
---|
| 983 | |
---|
| 984 | // Try all possible split points |
---|
| 985 | double currSplit = data.instance(sortedIndices[0]).value(att); |
---|
| 986 | double currVal, bestVal = Double.MAX_VALUE; |
---|
| 987 | for (i = 0; i < sortedIndices.length; i++) { |
---|
| 988 | Instance inst = data.instance(sortedIndices[i]); |
---|
| 989 | if (inst.isMissing(att)) { |
---|
| 990 | break; |
---|
| 991 | } |
---|
| 992 | if (inst.value(att) > currSplit) { |
---|
| 993 | currVal = variance(currSums, currSumSquared, currSumOfWeights); |
---|
| 994 | if (currVal < bestVal) { |
---|
| 995 | bestVal = currVal; |
---|
| 996 | splitPoint = (inst.value(att) + currSplit) / 2.0; |
---|
| 997 | for (int j = 0; j < 2; j++) { |
---|
| 998 | sums[j] = currSums[j]; |
---|
| 999 | sumSquared[j] = currSumSquared[j]; |
---|
| 1000 | sumOfWeights[j] = currSumOfWeights[j]; |
---|
| 1001 | } |
---|
| 1002 | } |
---|
| 1003 | } |
---|
| 1004 | |
---|
| 1005 | currSplit = inst.value(att); |
---|
| 1006 | |
---|
| 1007 | double classVal = inst.classValue() * weights[i]; |
---|
| 1008 | double classValSquared = inst.classValue() * classVal; |
---|
| 1009 | |
---|
| 1010 | currSums[0] += classVal; |
---|
| 1011 | currSumSquared[0] += classValSquared; |
---|
| 1012 | currSumOfWeights[0] += weights[i]; |
---|
| 1013 | |
---|
| 1014 | currSums[1] -= classVal; |
---|
| 1015 | currSumSquared[1] -= classValSquared; |
---|
| 1016 | currSumOfWeights[1] -= weights[i]; |
---|
| 1017 | } |
---|
| 1018 | } |
---|
| 1019 | |
---|
| 1020 | // Compute weights |
---|
| 1021 | props[att] = new double[sums.length]; |
---|
| 1022 | for (int k = 0; k < props[att].length; k++) { |
---|
| 1023 | props[att][k] = sumOfWeights[k]; |
---|
| 1024 | } |
---|
| 1025 | if (!(Utils.sum(props[att]) > 0)) { |
---|
| 1026 | for (int k = 0; k < props[att].length; k++) { |
---|
| 1027 | props[att][k] = 1.0 / (double)props[att].length; |
---|
| 1028 | } |
---|
| 1029 | } else { |
---|
| 1030 | Utils.normalize(props[att]); |
---|
| 1031 | } |
---|
| 1032 | |
---|
| 1033 | |
---|
| 1034 | // Distribute counts for missing values |
---|
| 1035 | while (i < sortedIndices.length) { |
---|
| 1036 | Instance inst = data.instance(sortedIndices[i]); |
---|
| 1037 | for (int j = 0; j < sums.length; j++) { |
---|
| 1038 | sums[j] += props[att][j] * inst.classValue() * weights[i]; |
---|
| 1039 | sumSquared[j] += props[att][j] * inst.classValue() * |
---|
| 1040 | inst.classValue() * weights[i]; |
---|
| 1041 | sumOfWeights[j] += props[att][j] * weights[i]; |
---|
| 1042 | } |
---|
| 1043 | totalSum += inst.classValue() * weights[i]; |
---|
| 1044 | totalSumSquared += |
---|
| 1045 | inst.classValue() * inst.classValue() * weights[i]; |
---|
| 1046 | totalSumOfWeights += weights[i]; |
---|
| 1047 | i++; |
---|
| 1048 | } |
---|
| 1049 | |
---|
| 1050 | // Compute final distribution |
---|
| 1051 | dist = new double[sums.length][data.numClasses()]; |
---|
| 1052 | for (int j = 0; j < sums.length; j++) { |
---|
| 1053 | if (sumOfWeights[j] > 0) { |
---|
| 1054 | dist[j][0] = sums[j] / sumOfWeights[j]; |
---|
| 1055 | } else { |
---|
| 1056 | dist[j][0] = totalSum / totalSumOfWeights; |
---|
| 1057 | } |
---|
| 1058 | } |
---|
| 1059 | |
---|
| 1060 | // Compute variance gain |
---|
| 1061 | double priorVar = |
---|
| 1062 | singleVariance(totalSum, totalSumSquared, totalSumOfWeights); |
---|
| 1063 | double var = variance(sums, sumSquared, sumOfWeights); |
---|
| 1064 | double gain = priorVar - var; |
---|
| 1065 | |
---|
| 1066 | // Return distribution and split point |
---|
| 1067 | subsetWeights[att] = sumOfWeights; |
---|
| 1068 | dists[att] = dist; |
---|
| 1069 | vals[att] = gain; |
---|
| 1070 | return splitPoint; |
---|
| 1071 | } |
---|
| 1072 | |
---|
| 1073 | /** |
---|
| 1074 | * Computes variance for subsets. |
---|
| 1075 | * |
---|
| 1076 | * @param s |
---|
| 1077 | * @param sS |
---|
| 1078 | * @param sumOfWeights |
---|
| 1079 | * @return the variance |
---|
| 1080 | */ |
---|
| 1081 | protected double variance(double[] s, double[] sS, |
---|
| 1082 | double[] sumOfWeights) { |
---|
| 1083 | |
---|
| 1084 | double var = 0; |
---|
| 1085 | |
---|
| 1086 | for (int i = 0; i < s.length; i++) { |
---|
| 1087 | if (sumOfWeights[i] > 0) { |
---|
| 1088 | var += singleVariance(s[i], sS[i], sumOfWeights[i]); |
---|
| 1089 | } |
---|
| 1090 | } |
---|
| 1091 | |
---|
| 1092 | return var; |
---|
| 1093 | } |
---|
| 1094 | |
---|
| 1095 | /** |
---|
| 1096 | * Computes the variance for a single set |
---|
| 1097 | * |
---|
| 1098 | * @param s |
---|
| 1099 | * @param sS |
---|
| 1100 | * @param weight the weight |
---|
| 1101 | * @return the variance |
---|
| 1102 | */ |
---|
| 1103 | protected double singleVariance(double s, double sS, double weight) { |
---|
| 1104 | |
---|
| 1105 | return sS - ((s * s) / weight); |
---|
| 1106 | } |
---|
| 1107 | |
---|
| 1108 | /** |
---|
| 1109 | * Computes value of splitting criterion before split. |
---|
| 1110 | * |
---|
| 1111 | * @param dist |
---|
| 1112 | * @return the splitting criterion |
---|
| 1113 | */ |
---|
| 1114 | protected double priorVal(double[][] dist) { |
---|
| 1115 | |
---|
| 1116 | return ContingencyTables.entropyOverColumns(dist); |
---|
| 1117 | } |
---|
| 1118 | |
---|
| 1119 | /** |
---|
| 1120 | * Computes value of splitting criterion after split. |
---|
| 1121 | * |
---|
| 1122 | * @param dist |
---|
| 1123 | * @param priorVal the splitting criterion |
---|
| 1124 | * @return the gain after splitting |
---|
| 1125 | */ |
---|
| 1126 | protected double gain(double[][] dist, double priorVal) { |
---|
| 1127 | |
---|
| 1128 | return priorVal - ContingencyTables.entropyConditionedOnRows(dist); |
---|
| 1129 | } |
---|
| 1130 | |
---|
| 1131 | /** |
---|
| 1132 | * Prunes the tree using the hold-out data (bottom-up). |
---|
| 1133 | * |
---|
| 1134 | * @return the error |
---|
| 1135 | * @throws Exception if pruning fails for some reason |
---|
| 1136 | */ |
---|
| 1137 | protected double reducedErrorPrune() throws Exception { |
---|
| 1138 | |
---|
| 1139 | // Is node leaf ? |
---|
| 1140 | if (m_Attribute == -1) { |
---|
| 1141 | return m_HoldOutError; |
---|
| 1142 | } |
---|
| 1143 | |
---|
| 1144 | // Prune all sub trees |
---|
| 1145 | double errorTree = 0; |
---|
| 1146 | for (int i = 0; i < m_Successors.length; i++) { |
---|
| 1147 | errorTree += m_Successors[i].reducedErrorPrune(); |
---|
| 1148 | } |
---|
| 1149 | |
---|
| 1150 | // Replace sub tree with leaf if error doesn't get worse |
---|
| 1151 | if (errorTree >= m_HoldOutError) { |
---|
| 1152 | m_Attribute = -1; |
---|
| 1153 | m_Successors = null; |
---|
| 1154 | return m_HoldOutError; |
---|
| 1155 | } else { |
---|
| 1156 | return errorTree; |
---|
| 1157 | } |
---|
| 1158 | } |
---|
| 1159 | |
---|
| 1160 | /** |
---|
| 1161 | * Inserts hold-out set into tree. |
---|
| 1162 | * |
---|
| 1163 | * @param data the data to insert |
---|
| 1164 | * @throws Exception if something goes wrong |
---|
| 1165 | */ |
---|
| 1166 | protected void insertHoldOutSet(Instances data) throws Exception { |
---|
| 1167 | |
---|
| 1168 | for (int i = 0; i < data.numInstances(); i++) { |
---|
| 1169 | insertHoldOutInstance(data.instance(i), data.instance(i).weight(), |
---|
| 1170 | this); |
---|
| 1171 | } |
---|
| 1172 | } |
---|
| 1173 | |
---|
| 1174 | /** |
---|
| 1175 | * Inserts an instance from the hold-out set into the tree. |
---|
| 1176 | * |
---|
| 1177 | * @param inst the instance to insert |
---|
| 1178 | * @param weight the weight of the instance |
---|
| 1179 | * @param parent the parent of the node |
---|
| 1180 | * @throws Exception if insertion fails |
---|
| 1181 | */ |
---|
| 1182 | protected void insertHoldOutInstance(Instance inst, double weight, |
---|
| 1183 | Tree parent) throws Exception { |
---|
| 1184 | |
---|
| 1185 | // Insert instance into hold-out class distribution |
---|
| 1186 | if (inst.classAttribute().isNominal()) { |
---|
| 1187 | |
---|
| 1188 | // Nominal case |
---|
| 1189 | m_HoldOutDist[(int)inst.classValue()] += weight; |
---|
| 1190 | int predictedClass = 0; |
---|
| 1191 | if (m_ClassProbs == null) { |
---|
| 1192 | predictedClass = Utils.maxIndex(parent.m_ClassProbs); |
---|
| 1193 | } else { |
---|
| 1194 | predictedClass = Utils.maxIndex(m_ClassProbs); |
---|
| 1195 | } |
---|
| 1196 | if (predictedClass != (int)inst.classValue()) { |
---|
| 1197 | m_HoldOutError += weight; |
---|
| 1198 | } |
---|
| 1199 | } else { |
---|
| 1200 | |
---|
| 1201 | // Numeric case |
---|
| 1202 | m_HoldOutDist[0] += weight; |
---|
| 1203 | double diff = 0; |
---|
| 1204 | if (m_ClassProbs == null) { |
---|
| 1205 | diff = parent.m_ClassProbs[0] - inst.classValue(); |
---|
| 1206 | } else { |
---|
| 1207 | diff = m_ClassProbs[0] - inst.classValue(); |
---|
| 1208 | } |
---|
| 1209 | m_HoldOutError += diff * diff * weight; |
---|
| 1210 | } |
---|
| 1211 | |
---|
| 1212 | // The process is recursive |
---|
| 1213 | if (m_Attribute != -1) { |
---|
| 1214 | |
---|
| 1215 | // If node is not a leaf |
---|
| 1216 | if (inst.isMissing(m_Attribute)) { |
---|
| 1217 | |
---|
| 1218 | // Distribute instance |
---|
| 1219 | for (int i = 0; i < m_Successors.length; i++) { |
---|
| 1220 | if (m_Prop[i] > 0) { |
---|
| 1221 | m_Successors[i].insertHoldOutInstance(inst, weight * |
---|
| 1222 | m_Prop[i], this); |
---|
| 1223 | } |
---|
| 1224 | } |
---|
| 1225 | } else { |
---|
| 1226 | |
---|
| 1227 | if (m_Info.attribute(m_Attribute).isNominal()) { |
---|
| 1228 | |
---|
| 1229 | // Treat nominal attributes |
---|
| 1230 | m_Successors[(int)inst.value(m_Attribute)]. |
---|
| 1231 | insertHoldOutInstance(inst, weight, this); |
---|
| 1232 | } else { |
---|
| 1233 | |
---|
| 1234 | // Treat numeric attributes |
---|
| 1235 | if (inst.value(m_Attribute) < m_SplitPoint) { |
---|
| 1236 | m_Successors[0].insertHoldOutInstance(inst, weight, this); |
---|
| 1237 | } else { |
---|
| 1238 | m_Successors[1].insertHoldOutInstance(inst, weight, this); |
---|
| 1239 | } |
---|
| 1240 | } |
---|
| 1241 | } |
---|
| 1242 | } |
---|
| 1243 | } |
---|
| 1244 | |
---|
| 1245 | /** |
---|
| 1246 | * Inserts hold-out set into tree. |
---|
| 1247 | * |
---|
| 1248 | * @param data the data to insert |
---|
| 1249 | * @throws Exception if insertion fails |
---|
| 1250 | */ |
---|
| 1251 | protected void backfitHoldOutSet(Instances data) throws Exception { |
---|
| 1252 | |
---|
| 1253 | for (int i = 0; i < data.numInstances(); i++) { |
---|
| 1254 | backfitHoldOutInstance(data.instance(i), data.instance(i).weight(), |
---|
| 1255 | this); |
---|
| 1256 | } |
---|
| 1257 | } |
---|
| 1258 | |
---|
| 1259 | /** |
---|
| 1260 | * Inserts an instance from the hold-out set into the tree. |
---|
| 1261 | * |
---|
| 1262 | * @param inst the instance to insert |
---|
| 1263 | * @param weight the weight of the instance |
---|
| 1264 | * @param parent the parent node |
---|
| 1265 | * @throws Exception if insertion fails |
---|
| 1266 | */ |
---|
| 1267 | protected void backfitHoldOutInstance(Instance inst, double weight, |
---|
| 1268 | Tree parent) throws Exception { |
---|
| 1269 | |
---|
| 1270 | // Insert instance into hold-out class distribution |
---|
| 1271 | if (inst.classAttribute().isNominal()) { |
---|
| 1272 | |
---|
| 1273 | // Nominal case |
---|
| 1274 | if (m_ClassProbs == null) { |
---|
| 1275 | m_ClassProbs = new double[inst.numClasses()]; |
---|
| 1276 | } |
---|
| 1277 | System.arraycopy(m_Distribution, 0, m_ClassProbs, 0, inst.numClasses()); |
---|
| 1278 | m_ClassProbs[(int)inst.classValue()] += weight; |
---|
| 1279 | Utils.normalize(m_ClassProbs); |
---|
| 1280 | } else { |
---|
| 1281 | |
---|
| 1282 | // Numeric case |
---|
| 1283 | if (m_ClassProbs == null) { |
---|
| 1284 | m_ClassProbs = new double[1]; |
---|
| 1285 | } |
---|
| 1286 | m_ClassProbs[0] *= m_Distribution[1]; |
---|
| 1287 | m_ClassProbs[0] += weight * inst.classValue(); |
---|
| 1288 | m_ClassProbs[0] /= (m_Distribution[1] + weight); |
---|
| 1289 | } |
---|
| 1290 | |
---|
| 1291 | // The process is recursive |
---|
| 1292 | if (m_Attribute != -1) { |
---|
| 1293 | |
---|
| 1294 | // If node is not a leaf |
---|
| 1295 | if (inst.isMissing(m_Attribute)) { |
---|
| 1296 | |
---|
| 1297 | // Distribute instance |
---|
| 1298 | for (int i = 0; i < m_Successors.length; i++) { |
---|
| 1299 | if (m_Prop[i] > 0) { |
---|
| 1300 | m_Successors[i].backfitHoldOutInstance(inst, weight * |
---|
| 1301 | m_Prop[i], this); |
---|
| 1302 | } |
---|
| 1303 | } |
---|
| 1304 | } else { |
---|
| 1305 | |
---|
| 1306 | if (m_Info.attribute(m_Attribute).isNominal()) { |
---|
| 1307 | |
---|
| 1308 | // Treat nominal attributes |
---|
| 1309 | m_Successors[(int)inst.value(m_Attribute)]. |
---|
| 1310 | backfitHoldOutInstance(inst, weight, this); |
---|
| 1311 | } else { |
---|
| 1312 | |
---|
| 1313 | // Treat numeric attributes |
---|
| 1314 | if (inst.value(m_Attribute) < m_SplitPoint) { |
---|
| 1315 | m_Successors[0].backfitHoldOutInstance(inst, weight, this); |
---|
| 1316 | } else { |
---|
| 1317 | m_Successors[1].backfitHoldOutInstance(inst, weight, this); |
---|
| 1318 | } |
---|
| 1319 | } |
---|
| 1320 | } |
---|
| 1321 | } |
---|
| 1322 | } |
---|
| 1323 | |
---|
| 1324 | /** |
---|
| 1325 | * Returns the revision string. |
---|
| 1326 | * |
---|
| 1327 | * @return the revision |
---|
| 1328 | */ |
---|
| 1329 | public String getRevision() { |
---|
| 1330 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 1331 | } |
---|
| 1332 | } |
---|
| 1333 | |
---|
| 1334 | /** The Tree object */ |
---|
| 1335 | protected Tree m_Tree = null; |
---|
| 1336 | |
---|
| 1337 | /** Number of folds for reduced error pruning. */ |
---|
| 1338 | protected int m_NumFolds = 3; |
---|
| 1339 | |
---|
| 1340 | /** Seed for random data shuffling. */ |
---|
| 1341 | protected int m_Seed = 1; |
---|
| 1342 | |
---|
| 1343 | /** Don't prune */ |
---|
| 1344 | protected boolean m_NoPruning = false; |
---|
| 1345 | |
---|
| 1346 | /** The minimum number of instances per leaf. */ |
---|
| 1347 | protected double m_MinNum = 2; |
---|
| 1348 | |
---|
| 1349 | /** The minimum proportion of the total variance (over all the data) |
---|
| 1350 | required for split. */ |
---|
| 1351 | protected double m_MinVarianceProp = 1e-3; |
---|
| 1352 | |
---|
| 1353 | /** Upper bound on the tree depth */ |
---|
| 1354 | protected int m_MaxDepth = -1; |
---|
| 1355 | |
---|
| 1356 | /** |
---|
| 1357 | * Returns the tip text for this property |
---|
| 1358 | * @return tip text for this property suitable for |
---|
| 1359 | * displaying in the explorer/experimenter gui |
---|
| 1360 | */ |
---|
| 1361 | public String noPruningTipText() { |
---|
| 1362 | return "Whether pruning is performed."; |
---|
| 1363 | } |
---|
| 1364 | |
---|
| 1365 | /** |
---|
| 1366 | * Get the value of NoPruning. |
---|
| 1367 | * |
---|
| 1368 | * @return Value of NoPruning. |
---|
| 1369 | */ |
---|
| 1370 | public boolean getNoPruning() { |
---|
| 1371 | |
---|
| 1372 | return m_NoPruning; |
---|
| 1373 | } |
---|
| 1374 | |
---|
| 1375 | /** |
---|
| 1376 | * Set the value of NoPruning. |
---|
| 1377 | * |
---|
| 1378 | * @param newNoPruning Value to assign to NoPruning. |
---|
| 1379 | */ |
---|
| 1380 | public void setNoPruning(boolean newNoPruning) { |
---|
| 1381 | |
---|
| 1382 | m_NoPruning = newNoPruning; |
---|
| 1383 | } |
---|
| 1384 | |
---|
| 1385 | /** |
---|
| 1386 | * Returns the tip text for this property |
---|
| 1387 | * @return tip text for this property suitable for |
---|
| 1388 | * displaying in the explorer/experimenter gui |
---|
| 1389 | */ |
---|
| 1390 | public String minNumTipText() { |
---|
| 1391 | return "The minimum total weight of the instances in a leaf."; |
---|
| 1392 | } |
---|
| 1393 | |
---|
| 1394 | /** |
---|
| 1395 | * Get the value of MinNum. |
---|
| 1396 | * |
---|
| 1397 | * @return Value of MinNum. |
---|
| 1398 | */ |
---|
| 1399 | public double getMinNum() { |
---|
| 1400 | |
---|
| 1401 | return m_MinNum; |
---|
| 1402 | } |
---|
| 1403 | |
---|
| 1404 | /** |
---|
| 1405 | * Set the value of MinNum. |
---|
| 1406 | * |
---|
| 1407 | * @param newMinNum Value to assign to MinNum. |
---|
| 1408 | */ |
---|
| 1409 | public void setMinNum(double newMinNum) { |
---|
| 1410 | |
---|
| 1411 | m_MinNum = newMinNum; |
---|
| 1412 | } |
---|
| 1413 | |
---|
| 1414 | /** |
---|
| 1415 | * Returns the tip text for this property |
---|
| 1416 | * @return tip text for this property suitable for |
---|
| 1417 | * displaying in the explorer/experimenter gui |
---|
| 1418 | */ |
---|
| 1419 | public String minVariancePropTipText() { |
---|
| 1420 | return "The minimum proportion of the variance on all the data " + |
---|
| 1421 | "that needs to be present at a node in order for splitting to " + |
---|
| 1422 | "be performed in regression trees."; |
---|
| 1423 | } |
---|
| 1424 | |
---|
| 1425 | /** |
---|
| 1426 | * Get the value of MinVarianceProp. |
---|
| 1427 | * |
---|
| 1428 | * @return Value of MinVarianceProp. |
---|
| 1429 | */ |
---|
| 1430 | public double getMinVarianceProp() { |
---|
| 1431 | |
---|
| 1432 | return m_MinVarianceProp; |
---|
| 1433 | } |
---|
| 1434 | |
---|
| 1435 | /** |
---|
| 1436 | * Set the value of MinVarianceProp. |
---|
| 1437 | * |
---|
| 1438 | * @param newMinVarianceProp Value to assign to MinVarianceProp. |
---|
| 1439 | */ |
---|
| 1440 | public void setMinVarianceProp(double newMinVarianceProp) { |
---|
| 1441 | |
---|
| 1442 | m_MinVarianceProp = newMinVarianceProp; |
---|
| 1443 | } |
---|
| 1444 | |
---|
| 1445 | /** |
---|
| 1446 | * Returns the tip text for this property |
---|
| 1447 | * @return tip text for this property suitable for |
---|
| 1448 | * displaying in the explorer/experimenter gui |
---|
| 1449 | */ |
---|
| 1450 | public String seedTipText() { |
---|
| 1451 | return "The seed used for randomizing the data."; |
---|
| 1452 | } |
---|
| 1453 | |
---|
| 1454 | /** |
---|
| 1455 | * Get the value of Seed. |
---|
| 1456 | * |
---|
| 1457 | * @return Value of Seed. |
---|
| 1458 | */ |
---|
| 1459 | public int getSeed() { |
---|
| 1460 | |
---|
| 1461 | return m_Seed; |
---|
| 1462 | } |
---|
| 1463 | |
---|
| 1464 | /** |
---|
| 1465 | * Set the value of Seed. |
---|
| 1466 | * |
---|
| 1467 | * @param newSeed Value to assign to Seed. |
---|
| 1468 | */ |
---|
| 1469 | public void setSeed(int newSeed) { |
---|
| 1470 | |
---|
| 1471 | m_Seed = newSeed; |
---|
| 1472 | } |
---|
| 1473 | |
---|
| 1474 | /** |
---|
| 1475 | * Returns the tip text for this property |
---|
| 1476 | * @return tip text for this property suitable for |
---|
| 1477 | * displaying in the explorer/experimenter gui |
---|
| 1478 | */ |
---|
| 1479 | public String numFoldsTipText() { |
---|
| 1480 | return "Determines the amount of data used for pruning. One fold is used for " |
---|
| 1481 | + "pruning, the rest for growing the rules."; |
---|
| 1482 | } |
---|
| 1483 | |
---|
| 1484 | /** |
---|
| 1485 | * Get the value of NumFolds. |
---|
| 1486 | * |
---|
| 1487 | * @return Value of NumFolds. |
---|
| 1488 | */ |
---|
| 1489 | public int getNumFolds() { |
---|
| 1490 | |
---|
| 1491 | return m_NumFolds; |
---|
| 1492 | } |
---|
| 1493 | |
---|
| 1494 | /** |
---|
| 1495 | * Set the value of NumFolds. |
---|
| 1496 | * |
---|
| 1497 | * @param newNumFolds Value to assign to NumFolds. |
---|
| 1498 | */ |
---|
| 1499 | public void setNumFolds(int newNumFolds) { |
---|
| 1500 | |
---|
| 1501 | m_NumFolds = newNumFolds; |
---|
| 1502 | } |
---|
| 1503 | |
---|
| 1504 | /** |
---|
| 1505 | * Returns the tip text for this property |
---|
| 1506 | * @return tip text for this property suitable for |
---|
| 1507 | * displaying in the explorer/experimenter gui |
---|
| 1508 | */ |
---|
| 1509 | public String maxDepthTipText() { |
---|
| 1510 | return "The maximum tree depth (-1 for no restriction)."; |
---|
| 1511 | } |
---|
| 1512 | |
---|
| 1513 | /** |
---|
| 1514 | * Get the value of MaxDepth. |
---|
| 1515 | * |
---|
| 1516 | * @return Value of MaxDepth. |
---|
| 1517 | */ |
---|
| 1518 | public int getMaxDepth() { |
---|
| 1519 | |
---|
| 1520 | return m_MaxDepth; |
---|
| 1521 | } |
---|
| 1522 | |
---|
| 1523 | /** |
---|
| 1524 | * Set the value of MaxDepth. |
---|
| 1525 | * |
---|
| 1526 | * @param newMaxDepth Value to assign to MaxDepth. |
---|
| 1527 | */ |
---|
| 1528 | public void setMaxDepth(int newMaxDepth) { |
---|
| 1529 | |
---|
| 1530 | m_MaxDepth = newMaxDepth; |
---|
| 1531 | } |
---|
| 1532 | |
---|
| 1533 | /** |
---|
| 1534 | * Lists the command-line options for this classifier. |
---|
| 1535 | * |
---|
| 1536 | * @return an enumeration over all commandline options |
---|
| 1537 | */ |
---|
| 1538 | public Enumeration listOptions() { |
---|
| 1539 | |
---|
| 1540 | Vector newVector = new Vector(5); |
---|
| 1541 | |
---|
| 1542 | newVector. |
---|
| 1543 | addElement(new Option("\tSet minimum number of instances per leaf " + |
---|
| 1544 | "(default 2).", |
---|
| 1545 | "M", 1, "-M <minimum number of instances>")); |
---|
| 1546 | newVector. |
---|
| 1547 | addElement(new Option("\tSet minimum numeric class variance proportion\n" + |
---|
| 1548 | "\tof train variance for split (default 1e-3).", |
---|
| 1549 | "V", 1, "-V <minimum variance for split>")); |
---|
| 1550 | newVector. |
---|
| 1551 | addElement(new Option("\tNumber of folds for reduced error pruning " + |
---|
| 1552 | "(default 3).", |
---|
| 1553 | "N", 1, "-N <number of folds>")); |
---|
| 1554 | newVector. |
---|
| 1555 | addElement(new Option("\tSeed for random data shuffling (default 1).", |
---|
| 1556 | "S", 1, "-S <seed>")); |
---|
| 1557 | newVector. |
---|
| 1558 | addElement(new Option("\tNo pruning.", |
---|
| 1559 | "P", 0, "-P")); |
---|
| 1560 | newVector. |
---|
| 1561 | addElement(new Option("\tMaximum tree depth (default -1, no maximum)", |
---|
| 1562 | "L", 1, "-L")); |
---|
| 1563 | |
---|
| 1564 | return newVector.elements(); |
---|
| 1565 | } |
---|
| 1566 | |
---|
| 1567 | /** |
---|
| 1568 | * Gets options from this classifier. |
---|
| 1569 | * |
---|
| 1570 | * @return the options for the current setup |
---|
| 1571 | */ |
---|
| 1572 | public String[] getOptions() { |
---|
| 1573 | |
---|
| 1574 | String [] options = new String [12]; |
---|
| 1575 | int current = 0; |
---|
| 1576 | options[current++] = "-M"; |
---|
| 1577 | options[current++] = "" + (int)getMinNum(); |
---|
| 1578 | options[current++] = "-V"; |
---|
| 1579 | options[current++] = "" + getMinVarianceProp(); |
---|
| 1580 | options[current++] = "-N"; |
---|
| 1581 | options[current++] = "" + getNumFolds(); |
---|
| 1582 | options[current++] = "-S"; |
---|
| 1583 | options[current++] = "" + getSeed(); |
---|
| 1584 | options[current++] = "-L"; |
---|
| 1585 | options[current++] = "" + getMaxDepth(); |
---|
| 1586 | if (getNoPruning()) { |
---|
| 1587 | options[current++] = "-P"; |
---|
| 1588 | } |
---|
| 1589 | while (current < options.length) { |
---|
| 1590 | options[current++] = ""; |
---|
| 1591 | } |
---|
| 1592 | return options; |
---|
| 1593 | } |
---|
| 1594 | |
---|
| 1595 | /** |
---|
| 1596 | * Parses a given list of options. <p/> |
---|
| 1597 | * |
---|
| 1598 | <!-- options-start --> |
---|
| 1599 | * Valid options are: <p/> |
---|
| 1600 | * |
---|
| 1601 | * <pre> -M <minimum number of instances> |
---|
| 1602 | * Set minimum number of instances per leaf (default 2).</pre> |
---|
| 1603 | * |
---|
| 1604 | * <pre> -V <minimum variance for split> |
---|
| 1605 | * Set minimum numeric class variance proportion |
---|
| 1606 | * of train variance for split (default 1e-3).</pre> |
---|
| 1607 | * |
---|
| 1608 | * <pre> -N <number of folds> |
---|
| 1609 | * Number of folds for reduced error pruning (default 3).</pre> |
---|
| 1610 | * |
---|
| 1611 | * <pre> -S <seed> |
---|
| 1612 | * Seed for random data shuffling (default 1).</pre> |
---|
| 1613 | * |
---|
| 1614 | * <pre> -P |
---|
| 1615 | * No pruning.</pre> |
---|
| 1616 | * |
---|
| 1617 | * <pre> -L |
---|
| 1618 | * Maximum tree depth (default -1, no maximum)</pre> |
---|
| 1619 | * |
---|
| 1620 | <!-- options-end --> |
---|
| 1621 | * |
---|
| 1622 | * @param options the list of options as an array of strings |
---|
| 1623 | * @throws Exception if an option is not supported |
---|
| 1624 | */ |
---|
| 1625 | public void setOptions(String[] options) throws Exception { |
---|
| 1626 | |
---|
| 1627 | String minNumString = Utils.getOption('M', options); |
---|
| 1628 | if (minNumString.length() != 0) { |
---|
| 1629 | m_MinNum = (double)Integer.parseInt(minNumString); |
---|
| 1630 | } else { |
---|
| 1631 | m_MinNum = 2; |
---|
| 1632 | } |
---|
| 1633 | String minVarString = Utils.getOption('V', options); |
---|
| 1634 | if (minVarString.length() != 0) { |
---|
| 1635 | m_MinVarianceProp = Double.parseDouble(minVarString); |
---|
| 1636 | } else { |
---|
| 1637 | m_MinVarianceProp = 1e-3; |
---|
| 1638 | } |
---|
| 1639 | String numFoldsString = Utils.getOption('N', options); |
---|
| 1640 | if (numFoldsString.length() != 0) { |
---|
| 1641 | m_NumFolds = Integer.parseInt(numFoldsString); |
---|
| 1642 | } else { |
---|
| 1643 | m_NumFolds = 3; |
---|
| 1644 | } |
---|
| 1645 | String seedString = Utils.getOption('S', options); |
---|
| 1646 | if (seedString.length() != 0) { |
---|
| 1647 | m_Seed = Integer.parseInt(seedString); |
---|
| 1648 | } else { |
---|
| 1649 | m_Seed = 1; |
---|
| 1650 | } |
---|
| 1651 | m_NoPruning = Utils.getFlag('P', options); |
---|
| 1652 | String depthString = Utils.getOption('L', options); |
---|
| 1653 | if (depthString.length() != 0) { |
---|
| 1654 | m_MaxDepth = Integer.parseInt(depthString); |
---|
| 1655 | } else { |
---|
| 1656 | m_MaxDepth = -1; |
---|
| 1657 | } |
---|
| 1658 | Utils.checkForRemainingOptions(options); |
---|
| 1659 | } |
---|
| 1660 | |
---|
| 1661 | /** |
---|
| 1662 | * Computes size of the tree. |
---|
| 1663 | * |
---|
| 1664 | * @return the number of nodes |
---|
| 1665 | */ |
---|
| 1666 | public int numNodes() { |
---|
| 1667 | |
---|
| 1668 | return m_Tree.numNodes(); |
---|
| 1669 | } |
---|
| 1670 | |
---|
| 1671 | /** |
---|
| 1672 | * Returns an enumeration of the additional measure names. |
---|
| 1673 | * |
---|
| 1674 | * @return an enumeration of the measure names |
---|
| 1675 | */ |
---|
| 1676 | public Enumeration enumerateMeasures() { |
---|
| 1677 | |
---|
| 1678 | Vector newVector = new Vector(1); |
---|
| 1679 | newVector.addElement("measureTreeSize"); |
---|
| 1680 | return newVector.elements(); |
---|
| 1681 | } |
---|
| 1682 | |
---|
| 1683 | /** |
---|
| 1684 | * Returns the value of the named measure. |
---|
| 1685 | * |
---|
| 1686 | * @param additionalMeasureName the name of the measure to query for its value |
---|
| 1687 | * @return the value of the named measure |
---|
| 1688 | * @throws IllegalArgumentException if the named measure is not supported |
---|
| 1689 | */ |
---|
| 1690 | public double getMeasure(String additionalMeasureName) { |
---|
| 1691 | |
---|
| 1692 | if (additionalMeasureName.equalsIgnoreCase("measureTreeSize")) { |
---|
| 1693 | return (double) numNodes(); |
---|
| 1694 | } |
---|
| 1695 | else {throw new IllegalArgumentException(additionalMeasureName |
---|
| 1696 | + " not supported (REPTree)"); |
---|
| 1697 | } |
---|
| 1698 | } |
---|
| 1699 | |
---|
| 1700 | /** |
---|
| 1701 | * Returns default capabilities of the classifier. |
---|
| 1702 | * |
---|
| 1703 | * @return the capabilities of this classifier |
---|
| 1704 | */ |
---|
| 1705 | public Capabilities getCapabilities() { |
---|
| 1706 | Capabilities result = super.getCapabilities(); |
---|
| 1707 | result.disableAll(); |
---|
| 1708 | |
---|
| 1709 | // attributes |
---|
| 1710 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 1711 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 1712 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
| 1713 | result.enable(Capability.MISSING_VALUES); |
---|
| 1714 | |
---|
| 1715 | // class |
---|
| 1716 | result.enable(Capability.NOMINAL_CLASS); |
---|
| 1717 | result.enable(Capability.NUMERIC_CLASS); |
---|
| 1718 | result.enable(Capability.DATE_CLASS); |
---|
| 1719 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
| 1720 | |
---|
| 1721 | return result; |
---|
| 1722 | } |
---|
| 1723 | |
---|
| 1724 | /** |
---|
| 1725 | * Builds classifier. |
---|
| 1726 | * |
---|
| 1727 | * @param data the data to train with |
---|
| 1728 | * @throws Exception if building fails |
---|
| 1729 | */ |
---|
| 1730 | public void buildClassifier(Instances data) throws Exception { |
---|
| 1731 | |
---|
| 1732 | // can classifier handle the data? |
---|
| 1733 | getCapabilities().testWithFail(data); |
---|
| 1734 | |
---|
| 1735 | // remove instances with missing class |
---|
| 1736 | data = new Instances(data); |
---|
| 1737 | data.deleteWithMissingClass(); |
---|
| 1738 | |
---|
| 1739 | Random random = new Random(m_Seed); |
---|
| 1740 | |
---|
| 1741 | m_zeroR = null; |
---|
| 1742 | if (data.numAttributes() == 1) { |
---|
| 1743 | m_zeroR = new ZeroR(); |
---|
| 1744 | m_zeroR.buildClassifier(data); |
---|
| 1745 | return; |
---|
| 1746 | } |
---|
| 1747 | |
---|
| 1748 | // Randomize and stratify |
---|
| 1749 | data.randomize(random); |
---|
| 1750 | if (data.classAttribute().isNominal()) { |
---|
| 1751 | data.stratify(m_NumFolds); |
---|
| 1752 | } |
---|
| 1753 | |
---|
| 1754 | // Split data into training and pruning set |
---|
| 1755 | Instances train = null; |
---|
| 1756 | Instances prune = null; |
---|
| 1757 | if (!m_NoPruning) { |
---|
| 1758 | train = data.trainCV(m_NumFolds, 0, random); |
---|
| 1759 | prune = data.testCV(m_NumFolds, 0); |
---|
| 1760 | } else { |
---|
| 1761 | train = data; |
---|
| 1762 | } |
---|
| 1763 | |
---|
| 1764 | // Create array of sorted indices and weights |
---|
| 1765 | int[][] sortedIndices = new int[train.numAttributes()][0]; |
---|
| 1766 | double[][] weights = new double[train.numAttributes()][0]; |
---|
| 1767 | double[] vals = new double[train.numInstances()]; |
---|
| 1768 | for (int j = 0; j < train.numAttributes(); j++) { |
---|
| 1769 | if (j != train.classIndex()) { |
---|
| 1770 | weights[j] = new double[train.numInstances()]; |
---|
| 1771 | if (train.attribute(j).isNominal()) { |
---|
| 1772 | |
---|
| 1773 | // Handling nominal attributes. Putting indices of |
---|
| 1774 | // instances with missing values at the end. |
---|
| 1775 | sortedIndices[j] = new int[train.numInstances()]; |
---|
| 1776 | int count = 0; |
---|
| 1777 | for (int i = 0; i < train.numInstances(); i++) { |
---|
| 1778 | Instance inst = train.instance(i); |
---|
| 1779 | if (!inst.isMissing(j)) { |
---|
| 1780 | sortedIndices[j][count] = i; |
---|
| 1781 | weights[j][count] = inst.weight(); |
---|
| 1782 | count++; |
---|
| 1783 | } |
---|
| 1784 | } |
---|
| 1785 | for (int i = 0; i < train.numInstances(); i++) { |
---|
| 1786 | Instance inst = train.instance(i); |
---|
| 1787 | if (inst.isMissing(j)) { |
---|
| 1788 | sortedIndices[j][count] = i; |
---|
| 1789 | weights[j][count] = inst.weight(); |
---|
| 1790 | count++; |
---|
| 1791 | } |
---|
| 1792 | } |
---|
| 1793 | } else { |
---|
| 1794 | |
---|
| 1795 | // Sorted indices are computed for numeric attributes |
---|
| 1796 | for (int i = 0; i < train.numInstances(); i++) { |
---|
| 1797 | Instance inst = train.instance(i); |
---|
| 1798 | vals[i] = inst.value(j); |
---|
| 1799 | } |
---|
| 1800 | sortedIndices[j] = Utils.sort(vals); |
---|
| 1801 | for (int i = 0; i < train.numInstances(); i++) { |
---|
| 1802 | weights[j][i] = train.instance(sortedIndices[j][i]).weight(); |
---|
| 1803 | } |
---|
| 1804 | } |
---|
| 1805 | } |
---|
| 1806 | } |
---|
| 1807 | |
---|
| 1808 | // Compute initial class counts |
---|
| 1809 | double[] classProbs = new double[train.numClasses()]; |
---|
| 1810 | double totalWeight = 0, totalSumSquared = 0; |
---|
| 1811 | for (int i = 0; i < train.numInstances(); i++) { |
---|
| 1812 | Instance inst = train.instance(i); |
---|
| 1813 | if (data.classAttribute().isNominal()) { |
---|
| 1814 | classProbs[(int)inst.classValue()] += inst.weight(); |
---|
| 1815 | totalWeight += inst.weight(); |
---|
| 1816 | } else { |
---|
| 1817 | classProbs[0] += inst.classValue() * inst.weight(); |
---|
| 1818 | totalSumSquared += inst.classValue() * inst.classValue() * inst.weight(); |
---|
| 1819 | totalWeight += inst.weight(); |
---|
| 1820 | } |
---|
| 1821 | } |
---|
| 1822 | m_Tree = new Tree(); |
---|
| 1823 | double trainVariance = 0; |
---|
| 1824 | if (data.classAttribute().isNumeric()) { |
---|
| 1825 | trainVariance = m_Tree. |
---|
| 1826 | singleVariance(classProbs[0], totalSumSquared, totalWeight) / totalWeight; |
---|
| 1827 | classProbs[0] /= totalWeight; |
---|
| 1828 | } |
---|
| 1829 | |
---|
| 1830 | // Build tree |
---|
| 1831 | m_Tree.buildTree(sortedIndices, weights, train, totalWeight, classProbs, |
---|
| 1832 | new Instances(train, 0), m_MinNum, m_MinVarianceProp * |
---|
| 1833 | trainVariance, 0, m_MaxDepth); |
---|
| 1834 | |
---|
| 1835 | // Insert pruning data and perform reduced error pruning |
---|
| 1836 | if (!m_NoPruning) { |
---|
| 1837 | m_Tree.insertHoldOutSet(prune); |
---|
| 1838 | m_Tree.reducedErrorPrune(); |
---|
| 1839 | m_Tree.backfitHoldOutSet(prune); |
---|
| 1840 | } |
---|
| 1841 | } |
---|
| 1842 | |
---|
| 1843 | /** |
---|
| 1844 | * Computes class distribution of an instance using the tree. |
---|
| 1845 | * |
---|
| 1846 | * @param instance the instance to compute the distribution for |
---|
| 1847 | * @return the computed class probabilities |
---|
| 1848 | * @throws Exception if computation fails |
---|
| 1849 | */ |
---|
| 1850 | public double[] distributionForInstance(Instance instance) |
---|
| 1851 | throws Exception { |
---|
| 1852 | |
---|
| 1853 | if (m_zeroR != null) { |
---|
| 1854 | return m_zeroR.distributionForInstance(instance); |
---|
| 1855 | } else { |
---|
| 1856 | return m_Tree.distributionForInstance(instance); |
---|
| 1857 | } |
---|
| 1858 | } |
---|
| 1859 | |
---|
| 1860 | |
---|
| 1861 | /** |
---|
| 1862 | * For getting a unique ID when outputting the tree source |
---|
| 1863 | * (hashcode isn't guaranteed unique) |
---|
| 1864 | */ |
---|
| 1865 | private static long PRINTED_NODES = 0; |
---|
| 1866 | |
---|
| 1867 | /** |
---|
| 1868 | * Gets the next unique node ID. |
---|
| 1869 | * |
---|
| 1870 | * @return the next unique node ID. |
---|
| 1871 | */ |
---|
| 1872 | protected static long nextID() { |
---|
| 1873 | |
---|
| 1874 | return PRINTED_NODES ++; |
---|
| 1875 | } |
---|
| 1876 | |
---|
| 1877 | /** |
---|
| 1878 | * resets the counter for the nodes |
---|
| 1879 | */ |
---|
| 1880 | protected static void resetID() { |
---|
| 1881 | PRINTED_NODES = 0; |
---|
| 1882 | } |
---|
| 1883 | |
---|
| 1884 | /** |
---|
| 1885 | * Returns the tree as if-then statements. |
---|
| 1886 | * |
---|
| 1887 | * @param className the name for the generated class |
---|
| 1888 | * @return the tree as a Java if-then type statement |
---|
| 1889 | * @throws Exception if something goes wrong |
---|
| 1890 | */ |
---|
| 1891 | public String toSource(String className) |
---|
| 1892 | throws Exception { |
---|
| 1893 | |
---|
| 1894 | if (m_Tree == null) { |
---|
| 1895 | throw new Exception("REPTree: No model built yet."); |
---|
| 1896 | } |
---|
| 1897 | StringBuffer [] source = m_Tree.toSource(className, m_Tree); |
---|
| 1898 | return |
---|
| 1899 | "class " + className + " {\n\n" |
---|
| 1900 | +" public static double classify(Object [] i)\n" |
---|
| 1901 | +" throws Exception {\n\n" |
---|
| 1902 | +" double p = Double.NaN;\n" |
---|
| 1903 | + source[0] // Assignment code |
---|
| 1904 | +" return p;\n" |
---|
| 1905 | +" }\n" |
---|
| 1906 | + source[1] // Support code |
---|
| 1907 | +"}\n"; |
---|
| 1908 | } |
---|
| 1909 | |
---|
| 1910 | /** |
---|
| 1911 | * Returns the type of graph this classifier |
---|
| 1912 | * represents. |
---|
| 1913 | * @return Drawable.TREE |
---|
| 1914 | */ |
---|
| 1915 | public int graphType() { |
---|
| 1916 | return Drawable.TREE; |
---|
| 1917 | } |
---|
| 1918 | |
---|
| 1919 | /** |
---|
| 1920 | * Outputs the decision tree as a graph |
---|
| 1921 | * |
---|
| 1922 | * @return the tree as a graph |
---|
| 1923 | * @throws Exception if generation fails |
---|
| 1924 | */ |
---|
| 1925 | public String graph() throws Exception { |
---|
| 1926 | |
---|
| 1927 | if (m_Tree == null) { |
---|
| 1928 | throw new Exception("REPTree: No model built yet."); |
---|
| 1929 | } |
---|
| 1930 | StringBuffer resultBuff = new StringBuffer(); |
---|
| 1931 | m_Tree.toGraph(resultBuff, 0, null); |
---|
| 1932 | String result = "digraph Tree {\n" + "edge [style=bold]\n" + resultBuff.toString() |
---|
| 1933 | + "\n}\n"; |
---|
| 1934 | return result; |
---|
| 1935 | } |
---|
| 1936 | |
---|
| 1937 | /** |
---|
| 1938 | * Outputs the decision tree. |
---|
| 1939 | * |
---|
| 1940 | * @return a string representation of the classifier |
---|
| 1941 | */ |
---|
| 1942 | public String toString() { |
---|
| 1943 | |
---|
| 1944 | if (m_zeroR != null) { |
---|
| 1945 | return "No attributes other than class. Using ZeroR.\n\n" + m_zeroR.toString(); |
---|
| 1946 | } |
---|
| 1947 | if ((m_Tree == null)) { |
---|
| 1948 | return "REPTree: No model built yet."; |
---|
| 1949 | } |
---|
| 1950 | return |
---|
| 1951 | "\nREPTree\n============\n" + m_Tree.toString(0, null) + "\n" + |
---|
| 1952 | "\nSize of the tree : " + numNodes(); |
---|
| 1953 | } |
---|
| 1954 | |
---|
| 1955 | /** |
---|
| 1956 | * Returns the revision string. |
---|
| 1957 | * |
---|
| 1958 | * @return the revision |
---|
| 1959 | */ |
---|
| 1960 | public String getRevision() { |
---|
| 1961 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 1962 | } |
---|
| 1963 | |
---|
| 1964 | /** |
---|
| 1965 | * Main method for this class. |
---|
| 1966 | * |
---|
| 1967 | * @param argv the commandline options |
---|
| 1968 | */ |
---|
| 1969 | public static void main(String[] argv) { |
---|
| 1970 | runClassifier(new REPTree(), argv); |
---|
| 1971 | } |
---|
| 1972 | } |
---|