1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * NBTree.java |
---|
19 | * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.trees; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.classifiers.trees.j48.NBTreeClassifierTree; |
---|
28 | import weka.classifiers.trees.j48.NBTreeModelSelection; |
---|
29 | import weka.core.AdditionalMeasureProducer; |
---|
30 | import weka.core.Capabilities; |
---|
31 | import weka.core.Drawable; |
---|
32 | import weka.core.Instance; |
---|
33 | import weka.core.Instances; |
---|
34 | import weka.core.RevisionUtils; |
---|
35 | import weka.core.Summarizable; |
---|
36 | import weka.core.TechnicalInformation; |
---|
37 | import weka.core.TechnicalInformationHandler; |
---|
38 | import weka.core.WeightedInstancesHandler; |
---|
39 | import weka.core.TechnicalInformation.Field; |
---|
40 | import weka.core.TechnicalInformation.Type; |
---|
41 | |
---|
42 | import java.util.Enumeration; |
---|
43 | import java.util.Vector; |
---|
44 | |
---|
45 | /** |
---|
46 | <!-- globalinfo-start --> |
---|
47 | * Class for generating a decision tree with naive Bayes classifiers at the leaves.<br/> |
---|
48 | * <br/> |
---|
49 | * For more information, see<br/> |
---|
50 | * <br/> |
---|
51 | * Ron Kohavi: Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid. In: Second International Conference on Knoledge Discovery and Data Mining, 202-207, 1996. |
---|
52 | * <p/> |
---|
53 | <!-- globalinfo-end --> |
---|
54 | * |
---|
55 | <!-- technical-bibtex-start --> |
---|
56 | * BibTeX: |
---|
57 | * <pre> |
---|
58 | * @inproceedings{Kohavi1996, |
---|
59 | * author = {Ron Kohavi}, |
---|
60 | * booktitle = {Second International Conference on Knoledge Discovery and Data Mining}, |
---|
61 | * pages = {202-207}, |
---|
62 | * title = {Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid}, |
---|
63 | * year = {1996} |
---|
64 | * } |
---|
65 | * </pre> |
---|
66 | * <p/> |
---|
67 | <!-- technical-bibtex-end --> |
---|
68 | * |
---|
69 | <!-- options-start --> |
---|
70 | * Valid options are: <p/> |
---|
71 | * |
---|
72 | * <pre> -D |
---|
73 | * If set, classifier is run in debug mode and |
---|
74 | * may output additional info to the console</pre> |
---|
75 | * |
---|
76 | <!-- options-end --> |
---|
77 | * |
---|
78 | * @author Mark Hall |
---|
79 | * @version $Revision: 5928 $ |
---|
80 | */ |
---|
81 | public class NBTree |
---|
82 | extends AbstractClassifier |
---|
83 | implements WeightedInstancesHandler, Drawable, Summarizable, |
---|
84 | AdditionalMeasureProducer, TechnicalInformationHandler { |
---|
85 | |
---|
86 | /** for serialization */ |
---|
87 | static final long serialVersionUID = -4716005707058256086L; |
---|
88 | |
---|
89 | /** Minimum number of instances */ |
---|
90 | private int m_minNumObj = 30; |
---|
91 | |
---|
92 | /** The root of the tree */ |
---|
93 | private NBTreeClassifierTree m_root; |
---|
94 | |
---|
95 | /** |
---|
96 | * Returns a string describing classifier |
---|
97 | * @return a description suitable for |
---|
98 | * displaying in the explorer/experimenter gui |
---|
99 | */ |
---|
100 | public String globalInfo() { |
---|
101 | return "Class for generating a decision tree with naive Bayes classifiers at " |
---|
102 | + "the leaves.\n\n" |
---|
103 | + "For more information, see\n\n" |
---|
104 | + getTechnicalInformation().toString(); |
---|
105 | } |
---|
106 | |
---|
107 | /** |
---|
108 | * Returns an instance of a TechnicalInformation object, containing |
---|
109 | * detailed information about the technical background of this class, |
---|
110 | * e.g., paper reference or book this class is based on. |
---|
111 | * |
---|
112 | * @return the technical information about this class |
---|
113 | */ |
---|
114 | public TechnicalInformation getTechnicalInformation() { |
---|
115 | TechnicalInformation result; |
---|
116 | |
---|
117 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
118 | result.setValue(Field.AUTHOR, "Ron Kohavi"); |
---|
119 | result.setValue(Field.TITLE, "Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid"); |
---|
120 | result.setValue(Field.BOOKTITLE, "Second International Conference on Knoledge Discovery and Data Mining"); |
---|
121 | result.setValue(Field.YEAR, "1996"); |
---|
122 | result.setValue(Field.PAGES, "202-207"); |
---|
123 | |
---|
124 | return result; |
---|
125 | } |
---|
126 | |
---|
127 | /** |
---|
128 | * Returns default capabilities of the classifier. |
---|
129 | * |
---|
130 | * @return the capabilities of this classifier |
---|
131 | */ |
---|
132 | public Capabilities getCapabilities() { |
---|
133 | return new NBTreeClassifierTree(null).getCapabilities(); |
---|
134 | } |
---|
135 | |
---|
136 | /** |
---|
137 | * Generates the classifier. |
---|
138 | * |
---|
139 | * @param instances the data to train with |
---|
140 | * @throws Exception if classifier can't be built successfully |
---|
141 | */ |
---|
142 | public void buildClassifier(Instances instances) throws Exception { |
---|
143 | |
---|
144 | NBTreeModelSelection modSelection = |
---|
145 | new NBTreeModelSelection(m_minNumObj, instances); |
---|
146 | |
---|
147 | m_root = new NBTreeClassifierTree(modSelection); |
---|
148 | m_root.buildClassifier(instances); |
---|
149 | } |
---|
150 | |
---|
151 | /** |
---|
152 | * Classifies an instance. |
---|
153 | * |
---|
154 | * @param instance the instance to classify |
---|
155 | * @return the classification |
---|
156 | * @throws Exception if instance can't be classified successfully |
---|
157 | */ |
---|
158 | public double classifyInstance(Instance instance) throws Exception { |
---|
159 | |
---|
160 | return m_root.classifyInstance(instance); |
---|
161 | } |
---|
162 | |
---|
163 | /** |
---|
164 | * Returns class probabilities for an instance. |
---|
165 | * |
---|
166 | * @param instance the instance to get the distribution for |
---|
167 | * @return the class probabilities |
---|
168 | * @throws Exception if distribution can't be computed successfully |
---|
169 | */ |
---|
170 | public final double[] distributionForInstance(Instance instance) |
---|
171 | throws Exception { |
---|
172 | |
---|
173 | return m_root.distributionForInstance(instance, false); |
---|
174 | } |
---|
175 | |
---|
176 | /** |
---|
177 | * Returns a description of the classifier. |
---|
178 | * |
---|
179 | * @return a string representation of the classifier |
---|
180 | */ |
---|
181 | public String toString() { |
---|
182 | |
---|
183 | if (m_root == null) { |
---|
184 | return "No classifier built"; |
---|
185 | } |
---|
186 | return "NBTree\n------------------\n" + m_root.toString(); |
---|
187 | } |
---|
188 | |
---|
189 | /** |
---|
190 | * Returns the type of graph this classifier |
---|
191 | * represents. |
---|
192 | * @return Drawable.TREE |
---|
193 | */ |
---|
194 | public int graphType() { |
---|
195 | return Drawable.TREE; |
---|
196 | } |
---|
197 | |
---|
198 | /** |
---|
199 | * Returns graph describing the tree. |
---|
200 | * |
---|
201 | * @return the graph describing the tree |
---|
202 | * @throws Exception if graph can't be computed |
---|
203 | */ |
---|
204 | public String graph() throws Exception { |
---|
205 | |
---|
206 | return m_root.graph(); |
---|
207 | } |
---|
208 | |
---|
209 | /** |
---|
210 | * Returns a superconcise version of the model |
---|
211 | * |
---|
212 | * @return a description of the model |
---|
213 | */ |
---|
214 | public String toSummaryString() { |
---|
215 | |
---|
216 | return "Number of leaves: " + m_root.numLeaves() + "\n" |
---|
217 | + "Size of the tree: " + m_root.numNodes() + "\n"; |
---|
218 | } |
---|
219 | |
---|
220 | /** |
---|
221 | * Returns the size of the tree |
---|
222 | * @return the size of the tree |
---|
223 | */ |
---|
224 | public double measureTreeSize() { |
---|
225 | return m_root.numNodes(); |
---|
226 | } |
---|
227 | |
---|
228 | /** |
---|
229 | * Returns the number of leaves |
---|
230 | * @return the number of leaves |
---|
231 | */ |
---|
232 | public double measureNumLeaves() { |
---|
233 | return m_root.numLeaves(); |
---|
234 | } |
---|
235 | |
---|
236 | /** |
---|
237 | * Returns the number of rules (same as number of leaves) |
---|
238 | * @return the number of rules |
---|
239 | */ |
---|
240 | public double measureNumRules() { |
---|
241 | return m_root.numLeaves(); |
---|
242 | } |
---|
243 | |
---|
244 | /** |
---|
245 | * Returns the value of the named measure |
---|
246 | * @param additionalMeasureName the name of the measure to query for its value |
---|
247 | * @return the value of the named measure |
---|
248 | * @throws IllegalArgumentException if the named measure is not supported |
---|
249 | */ |
---|
250 | public double getMeasure(String additionalMeasureName) { |
---|
251 | if (additionalMeasureName.compareToIgnoreCase("measureNumRules") == 0) { |
---|
252 | return measureNumRules(); |
---|
253 | } else if (additionalMeasureName.compareToIgnoreCase("measureTreeSize") == 0) { |
---|
254 | return measureTreeSize(); |
---|
255 | } else if (additionalMeasureName.compareToIgnoreCase("measureNumLeaves") == 0) { |
---|
256 | return measureNumLeaves(); |
---|
257 | } else { |
---|
258 | throw new IllegalArgumentException(additionalMeasureName |
---|
259 | + " not supported (j48)"); |
---|
260 | } |
---|
261 | } |
---|
262 | |
---|
263 | /** |
---|
264 | * Returns an enumeration of the additional measure names |
---|
265 | * @return an enumeration of the measure names |
---|
266 | */ |
---|
267 | public Enumeration enumerateMeasures() { |
---|
268 | Vector newVector = new Vector(3); |
---|
269 | newVector.addElement("measureTreeSize"); |
---|
270 | newVector.addElement("measureNumLeaves"); |
---|
271 | newVector.addElement("measureNumRules"); |
---|
272 | return newVector.elements(); |
---|
273 | } |
---|
274 | |
---|
275 | /** |
---|
276 | * Returns the revision string. |
---|
277 | * |
---|
278 | * @return the revision |
---|
279 | */ |
---|
280 | public String getRevision() { |
---|
281 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
282 | } |
---|
283 | |
---|
284 | /** |
---|
285 | * Main method for testing this class |
---|
286 | * |
---|
287 | * @param argv the commandline options |
---|
288 | */ |
---|
289 | public static void main(String[] argv){ |
---|
290 | runClassifier(new NBTree(), argv); |
---|
291 | } |
---|
292 | } |
---|